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Abstract—This paper presents theoretical and experimental re-
sults about constrained non-negative matrix factorization (NMF)
in a Bayesian framework. A model of superimposed Gaussian
components including harmonicity is proposed, while temporal
continuity is enforced through an inverse-Gamma Markov chain
prior. We then exhibit a space-alternating generalized expecta-
tion-maximization (SAGE) algorithm to estimate the parameters.
Computational time is reduced by initializing the system with
an original variant of multiplicative harmonic NMF, which is
described as well. The algorithm is then applied to perform
polyphonic piano music transcription. It is compared to other
state-of-the-art algorithms, especially NMF-based. Convergence
issues are also discussed on a theoretical and experimental point
of view. Bayesian NMF with harmonicity and temporal continuity
constraints is shown to outperform other standard NMF-based
transcription systems, providing a meaningful mid-level rep-
resentation of the data. However, temporal smoothness has its
drawbacks, as far as transients are concerned in particular, and
can be detrimental to transcription performance when it is the
only constraint used. Possible improvements of the temporal prior
are discussed.

Index Terms—Audio source separation, Bayesian regression,
music transcription, non-negative matrix factorization (NMF),
unsupervised machine learning.

I. INTRODUCTION

N ON-NEGATIVE matrix factorization (NMF) is a pow-
erful, unsupervised decomposition technique allowing

the representation of two-dimensional non-negative data as a
linear combination of meaningful elements in a basis.

NMF has been widely and successfully used to process audio
signals, including various tasks such as monaural sound source
separation [1], audio stream separation [2], audio-to-score
alignment [3], drum transcription [4]. In particular, it has
been efficiently used to separate notes in polyphonic music
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[5], [6] and transcribe it in a symbolic format such as MIDI.
In this case, a time–frequency representation of the signal
is factored as the product between a basis (or dictionary) of
pseudo-spectra and a matrix (decomposition) of time-varying
gains. When obtained from harmonic instruments sounds, the
basis is shown to partially retain harmonic components, with
a pitched structure, that can be interpreted as musical notes,
while the decomposition gives information about the onset and
offset times of the associated notes.

Meaningful is here a key word: we expect the basis to be
formed of interpretable elements, exhibiting certain semantics.
The non-negativity constraint is a first step towards this inter-
pretability, compared to other well-known techniques such as
singular value decomposition (SVD). For instance, the basis
learnt by NMF from an image database is expected to contain
meaningful images (the so-called “part-based representation”
[7]). This interpretability is often observed in practice, which
is certainly one of the reasons for NMF’s popularity; but it is
not always as satisfying as expected (see, for instance, facial im-
ages in [8], that are expected to retain facial parts like eyes, nose,
mouth, but do not exactly). As some other desirable character-
istics of the decomposition, it is more observed as a welcome
side-effect, than enforced and controlled.

To alleviate this lack of control on the decomposition proper-
ties, most authors have proposed constrained variants of NMF,
ensuring and enhancing those side-effects of baseline NMF:
sparsity, spatial localization, temporal continuity, for instance.
The typical approach for such constrained variants is to add a
penalty term to the usual cost function (reconstruction error) and
minimize their sum, see e.g., [1], [8], [9].

On the other hand, several authors have imported the idea of a
non-negative constraint in other frameworks than NMF, in par-
ticular statistical framework. We can cite non-negative variants
of independent component analysis (ICA) [10] and non-nega-
tive sparse coding [11]. The Bayesian framework offers both a
strong theoretical framework, and the possibility to manage con-
straints through models and priors.

In this paper, we focus on a Bayesian approach of NMF that
allows to enforce harmonicity of the dictionary components
(a desired property for music transcription task) and temporal
smoothness of the decomposition, preserving however the adap-
tiveness of NMF, which is purely data-driven, and the interest
of the provided mid-level representation for other potential
applications. The paper is organized as follows. Section II re-
calls the baseline NMF model and state-of-the-art constrained
NMF algorithms. In particular, constraints of harmonicity and
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temporal continuity are discussed and Bayesian approaches for
NMF are presented. Our model, and an EM-like algorithm for
NMF with harmonicity and temporal smoothness are proposed
in Section III, including a multiplicative initialization phase that
updates our previous work on harmonic NMF. Section IV is
devoted to experimental results in the transcription task context.
The Conclusion and perspectives are drawn in Section V.

II. CONSTRAINED NON-NEGATIVE MATRIX FACTORIZATION

Notations

Matrices are denoted by straight bold letters, for instance,
, , . Lowercase bold letters denote column vectors, such

as , while lowercase plain letters with a
single index denote rows, such that . We also
define the matrix .

