
European Journal of Operational Research 232 (2014) 298–306
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
A post-optimization method for the routing and wavelength assignment
problem applied to scheduled lightpath demands
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.06.050

⇑ Corresponding author. Tel.: +33 1 45 81 77 63; fax: +33 1 45 81 31 19.
E-mail addresses: lucile.belgacem@futurmaster.com (L. Belgacem), charon@

telecom-paristech.fr (I. Charon), hudry@telecom-paristech.fr (O. Hudry).
Lucile Belgacem a, Irène Charon b, Olivier Hudry b,⇑
a FuturMaster, 696, rue Yves Kermen, 92100 Boulogne-Billancourt, France
b Institut Télécom, Télécom ParisTech & CNRS, LTCI UMR 5141, 46, rue Barrault, 75634 Paris Cedex 13, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 May 2009
Accepted 26 June 2013
Available online 18 July 2013

Keywords:
Combinatorial optimization
WDM optical networks
Routing and Wavelength Assignment
Problem (RWA)
Scheduled Lightpath Demands (SLDs)
Post-optimization
We consider here a NP-hard problem related to the Routing and Wavelength Assignment (RWA) problem
in optical networks, dealing with Scheduled Lightpath Demands (SLDs). An SLD is a connection demand
between two nodes of the network, during a certain time. Given a set of SLDs, we want to assign a light-
path, i.e. a routing path and a wavelength, to each SLD, so that the total number of required wavelengths
is minimized. The constraints are the following: a same wavelength must be assigned all along the edges
of the routing path of any SLD; at any time, a given wavelength on a given edge of the network cannot be
used to satisfy more than one SLD. To solve this problem, we design a post-optimization method improv-
ing the solutions provided by a heuristic. The experimental results show that this post-optimization
method is quite efficient to reduce the number of necessary wavelengths.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

We consider a problem related to the Routing and Wavelength
Assignment (RWA) problem in wavelength division multiplexing
(WDM) optical networks; see e.g. Gagnaire, Kuri, and Koubaa
(2009), Kuri, Puech, Gagnaire, Dotaro, and Douville (2003),
Ramaswami and Sivarajan (2002) or Zheng and Mouftah (2004)
for general references. Fibre-optic networking technology using
WDM offers the potential of dividing the bandwidth of a fibre into
several channels, each at a different optical wavelength, permitting
to carry data in parallel. For a given network topology, represented
by an undirected graph G, the RWA problem consists in establish-
ing a set S of traffic demands, also called connection requests, in
this network. Different versions of the RWA problem can be found
in the literature, depending on the performance metrics and on the
traffic assumptions; see for instance (Zang, Jue, & Mukherjee,
2000). Traffic demands may be of three types: static (permanent
and known in advance), scheduled (requested for a given period
of time and known in advance) and dynamic (unexpected). The
typical objectives of RWA can be:

– to minimize the required number of wavelengths under given
connection requests,
– to minimize the blocking probability, i.e. the number of rejected
traffic demands, under a given number of wavelengths and
dynamic connection requests,

– to minimize the maximum number of wavelengths going
through a single fibre, also called the lightpath congestion,

– to minimize the network load as defined by the fraction of the
number of wavelengths used on the overall set of fibre links
in the network.

These problems or variants of them have been extensively stud-
ied in the last decades; see, among others, (Banerjee & Mukherjee,
1996; Belgacem & Puech, 2008; Chen & Banerjee, 1996; Choi,
Golmie, Lapeyere, Mouveaux, & Su, 2000; Jaumard, Meyer, &
Thiongane, 2006; Krishnaswamy & Sivarajan, 2001; Kumar &
Kumar, 2002; Kuri, 2003; Kuri, Puech, Gagnaire, 2003; Kuri, Puech,
Gagnaire, Dotaro et al., 2003; Lee, Kang, Lee, & Park, 2002; Margara
& Simon, 2000; Noronha, Resende, & Ribeiro, 2008; Noronha &
Ribeiro, 2006; Ramaswami & Sivarajan, 1995; Skorin-Kapov,
2006a, 2006b, 2007, 2008; Zang et al., 2000; Zheng & Mouftah,
2004).

