Recherche et sélection de publications
Interface en ou

Weakly informed audio source separation

Kilian Schulze-Forster #1, Clément Doire #2, Gaël Richard #1, Roland Badeau #1
#1 Laboratoire traitement et communication de l'information (LTCI)
  • Télécm ParisTech
  • Institut Mines-Télécom
  • Université Paris-Saclay
#2 Audionamix
  • Audionamix
References
WASPAA 2019, New Paltz, New York, USA, October 2019,
Abstract

Prior information about the target source can improve audio source separation quality but is usually not available with the necessary level of audio alignment. This has limited its usability in the past. We propose a separation model that can nevertheless exploit such weak information for the separation task while aligning it on the mixture as a byproduct using an attention mechanism. We demonstrate the capabilities of the model on a singing voice separation task exploiting artificial side information with different levels of expressiveness. Moreover, we highlight an issue with the common separation quality assessment procedure regarding parts where targets or predictions are silent and refine a previous contribution for a more complete evaluation.

Keywords
informed source separation, singing voice separation, weak labels, attention, separation evaluation
Category
Paper in proceedings
Research Area(s)
Engineering Sciences/Signal and Image processing
Identifier(s)
Bibliographic key KSF:WASPAA-19
Export
Last update
on september 06, 2019 by Roland Badeau


Responsable du service
Dominique Asselineau dominique.asselineau@telecom-paristech.fr
Copyright © 1998-2017, Télécom ParisTech/Dominique Asselineau