We use the binary operators to denote definitions and to
denote equality up to an additive constant.

Calligraphic uppercase letters are used to denote proba-
bility distributions: , , denote Gaussian, Poisson and
inverse-Gamma distributions. Their expressions are recalled in
Appendix A.

A. Baseline Model and Algorithms

Out of any applicative context, the NMF problem is expressed
as follows: given a matrix of dimensions with non-
negative entries, NMF is the problem of finding a factorization

(1)

where and are non-negative matrices of dimensions
and , respectively. is usually chosen such that

, hence reducing the data dimension. In typical
audio applications, the matrix is chosen as a time–frequency
representation (e.g., magnitude or power spectrogram), de-
noting the frequency bin and the time frame.

The factorization (1) is generally obtained by minimizing a
cost function defined by

(2)

where is a function of two scalar variables. is typically
non-negative and takes value zero if and only if (iff) . The
most popular cost functions for NMF are the Euclidean (EUC)
distance and the generalized Kullback–Leibler (KL) divergence,
which were particularly popularized (as NMF itself) by Lee and
Seung, see, e.g., [7]. They described multiplicative update rules
under which is shown to be non-increasing, while
ensuring non-negativity of and . The update rules are ob-
tained by using a simple heuristics, which can be seen as a gra-
dient descent algorithm with an appropriate choice of the de-
scent step. By expressing the gradient of the cost function
as the difference of two positive terms and , the cost

function is shown (in particular cases) or observed to be nonin-
creasing under the rules:

(3)

For some choices of , like EUC or KL, monotonicity of the
criterion under these rules can be proven [7], but in the general
case, these updates do not guarantee any convergence.

B. Constrained Approaches

1) Constraints Imposed via Penalty Terms: In standard NMF,
the only constraint is the elementwise non-negativity of all ma-
trices. All other properties of the decomposition, as satisfying
as it is, come as uncontrolled side-effects and in a way, the fact
that the decomposition retains certain semantics of the original
signal, performs separation or provides meaningful and inter-
pretable components is just “good news.” It sounds thus natural
to try to improve this potential by adding explicit constraints to
the factorization problem, in order to enhance and control de-
sired properties.

Then, several constraints have been introduced to get NMF
solutions that better fit certain expectancies. Among other pro-
posed constraints, we can cite sparsity [12], spatial localization
[8], least correlation between sources [9] or temporal continuity
[1], [13].

The common point between those algorithms, whichever con-
straint is considered, is the “penalty term approach.” Rather than
minimizing only a reconstruction error term (EUC or KL,
typically), the minimized cost function includes a term that
quantifies the desired property. The constrained NMF problem
is then expressed as

where is a weight parameter. Table I gives a few examples of
literature penalty terms. Temporal smoothness is one of these
examples. In standard NMF and most of its variants, time frames
are considered as independent, non-related observations, which
is obviously not true for real-world sounds and in particular
for music. In the case of musical notes, the main part of the
note (the sustain and decay parts, after the attack) possesses a
slowly time-varying spectrum. When expressed as the product
between a template spectrum and a time-varying gain ,
according to NMF formulation, it is equivalent to saying that
the row is smooth, or, in other words, that the coefficient

is not that different from . [1] and [13] thus intro-
duce penalty terms in the NMF cost function to take into account
this temporal continuity. In [1], the term is directly linked to the
differences , while [13] variant relies on a ratio
between short-time and long-time variance of . Those terms
are shown to favor smoothness in lines of . Another possible
approach is the statistical approach from [14]. Temporal conti-
nuity is favored through putting an appropriate prior on . This
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TABLE I
SOME STATE-OF-THE-ART CONSTRAINTS � IN NMF PROBLEM

solution will be exposed with more details and adapted to our
case in Section III-C.

It is interesting to notice that non-smoothness may also be an
objective (see for instance [15]), depending on the data and the
application. [15] points out that smoothness of one of the NMF
factors (i.e., or ) may enhance sparsity of the other one,
thus establishing a link between those two popular constraints.
On the other hand, [1] combines sparsity and temporal conti-
nuity constraints on , but concludes to the non-efficiency of
the sparsity constraint in his particular case.

The penalty approach has several drawbacks. First, a crite-
rion quantifying the desired property must be found. Second, no
general proof of convergence is available for the update scheme
(3). Moreover, the parameter has to be chosen empirically.
These reasons motivated our approach for harmonicity con-
straint in previous and current work; this approach is exposed
in Section II-C2.