Many of these works consider static demands; the problem is
then sometimes called the wavelength dimensioning problem, see
for instance (Jaumard et al., 2006) where this problem is studied.
In this paper, we deal with the case of a set S of Scheduled
Lightpath Demands (SLDs). This is relevant because of the predict-
able and periodic nature of the traffic load in real transport
networks, more intense during working hours, see Kuri, Puech,
Gagnaire, Dotaro et al. (2003). This case is also much more difficult

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.06.050&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.06.050
mailto:lucile.belgacem@futurmaster.com
mailto:charon@telecom-paristech.fr
mailto:charon@telecom-paristech.fr
mailto:hudry@telecom-paristech.fr
http://dx.doi.org/10.1016/j.ejor.2013.06.050
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306 299
than the static one, because of the time constraints which do not
exist for static demands.

More precisely, an SLD s belonging to S can be represented by a
quadruplet s = (x,y,a,b), where x and y are some vertices of
G (source and destination nodes of the connection request), and
where a and b denote the set-up and tear-down dates of the de-
mand. The routing of s = (x,y,a,b) consists in setting up a lightpath
(P,w) between x and y, where P is a path, also called route, between
x and y in G and w a wavelength (we do not address here the case
where a traffic demand requires several lightpaths). In order to sat-
isfy s, this lightpath must be reserved during all the span of [a,b].

When wavelength converters exist, it is not necessary to use a
same wavelength on all the links used by a lightpath. Unfortu-
nately, this entails a lot of expense and hence changes the nature
of the problem: the aim is then to determine the placement of
these converters so that the overall network cost is minimized;
see for instance (Chu, Li, & Chlamtac, 2002). When there are no
wavelength converters in the network, as it will be assumed in this
paper, the wavelength continuity constraint is imposed: the same
wavelength must be used on all the links used by a lightpath.
Moreover, at any given time, a wavelength can be used at most
once on a given link; in other words, if two demands overlap in
time, they can be assigned the same wavelength if and only if their
routing paths are disjoint in edges. This constraint is often called
the wavelength clash constraint.

We address in this paper the problem consisting in minimizing
the number W of wavelengths required to establish all the SLDs.
This problem is NP-hard, even if we do not take the time-windows
into account; see Chlamtac, Ganz, and Karmi (1992). A solution of
this problem is defined by specifying, for each SLD, the lightpath
chosen for supporting the connection, i.e. a route and a wave-
length, so that there is no conflict between any two lightpaths
(let us recall that two lightpaths are in conflict if they use the same
wavelength, they have at least one edge in common and the corre-
sponding demands overlap in time). Several approximate or exact
methods have been proposed in the literature to deal with this
NP-hard problem for static demands or for SLDs; see Gi Ahn, Lee,
Chung, and Choo (2005), Jaumard et al. (2006), Kuri, Puech,
Gagnaire, Dotaro et al. (2003), Lee et al. (2002), Margara and Simon
(2000), Park, Yang, and Bang (2007), Saradhi and Gurusamy (2005),
Skorin-Kapov (2006a, 2006b, 2007), Wauters and Demeester
(1996) and Zang et al. (2000).

The greedy method proposed by in Skorin-Kapov (2006b), which
has been designed initially to deal with the case where SLDs may re-
quire several lightpaths simultaneously, gives very satisfying results
in a very small amount of time and is, with this respect, among the
most efficient heuristics. Its application to our problem, though we
do not consider here the case where a traffic demand requires
several lightpaths, will be used as a benchmark for measuring the
performance of our approach. Indeed we propose in this paper a
post-optimization method in order to improve the results given by
other heuristics. The CPU time of the overall method will naturally
increase, but it will remain acceptable to deal with SLDs: since the
demands are known in advance, the allotted time to provide a
solution is relatively large (unlike the case where demands are unex-
pected, and for which routings must be computed dynamically).

The greedy algorithm derived from Skorin-Kapov (2006b) and the
post-optimization method are presented in Section 2. In Section 3, we
apply these methods on different types of instances and we analyse
the obtained results. Finally we conclude in Section 4.
Fig. 1. Greedy algorithm G.
2. Resolution methods

We describe in this section the different heuristics that we
apply to deal with RWA. Let us recall that the aim consists in
minimizing the number W of wavelengths required to establish a
given set S of demands. We first present in Section 2.1 the greedy
algorithm derived from Skorin-Kapov (2006b); we propose in
Section 2.3 a slight modification of this algorithm so that it can be
repeated. The post-optimization method is described in Section 2.2.