2) Deterministic Constraints: Musical notes, excluding tran-
sients, are pseudo-periodic. Their spectra are then comb-alike,
with regularly spaced frequency peaks. As we wish to use NMF
to separate musical notes in a polyphonic recording, we expect
that elements in the basis are as near as possible from a har-
monic distribution. This property is yet not easily quantified by
a penalty term.

In [16], we rather proposed an alternative model to baseline
NMF problem, enforcing the basis harmonicity. We impose the
basis components to be expressed as the linear combination of
narrowband harmonic spectra (patterns), which are arbitrarily
fixed

(4)

For a given component number , all the patterns share
the same pitch (fundamental frequency ); they are defined by
summation of the spectra of a few adjacent individual partials at
harmonic frequencies of , scaled by the spectral shape of sub-
band . This spectral envelope is chosen according to perceptual
modeling [16]. Fig. 1 illustrates the patterns for one note and the
corresponding atom . Coefficients are learned by NMF
as well as the decomposition . Update rules are obtained by
minimizing the same cost function as in baseline NMF, except
that it is minimized with respect to (wrt) and rather than

and .
3) Statistical Constraints: Another way to induce properties

in the NMF is to switch to a statistical framework and intro-

Fig. 1. Example harmonic basis spectrum � corresponding to the note ��
(MIDI pitch 72), with underlying narrowband spectra � and spectral en-
velope coefficients � (with � � �). (a) Dictionary atom � . (b) Corre-
sponding patterns � .

duce adequate prior distributions. Let us consider the following
model, proposed in [17], [18]:

(5)

where latent variables are independent and follow a multi-
variate Gaussian distribution

(6)

In [14], the estimation of the parameter , in a
maximum-likelihood (ML) sense is shown to be equivalent to
solving the NMF problem , when observing

and choosing the underlying cost function as the
Itakura–Saito divergence

(7)

Other authors, like [19], have proven similar equivalences be-
tween NMF with KL cost and ML estimation in the model

(8)

under the assumption , where is
the Poisson distribution.
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In [20], the authors propose a model where the factors and
are expressed as two functions and (called “link-func-

tions”) of Gaussian latent variables. It can be seen as a general-
ization of the previous model for appropriate choices of and

(relatively soft assumptions are put on them). It is another
example of the power of the statistical approach to incorporate
constraints or knowledge in the NMF problem.

One main advantage of this statistical approach is the possi-
bility to switch from ML estimation to maximum a posteriori
(MAP) estimation, thanks to Bayes rule

(9)

Thus, choosing adequate prior distributions and is
a way to induce desired properties in the decomposition. Fur-
thermore, the statistical framework provides a strong theoretical
basis and efficient algorithms with proven convergence, like the
expectation–maximization (EM) algorithm and its variants, to
estimate NMF factors.

In next section, we propose to combine this framework and
the previous model (4) to enforce both harmonicity in columns
of and smoothness in rows of , which are desired proper-
ties of the NMF of musical signals.

III. PROPOSED ALGORITHM

A. Probabilistic Harmonic Model

The direct usage of formulation (4) in the model (5) is pos-
sible, but leads to computational issues. An equivalent model is
obtained by assuming

(10)

with

Assuming the equality and
the independence of , we can verify that

.
From [14], we can establish the equivalence between ML es-

timation in this generative model (10) and minimization of ,
which will offer a good coherence and comparability between
algorithms for our test. [14] also shows that Itakura–Saito di-
vergence, whose expression is recalled in (7), is well-suited to
NMF decomposition of audio signals. Advantages of also
include a good fit between the representation and the observa-
tion on a log scale (due to the shape of the function

at fixed energy scale , and the strong cost of
representing a bin by ) and then, better chances to
represent low-energy residual noise (if components are devoted
to it, see future work suggestions in Section V). This motivates

our model and the choice of IS cost (and not, for instance, the
weighted Euclidean cost from [16]) in this work.

B. Maximum-Likelihood Estimation

We now describe an EM-based algorithm for the estimation
of the parameters . This algorithm is adapted from
ML estimation proposed in [14] for the model (10). In ML es-
timation, the criterion to be maximized is the log-likelihood of
the observations

(11)

We partition the set of all parameters into disjoint subsets
so that . This partition,

and the additive form of the model (10) where the latent vari-
ables are supposed independent, allow the usage of the Space
Alternating Generalized EM algorithm (SAGE), introduced
in [21], to estimate the parameters. The hidden data-space
associated with each subset is , where

. The use of SAGE implies
maximizing the functional which is the conditional
expectation of the log likelihood of

(12)

where contains the most up-to-date estimated values of all
parameters.