2.1. The greedy algorithm

The greedy algorithm derived from Skorin-Kapov (2006b) con-
sists in considering the wavelengths one by one, and in trying to
route as many SLDs as possible with each wavelength. For each
wavelength w, the SLDs are examined following some prescribed
order �; we set s0 � s if s0 is examined before s.

More precisely, let w be the current wavelength and
s = (x,y,a,b) be the current SLD. We consider a graph HðsÞ obtained
from G by removing all the edges unavailable for the routing of s
with w, i.e. edges that are contained in lightpaths corresponding
to SLDs already routed with the wavelength w and which overlap
s in time. According to this construction, any edge of HðsÞ could
be used to route the demand s with wavelength w without induc-
ing any clash with previously established SLDs. Thus, if there exists
at least one path between x and y in HðsÞ, we attribute the shortest
possible path Ps to the SLD s as well as the wavelength w; other-
wise s is put aside and will be dealt with latter using another wave-
length. Then we move up to the next not yet established SLD with
respect to the prescribed order.

When all the SLDs have been examined, we move up to the
wavelength w + 1 and try to route the remaining SLDs. The algo-
rithm stops as soon as all the SLDs have been established, and re-
turns the current value of w.

This algorithm is given in Fig. 1 and will be referred to as G.

2.2. The post-optimization method

The post-optimization method presented in this paper aims at
improving the results provided by the greedy heuristic depicted
above, though it can be applied to any heuristic permitting to solve
the addressed problem or even to other variants of this problem. It
consists in minimizing the overall values of the wavelengths of the
established lightpaths in order to try to minimize the total number
of wavelengths W.

The principle of this method is the following: for any
w 2 {2, . . . , W}, we try to empty the set of SLDs routed with w, at
least partially; this set will be called the layer w in the following.
This is done by trying to assign a smaller wavelength
(1, 2, . . . , w � 1) to the demands of the layer w, which leads us to
rearrange the wavelengths assigned to the SLDs of these lower



Fig. 2. Post-optimization algorithm.

300 L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306
layers. During this operation, the layers of some SLDs may change
but all of them must remain in [1, w � 1].

More precisely, let us assume that we want to move the de-
mand s = (x,y,a,b) from its current layer w to a lower layer ‘

(‘ 2 [1,w � 1]). It is very likely that some of the demands belonging
to the layer ‘ prevent us from routing s with this wavelength. In
other words, if we delete from G all the edges used to establish
the demands of this layer which overlap s in time, we may find
no path joining x and y. So we consider a graph HðsÞ, initially equal
to G, and we examine one after the other the demands s0 of the
layer ‘ which overlap s in time. For each such s0, we remove from
HðsÞ the edges of the path Ps0 supporting the connection associated
with s0 which are still in HðsÞ. If there still exists a path in HðsÞ to
set up s, we move up to the next demand s0 of the layer ‘; otherwise
s0 is removed from the layer ‘ and put aside in a set E, and we put
back the removed edges of Ps0 inside HðsÞ; of course, if some edges
of Ps0 had been removed previously from HðsÞ because of former
clashing SLDs, they remain removed. Thus, once all demands of
the layer ‘ have been examined, it becomes possible to route s
using the wavelength ‘ since all the conflicting lightpaths have
been (at least temporarily) removed.

We must now deal with the demands of E: we try to place each
of these demands in one of the layers 1, . . . , w � 1, without modi-
fying the routing of any other SLD. If a layer can be found for each
demand of E, then we have finished with the demand s: s remains
in the layer ‘ and the demands of E remain in their new layers, with
a lightpath compatible with the ones of the other SLDs of this layer,
and we move up to the following demand of the layer w. Otherwise
we consider that the attempt to move s to the layer ‘ has failed:
layer ‘ is restored as before the attempt to insert s inside, and we
try to move s to the next layer ‘ + 1. If all the layers from 1 to
w � 1 have been examined in vain, s remains inside its current
layer w, and we move up to the following demand of the layer w.

As all the demands of the current layer w are handled, the num-
ber of remaining demands on this layer may decrease, or the layer
w may even become totally empty. In the later case, we shift the
layers w + 1, w + 2, . . . , W to the layers w,w + 1, . . . , W � 1, and
we have succeeded in saving one wavelength definitively: W be-
comes W � 1.