We can however notice that can be expressed as the sum
(over ) of auxiliary functionals expressed as

(13)
where we define subsets . The problem re-
duces to maximizing each wrt , and the sum

wrt iteratively. Maximizing these functionals
makes the criterion increase, according to [21].

At each iteration and for each , the functionals are
computed. The sum of the functionals over is formed and
maximized by computing and zeroing its derivative wrt .
The derivative wrt of each functional is computed and ze-
roed, resulting in an update rule for each . Details of the
computations are available in Appendix B. Updates rules can
be then expressed as follows:

(14)

(15)

where the superscript denotes the value at iteration
and where is the current reconstruction of , i.e.,

with the most up-to-date
values of the parameter, either or depending on the
most recent available values. In SAGE formalism, we update
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separately each row , one after the other, but, during this
step, all for from 1 to are updated simultaneously.1.

Using SAGE framework guarantees the monotonicity of the
criterion . Moreover, [21] proves the existence of a re-
gion of monotone convergence in norm, i.e., converges in
norm to a local minimum, provided the algorithm was initial-
ized in an appropriate neighborhood of that minimum.

C. Enforcing Temporal Smoothness

In terms of computational cost, this maximum-likelihood es-
timation of and has no practical interest, compared to mul-
tiplicative gradient descent update rules: as observed in [14] for
a similar case (multiplicative versus SAGE algorithm for stan-
dard NMF with Itakura–Saito divergence), it is computationally
slower and even more sensitive to local minima than usual multi-
plicative algorithms. However, it has two main advantages: first,
the theoretical framework guarantees convergence to a local
minimum; second, it opens the possibility of including priors
on the parameters, possibly in a hierarchical fashion, and then
constraining NMF solutions in an elegant way.

In [14], this framework is exploited to enforce temporal
smoothness over the rows of . We provide a priori infor-
mation on , expressed as a prior distribution . Thanks
to the Bayes rule, recalled in (9), we get a MAP estimator by
maximizing the following criterion:

(16)

(17)

We choose here to use the Markov chain prior structure pro-
posed in [14]

(18)

where reaches its maximum at , thus
favoring a slow variation of in time. We proposed for instance
the following choice:

(19)

where denotes the inverse-Gamma distribution
with shape parameter and scale parameter , whose mode is

; the initial distribution is Jeffrey’s non-infor-
mative prior (see Appendix C).

Several reasons motivated the choice of this prior. First,
non-negativity arises naturally from this modeling. Second,
this prior is conjugate with respect to the Gaussian observation
model, which brings computational simplicity. Moreover, it
seems appropriate to the modeling of temporal envelopes in
music signal. First, it favors the smoothness by the appro-
priate choice of the mode. Second, the asymmetry of the
inverse-Gamma distribution around the mode (if ,

) constraints more
smoothness on decrease parts than on in-
crease parts . Thus, it favors smoothness in
silence and sustain/decay parts of the notes, but still allows
correct representation of the attacks.

1With a more explicit notation, at iteration ��� ��, the coefficient � is
determined using, for all �, coefficients � for � � � and � for � � �.

TABLE II
COEFFICIENTS OF THE ORDER 2 POLYNOMIAL TO BE SOLVED IN

ORDER TO UPDATE � IN BAYESIAN HARMONIC NMF WITH

AN INVERSE-GAMMA MARKOV CHAIN PRIOR. �� DENOTES

THE ML UPDATE, GIVEN BY THE RIGHT MEMBER OF (14)

Parameters are here arbitrarily fixed, depending on the
desired degree of smoothness (the higher , the smoother ),
but we could consider in future work the possibility to learn it
as well.

As the prior respects the scheme , we
can still use the SAGE formalism. The functional (12) to mini-
mize is now written

(20)

being unchanged, we just have to incorporate the contri-
bution of the prior in the computation and zeroing of the gra-
dients. In Appendix C, this is shown to be proportional to a
second-order polynomial

(21)
The values of are common for each
and take different values at the borders of the Markov chain (

and ). They obviously depend on , , and (though
the notation does not mention it, for readability purpose). Their
expressions are given in Table II and the detailed computations
are available in Appendix C. The resulting update rule is given
by the only non-negative root of the polynomial

(22)

(written here in a form avoiding possible division by zero) and
the ML update of (15) is unchanged.