This method, summarized in Fig. 2, is referred to as the post-
optimization algorithm. Let us notice that even if a rearrangement
of the layers does not permit to decrease the number W of required
wavelengths, it may happen that further applications of the algo-
rithm succeed to do so, because the SLDs are not dispatched in
the layers in the same manner from one application to another.
In the experiments presented below, we chose to repeat the
post-optimization algorithm until four consecutive runs do not de-
crease W. This choice is based on an experimental observation and
arises from a compromise between CPU time and the quality of the
computed solutions. The overall heuristic consisting of the greedy
algorithm followed by the application of the post-optimization
method will be denoted G+ in the rest of the paper.
2.3. Repetition of the greedy algorithm

The introduction of the post-optimization method yields a sig-
nificant increase in computation time. To evaluate the post-optimi-
zation method, we will compare the results provided by the greedy
heuristic with or without this post-optimization method. In order
to avoid any bias, it is desirable that both methods are given the
same amount of CPU time to provide a solution. Thus we propose
a slight modification of G in order to make it stochastic (G is deter-
ministic otherwise); then we will be able to compare G+ with a
multi-start procedure consisting in repeating G as many times as
necessary to attain the same CPU time as the one required by G+.
The principle is straightforward: we propose to consider, for
each run of G, a random order for the examination of the SLDs. In
Skorin-Kapov (2006b), the demands are ordered with respect to
the decreasing numbers of connection requests, which is irrelevant
in our context since all the SLDs are assumed to require the estab-
lishment of only one lightpath. We have performed some experi-
ments to analyse the effect of the order of the SLDs on the
performance of G. Whatever the considered order (increasing or
decreasing order of the time window’s width, increasing or
decreasing order of the length of a shortest path between the
source–destination nodes), the obtained results are not signifi-
cantly different. The best way to take benefit from the allotted
CPU time seems then to generate a random order of the SLDs for
each run of G. Of course, the solution returned by this repetition
of G will be the best one computed over the different runs of G dur-
ing this repetition. This repetition of G will be denoted RG.
3. Experiments

In the next three subsections, we report some results that we
obtained in our experiments. First, we present in Section 3.1 the
detailed results obtained for three graphs. Then, in Section 3.2,
we globally give the results obtained for other instances, involving
different types of graphs. Thanks to the use of an analytical lower
bound, we could find instances for which we know the optimal va-
lue for the necessary number of wavelengths; we study the appli-
cation of our three methods to such instances in Section 3.3.

The three graphs studied in details in Section 3.1 are:

– G57, with 57 vertices and 85 edges, extracted from the Euro-
pean optical transport network; see Fig. 3;

– G29, with 29 vertices and 44 edges, representing a hypothetical
North-American backbone network; see Fig. 4;

– G200, with 200 vertices and 239 edges, simulating a large opti-
cal network.



L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306 301
The first two graphs are often used to illustrate RWA problems.
We have added the graph G200 in order to observe the behaviour
of the methods when applied to larger networks. This graph has
relatively few edges so that the number of paths that may support
a given demand is limited (otherwise the number of required
wavelengths is very small).

To enlarge the field of results, we study in Section 3.2 other sets
of instances involving three types of graphs, called Y, Z and W, fol-
lowing the classification used in Noronha et al. (2008). Note that
the connection requests considered in Noronha et al. (2008) are
static ones: there is no time-window defined for such a request.
Graphs of type Y are randomly generated, graphs of type Z are de-
fined on torus, graphs of type W are real instances coming from the
literature. More precisely, they are defined and generated as in
Noronha et al. (2008):

– To define a graph of type Y, a number of nodes n and a probabil-
ity p, i.e. a real number between 0 and 1, are assumed to be
given. First, to construct a graph of type Y with these parame-
ters, we connect each pair of nodes with probability p. Then,
for each node x of degree less than 2, we randomly add edges
incident to x in order to have x of degree 2. Finally, we restrict
the diameter of the graph to at most 7, by adding edges between
vertices distant of more than 7.

– The graphs of type Z are built on a � b grids embedded on the
torus, where a and b are given integers; each node is connected
only to its nearest four neighbours. So, the graph is entirely
determined by its dimensions a and b; its number of vertices
is equal to a � b and its number of edges is equal to 2 � a � b;
the degree of any vertex is equal to 4.

– As said above, the graphs of type W are real instances. It is
already the case for the graphs G29 and G57 described above.
We add two graphs downloaded from http://sndlib.zib.de/
home.action; one, with 50 vertices and named here G50, corre-
sponds to an optical network in Germany; the other, with 65
vertices and named here G65, corresponds to an optical graph
in Austria.
Fig. 3. The gr
To find instances for which we know the optimal value, as the
instances of Section 3.3, we use an analytical lower bound that
we define now; see Skorin-Kapov (2006b). For each vertex x of
the considered graph G, we first determine the list L(x) of the SLDs
involving x as their origin or destination. Then, we compute the
maximum number M(x) of SLDs belonging to L(x) which must be
routed at a same instant: the overall intersection of the time-win-
dows of these M(x) SLDs is not empty. Let b(x) be the ratio of M(x)
divided by the degree d(x) of x in G. The number of wavelengths
necessary to satisfy all the demands belonging to L(x) is obviously
at least equal to b(x). Then the lower bound B is defined as the
maximum of the ceiling of the ratios b(x) over the vertices x of G:

B ¼max
x

MðxÞ
dðxÞ

� �
:

For the instances depicted above, B is always much less than the
value obtained by our methods, including when these methods are
given much larger CPU times, generally less than the half. Probably,
the optimum is also far from B. But, by choosing graphs of type Y
with larger numbers of edges than before, we succeeded to find
several instances with a solution reaching the lower bound:
increasing the number of edges obviously increases the degrees
and so B takes lower values; but the number of paths increases still
faster and so the required number of wavelengths decreases; for
the instances considered here, the required number of wave-
lengths collapses to B and thus we know that B is the optimum va-
lue. Section 3.3 reports the results for seven such instances.

The sets of SLDs are generated randomly so that the number of
time-overlaps is significant but not too large (the connection re-
quests in Noronha et al. (2008) or in Skorin-Kapov (2007) are also
randomly generated but, since in these papers only static demands
are considered, there are no time-windows): if they are too few,
there are few clashes between the demands and therefore the ad-
dressed problem becomes too easy; on the contrary, if the time-
overlaps are too numerous, the number of required wavelengths
increases greatly and the problem becomes again less interesting.
This can be achieved by drawing the source and destination nodes
aph G57.

http://sndlib.zib.de/home.action
http://sndlib.zib.de/home.action


Fig. 4. The graph G29.

Table 1
Best, average and worst numbers of required wavelengths and average CPU times for
G57;G29 and G200.

G57 G57-500 G57-1000 G57-3000

G 43–44.89–47 65–67.38–70 90–91.53–95
0.028 second 0.083 second 0.307 second

RG 42–42.95–44 64–65.24–66 88–88.82–89
2.68 second 13.54 second 74.54 second

G+ 40–40.96–42 60–61.30–63 83–84.07–86
2.68 second 13.39 second 74.43 second

(WG �WG+)/WG 8.75% 9.02% 8.15%
(WRG �WG+)/WRG 4.63% 6.04% 5.35%

G29 G29-500 G29-1000 G29-3000
G 42–43.58–46 63–65.18–68 76–78.61–81

0.018 second 0.056 second 0.198 second
RG 40–41.44–42 62–62.84–63 75–76.08–77

2.16 second 7.65 second 49.85 second
G+ 38–38.75–40 60–60.44–62 69–70.59–72

2.15 second 7.63 second 49.71 second
(WG �WG+)/WG 11.08% 7.27% 10.2%
(WRG �WG+)/WRG 6.49% 3.82% 7.22%

G200 G200-500 G200-1000 G200-3000
G 18–19.68–22 49–50.35–52 78–80.19–82

0.031 second 0.170 second 0.887 second
RG 18–18.55–19 47–48.40–49 77–77.89–78

1.68 second 26.76 second 292.30 second
G+ 16–16.84–18 41–43.14–45 66–67.59–72

1.67 second 26.62 second 292.15 second
(WG �WG+)/WG 14.43% 14.34% 15.71%
(WRG �WG+)/WRG 9.22% 10.87% 13.22%

302 L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306
of each SLD s randomly with a uniform distribution of probabilities
over all vertices of the considered graph (of course the two nodes
must be different). The set-up and tear-down times of s are chosen
in [0,1000]; the centre c of the interval is a real number drawn uni-
formly in [L,1000 � L], with L chosen here between 200 and 300.
The time-window of s is then of the form [c � L � rc,c + L � rc],
where r is a real number drawn uniformly between 0 and 1, while
c takes the values 2, 3 or 4. By choosing different values for these
parameters, we obtain time-windows with more or less pairwise
time-overlaps. To be more specific, we give in the next section
the proportions of pairwise time-overlaps of the instances detailed
in Section 3.1. Anyway, do not forget that a clash between two
SLDs comes from both an overlap of their time-windows and from
the paths chosen to route the two SLDs. As these ones are not fixed,
the number of clashes cannot be fixed in advance.