In the following, we refer to this algorithm as “Harmonic
Smooth NMF” (or, in short form, “HS-NMF”).

We can also consider the current model of temporal smooth-
ness, but without harmonicity constraint, leading to the regu-
larized NMF algorithm proposed in [14]. In the following, this
algorithm will be denoted as “S-NMF.”

D. Multiplicative Initialization With Harmonicity

Due to the slow convergence of EM-like algorithms,
HS-NMF needs to be efficiently initialized. Theoretical results
from [21] also suggest the interest of smart initialization in
terms of convergence of the algorithm. Harmonic multiplica-
tive NMF could then be used to “bootstrap” SAGE algorithm.
However, the multiplicative algorithm of [22] was originally
designed for a perceptually weighted Euclidean distance, which
would not be coherent with HS-NMF criterion (based on IS
divergence (7)). For this reason, we wish to adapt harmonic
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NMF with multiplicative update rules from [22] to this distance.
The criterion to be minimized is written

(23)

We compute its derivative wrt , which is expressed as the
difference of two positive terms

(24)

where
. The derivative

wrt fits in the same scheme

(25)

The update rules are derived from the heuristics (3) and write

(26)

(27)

In the following, this algorithm will be referred to as
“H-NMF/MU.”

IV. APPLICATION TO MUSIC TRANSCRIPTION

Music transcription consists in converting a raw music signal
into a symbolic representation of the music within: for instance
a score, or a MIDI file. Here, we focus on information strictly
related to musical notes, i.e., musical pitch, onset and offset
time, discarding high-level information usually available in a
full music sheet, such as bar lines or key signature. Automatic
transcription is a very active field of research, known to be dif-
ficult, in particular because of note overlapping in the time–fre-
quency plane. Various methods have been proposed to address
the transcription issue, including neural network modeling [23],
parametric signal modeling and HMM tracking [24] or Bayesian
approaches [25]. We propose here to assess the efficiency of
Bayesian harmonic and smooth NMF for this task.

A. Experimental Setup

1) Database: To evaluate and quantify transcription perfor-
mance, we need a set of polyphonic music pieces with accurate
MIDI references. The two most simple ways to get such data
are either to record a MIDI instrument (the acquisition of audio

and MIDI being simultaneous), or to synthesize sound from
given MIDI files. For the sake of timbre realism and ease of ac-
quisition, the piano is an instrument of choice: very high quality
software synthesizers are available on sale, and an acoustic
piano can be equipped to play mechanically, and produce a
MIDI output, while retaining the timbre of a real instrument.
In his thesis [26], Emiya collected such a database. MAPS
(MIDI-Aligned Piano Sounds) includes isolated notes, random
and tonal chords, pieces from the piano repertoire, recordings
on an upright DisKlavier and high-quality software synthesis.
From this very complete database, we excerpted two subsets to
evaluate our algorithms: a synthetic subset, produced by Native
Instruments’ Akoustik Piano (“Bechstein Bach” preset, from
samples recorded on a Bechstein D280 piano), and a real audio
subset, recorded at TELECOM ParisTech on a Yamaha Mark
III (upright DisKlavier). Each subset is composed of 30 pieces
of 30 s each (original pieces from MAPS were truncated). The
piano was chosen for practical reasons, but it can be stressed
that nothing in the method constraints it to be applied only to
piano signals.

2) Structure of NMF-Based Transcription: All NMF-based
transcription systems used here follow the same workflow:

1) computation of an adapted time–frequency representation
of the signal, ;

2) factorization ;
3) attribution of a MIDI pitch to each basis spectrum (ei-

ther from original labeling of columns, when the algorithm
includes the harmonicity constraint, or by performing a
pitch estimation);

4) onset/offset detection applied to each time envelope .
In [22], it is observed that using a nonlinear frequency scale

resulted in a representation of smaller size, with better tem-
poral resolution in the higher frequency range, than usual short-
time Fourier transform (STFT), while preserving the subsequent
transcription performance. We then pass the signal through a fil-
terbank of 257 sinusoidally modulated Hanning windows with
frequencies linearly spaced between 5 Hz and 10.8 kHz on the
equivalent rectangular bandwidth (ERB) scale. We then split
each subband into disjoint 23-ms time frames and compute the
power within each frame.

Pitch estimation of basis spectra is superfluous in NMF with
harmonicity constraint, since each basis component can be la-
beled from the beginning with the pitch of the patterns
used to initialize it. For NMF without this constraint, pitch iden-
tification is performed on each column of by the harmonic
comb-based technique used in [16].

Note onsets and offsets are determined by a simple threshold-
based detection, followed by a minimum-duration pruning, see
[16]. The detection threshold is denoted by and expressed
in dB under maximum.

3) Evaluation: Transcription performance is quantitatively
evaluated according to usual information retrieval scores [27].
Precision rate is the proportion of correct notes among
all transcribed notes (quantifying the number of notes that are
transcribed, but should not). Recall rate is the proportion of
notes from the MIDI reference which are correctly transcribed
(thus quantifying the number of notes that should be transcribed,
but are not). F-measure aggregates the two former criteria
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TABLE III
REFERENCE ALGORITHMS

in one unique score and is defined as . A
transcribed note is considered as correct if its pitch is identical to
the ground truth, and its onset time is within 50 ms of the ground
truth, according to community standards (see, for instance, the
MIREX competition). Note offset detection is also evaluated
through the mean overlap ratio defined in [28]. For
a correctly transcribed note, the overlap ratio between the
original note and its transcription is the ratio between the length
of the intersection and union of their temporal widths

(28)

where and are the vectors of onset times (respectively
offset times) of the original and corresponding transcribed note.
Mean Overlap Ratio is the mean of overlap ratios for
all correct notes.

The original algorithms (H-NMF/MU and HS-NMF) previ-
ously proposed are compared to several state-of-the-art algo-
rithms listed in Table III.

H-NMF/MU, HS-NMF, and S-NMF were implemented by
the authors for this work. Virtanen’07 and NMF/MU are run
from their author’s implementation, which they nicely shared,
and Marolt’04 is run from the SONIC software, distributed by
its author. Vincent’08 is tuned with the optimal parameters de-
termined in [16]. The order is set to 88 (the number of compo-
nents, i.e., of columns in , is naturally taken as the number of
keys on a piano) for all NMF-based algorithms. For algorithms
with harmonicity constraint, we take one component (funda-
mental frequency) per pitch. The maximum number of patterns
per note is . When a multiplicative initialization is
needed (HS-NMF and S-NMF), ten iterations of the associated
multiplicative algorithm (H-NMF/MU and NMF/MU, respec-
tively) are performed before switching to the tested algorithm.
Note detection thresholds are manually tuned algorithm per
algorithm (and reported in Tables IV and V), by maximizing the
average F-measure on each dataset. The minimum duration for
a transcribed note is fixed to 50 ms.

B. Results

1) Convergence: We monitor the values of and
at each iteration of HS-NMF, in order to evaluate its speed and
efficiency of convergence, and to assess the impact of initial-
izing HS-NMF by H-NMF/MU. Then, we compare the evolu-
tion of the criteria between “pure” HS-NMF, and HS-NMF pre-
ceded by ten iterations of H-NMF/MU, on the same example

TABLE IV
TRANSCRIPTION SCORES ON SYNTHETIC DATA

TABLE V
TRANSCRIPTION SCORES ON REAL AUDIO DATA

Fig. 2. Evolution of the criteria � and� wrt the iteration number.

piece from the dataset and with the same random initializa-
tion. Fig. 2 presents this evolution in these two cases. Though

decreases sharply during the initialization (ten first it-
erations), the multiplicative initialization phase allows the al-
gorithm to reach a higher value of the criterion for the same
number of iterations, as well as a lower value of the recon-
struction error term (which is equal to the minus log-like-
lihood up to a constant). After a few hundreds of iterations,
the reconstruction error changes very little, while the contri-
bution from the prior still increases slowly, resulting in very
few changes in the transcription performance. More decisive,
on the presented excerpt (one 30-s piece from the real audio
subset), HS-NMF with multiplicative initialization reaches a
good transcription performance , while its coun-
terpart without HS-NMF/MU initialization is totally inefficient
in separating notes in the same time ( after 500 iter-
ations). An explanation for this is the relative weights between
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Fig. 3. Example basis matrices � for algorithms without and with har-
monicity constraint. Columns are sorted by increasing pitch.

the two terms in : the first goal is to reach a good recon-
struction, smoothness is a bonus; but if the contribution from
the prior takes the most part of the criterion, reconstruction will
be poor. Multiplicative initialization allows to optimize first the
reconstruction error term, then to focus on the refinement that is
the smoothness constraint.

2) Overall Transcription Performance: Tables IV and V re-
port the transcription performance of tested algorithms on the
synthetic and recorded datasets, respectively. HS-NMF outper-
forms other NMF-based algorithms in both cases, but remains
less performant than SONIC software. Smoothness constraint
used alone seems detrimental to transcription performance, may
it be implemented by a multiplicative algorithm (Virtanen’07)
or by a Bayesian algorithm (S-NMF), but improves the per-
formance of harmonically constrained NMF (H-NMF versus
HS-NMF).

Results are comparable to scores from [24] obtained on a
database including ours, and place our algorithm performance
at the state-of-the-art level.

3) Harmonicity of the Basis: In Fig. 3, we display bases
after convergence, with columns sorted by increasing pitch.

We can see that non-harmonically constrained NMF exhibits a

dictionary that has a pitched structure but a rather noisy look,
whereas bases from harmonically constrained algorithms are
much cleaner. S-NMF produces a much less sparser dictionary
than unconstrained NMF, which is coherent with observations
from [15] and could explain its lower performance. Another
noticeable result is the pitch repartition in the basis. In NMF
without harmonicity constraint, as the basis is completely free,
pitch repartition in the basis follows the same trend as pitch
repartition in the original piece; NMF tends to use more com-
ponents to represent faithfully the most frequent notes, while
possibly neglecting rare passing tones. Moreover, some compo-
nents do not exhibit a pitched structure (5, in average). On the
contrary, NMF with harmonicity constraint have a fixed number
of components per pitch (one, in our case). This guarantees rep-
resentation of all notes, including notes played only a few times
in the piece, but implies also useless computation on compo-
nents corresponding to absent notes in the piece, and does not
allow representation of non-harmonic parts of the signal. This
could be alleviated by adding unconstrained components to the
harmonic dictionary, updated separately under usual multiplica-
tive rules, for instance.

4) Smoothness of Components: Temporal envelopes , for
corresponding to the note , obtained by NMF/MU (without

constraint), H-NMF, S-NMF, and HS-NMF are displayed in
Fig. 4. The ground truth pianoroll (time–pitch representation)
is displayed as well. S-NMF and HS-NMF produce indeed
smoother envelopes, which can be noticed in particular when
the note is supposed to be off. We can notice several spurious
peaks in NMF/MU and H-NMF/MU, for instance during the
first 750-ms [region (a)] or around s [region (b)], whose
amplitude is reduced or zeroed by the associate smooth version
(S-NMF and HS-NMF, respectively). Another noticeable result
is that harmonicity constraint seems to disfavor smoothness of
the envelopes. We also briefly investigated on the impact of the
choice of on smoothness and performance; values of
between 5 and 15 resulted in a loss of less than 2 points in the
F-measure and a barely noticeable difference in the smoothness
of rows.

We could have expected a positive influence of the smooth-
ness constraint on the values, which would mean a better
offset detection. Though we observe slightly better for
Virtanen’07 and S-NMF compared to, for instance, HS-NMF, it
seems here difficult to draw a straightforward conclusion, par-
tially because of the previously observed interactions between
harmonicity and smoothness constraints.

5) Detection Threshold: In Tables IV and V, the optimal
detection threshold is manually determined to get the best mean
F-measure over the test database. Varying this threshold allows
to display Precision–Recall curves and have a deeper insight
on algorithms performance. Fig. 5 presents these curves for
NMF/MU, H-NMF/MU, S-NMF, and HS-NMF. The curve
confirms the good performance of HS-NMF. It reaches a better
tradeoff between precision and recall and is more robust to
the choice of the threshold. Both multiplicative algorithms
(H-NMF/MU and NMF/MU) are comparable around the op-
timal F-measure. S-NMF gives the poorest results at every
threshold. We can also notice that a 100% recall is never
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Fig. 4. Temporal activation of note �� for four different algorithms
(NMF/MU, H-NMF/MU, S-NMF, and HS-NMF from top to bottom) on the
same excerpt. The pianoroll of the corresponding excerpt is on top, with �� in
black and neighbor notes in gray. Regions of interest are framed with dotted
lines.

reached, even at very low threshold, which points a limit of
NMF-based transcription algorithms.

These curves, as well as Tables IV and V, are obtained by av-
eraging the scores over the dataset, but it is important to note an
important variability between pieces, in terms of performance
and optimal threshold. At fixed threshold , standard de-
viation is worth about 12% for all NMF-based algorithms (from
9% for Virtanen’07, to 16% for HS-NMF).

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an original model for including
harmonicity and temporal smoothness constraints in non-neg-
ative matrix factorization of time–frequency representations,
in a unified framework. The resulting algorithm we propose,
HS-NMF, is derived from a Bayesian framework and out-
performs other benchmarked NMF approaches in a task of
polyphonic music transcription, evaluated on a realistic music
database. The Bayesian framework also offers theoretical
results about convergence, that are generally not available in
usual multiplicative approaches of NMF. We also proposed a
novel multiplicative NMF with harmonicity constraint, min-
imizing Itakura–Saito divergence, which has links with the

Fig. 5. Precision-Recall curves for four different algorithms. The detection
threshold varies from 0 to ���� �� under� maximum. The couple ��� ��
realizing the � maximum is represented with a star.

exposed statistical approach and was shown to suit well for
the representation of audio signals in this context [14]. Thus,
the contributions of this paper are theoretical, algorithmic and
experimental at a time, in the very active domains of music
transcription and NMF study.

NMF-based methods remain here less performant than other
finely tuned state-of-the-art methods, especially methods im-
plying a training phase, the use of learning data and musicolog-
ically inspired postprocessing. However, NMF is totally data-
driven, it requires no training and then adapts itself to the data
while avoiding the risk of a mismatch between training and test
data. It also provides a semantically meaningful mid-level rep-
resentation of the data. Its potential here assessed is clear, letting
the hope of very good performance with better tuning and im-
provements. The temporal smoothness constraint does not bring
all improvements we could expect, in particular in terms of ro-
bustness to the detection threshold and efficiency of the note
duration estimation. However, it seems useful to compensate
the tendency of NMF with harmonicity constraint to produce
non-smooth decomposition, and lead therefore to a better tran-
scription performance when both constraints are used. A limita-
tion of our common NMF framework (NMF core algorithm plus
detection threshold based postprocessing) appears here, as a
100% recall rate is never reached, for any value of the threshold
or any tested algorithm.

Using a statistical model relies of course on the fact that the
ground truth actually follows this model. Performance obtained
here let hope it is more or less the case, but adequation be-
tween the data and the model should be further investigated on.
In particular, the choice of the shape parameter of the in-
verse-Gamma prior put on temporal envelopes should be dis-
cussed, and its learning, as well as NMF factors are learned,
should be considered.

Possible improvements include a refinement of the temporal
prior, which suits for modeling the sustain and decay parts of
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the note, but disfavor attacks and silences. An option to alle-
viate this mismatch between the model and the data could be
the use of switching state models for the rows of , that would
explicitly model the possibility for to vary quickly (attack)
or to be strictly zero (absence of the note). As far as is
concerned, transients are badly represented in an entirely har-
monic dictionary, but this could be solved by adding a few un-
constrained (non harmonic) components in the representation,
which would hopefully be well captured thanks to scale-in-
variance. At last, as many EM-based algorithms, HS-NMF re-
mains very slow compared to multiplicative gradient descent ap-
proaches; an alternative to it could be the direct minimization of
the criterion it optimizes by the usual multiplicative heuristics
(3), possibly losing the proof of convergence but reducing com-
putational time.

APPENDIX A
STANDARD DISTRIBUTIONS

Complex valued Gaussian

Poisson
Inverse-Gamma

.

APPENDIX B
SAGE UPDATE RULES WITH HARMONICITY

In this Appendix , we detail the derivations leading to update
rules of (14) and (15). The functional defined in
(13) may be processed in two steps. First, we write the hidden
data log-likelihood

(29)

As , we have

(30)

The second term to be computed is the hidden data
posterior . It may be obtained by writing

and using the Wiener
filtering method proposed in [17] for the separation of two
sources. According to it, the posterior mean and variance of

write, respectively,

(31)

(32)

Then, by taking the expectation of the log-likelihood with regard
to the posterior, we get the functional expression

(33)

Zeroing the gradients of wrt and the gradient of their
sum over wrt leads to the update rules

(34)

(35)

where the superscript indicates that and are com-
puted with most up-to-date values of and . This form lets
appear possible numeric errors if or . This
can be avoided by replacing and by their expres-
sions (31) and (32). This leads to update rules proposed in (14)
and (15).

APPENDIX C
SAGE UPDATE RULES WITH HARMONICITY

AND TEMPORAL SMOOTHNESS

We write the functional as
the sum of the ML functional and contributions from the prior.
For

(36)

As , we have
(37), as shown at the top of the next page. Then, this gradient is
proportional to a second-order polynomial

with

where is the ML estimator (see (34)). For the term
is simply removed from (36). For , the

Markov chain structure imposes to choose a prior . We
take Jeffreys’ non-informative prior: . The cor-
responding gradients are written, as shown in the equation at the
top of the next page.

This leads to , and values reported in Table II.
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