The experiments reported below have been performed on Solaris
Sun stations, namely Sun Ultra 20M2 AMD bicore 3 gigahertz. In
order to evaluate the three heuristics G, RG and G+ when applied to
our instances, we carry out 100 runs of each method for each instance.

3.1. Detailed results for nine instances involving G57;G29 and G200

We apply the process depicted above to generate three sets of
demands for each one of the three graphs G57;G29 and G200. These
sets contain respectively 500, 1000 and 3000 SLDs. Thus we obtain
nine instances. The name of each one is obtained by the concatena-
tion of the name of the graph with the number of SLDs to route; for
instance, G57–500 denotes the instance for which the graph is G57,
with 500 SLDs. The proportions of pairwise time-overlaps are the
following: 66% for G57–500, 49% for G57–1000, 23% for G57–
3000; 65% for G29–500, 53% for G29–1000, 24% for G29–3000;
40% for G200–500, 65% for G200–1000, 37% for G200–3000.

In the following, we present the results obtained when applying
G, RG and G+ to these nine instances. These results are given in
Tables 1. For each entry of the first three lines, we specify the best,
the average and the worst values of the computed numbers of
wavelengths necessary to route the SLDs over the 100 runs, as well
as the average CPU time in seconds; the last two lines of each table
specify the ratios (WG �WG+)/WG and (WRG �WG+)/WRG, where WG,
WRG and WG+ denote the average numbers of wavelengths required
to set up all the connections when applying 100 runs of G, RG and
G+ respectively.

Let us recall that the method RG consists in repeating the greedy
algorithm G as many times as required to attain the same compu-
tation time as G+. For example, for the instance G57–500, G runs in
0.02761 second whereas G+ takes 2.68 second. Therefore RG is
obtained by repeating G 97 times in average, which indeed
corresponds to an overall computation time of 2.68 second. As said
above, the result provided by RG is of course the smallest number
of wavelengths obtained during the repetition.
For the nine instances considered here, the gain, more precisely
the ratio (WG �WG+)/WG, yielded by the application of G+ with re-
spect to the sole application of the greedy heuristic G exceeds gen-
erally 10% (the average gain is equal to 11%), and it reaches nearly
16% for the instance G200–3000. Even when considering the same
CPU time, the gain of G+ with respect to RG, measured similarly by
(WRG �WG+)/WRG, remains significant: 7.4% in average, with a max-
imum of 13.2% for G200–3000.

We give in Figs. 5–7 the distributions of the numbers of re-
quired wavelengths obtained over the 100 runs of each method.
The x-axis represents the number of required wavelengths W,
and the y-axis represents the number of times that each value
has been observed.

We see that the CPU time required by G+ is significantly larger
than the one required by G. In our experiments, the CPU time re-
quired to perform G+ can reach few minutes, whereas it is nearly
instantaneous for G (less than one second). From a practical point
of view, these computation times remain quite acceptable, espe-
cially considering the high complexity of the problem and the large
sizes of the instances, since the addressed problem concerns con-
nection requests that are known in advance. Indeed, in this case,



Fig. 5. Distributions of W for G57; the x-axis represents the number of required wavelengths W, and the y-axis represents the number of times that each value has been
observed during the 100 runs.

Fig. 6. Distributions of W for G29; the x-axis represents the number of required wavelengths W, and the y-axis represents the number of times that each value has been
observed during the 100 runs.

L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306 303
a telecommunications operator can easily afford to spend the time
required by the application of the post-optimization method in or-
der to save some wavelengths, that will be available to establish
further connection requests, for instance unexpected demands.

However, in order to reduce the required time for the applica-
tion of G+, we may modify the way to deal with the layers during
the post-optimization method: instead of examining all the layers
in order to empty them as much as possible, we propose to deal
with only the layers corresponding to large values of wavelengths.
These layers are indeed more likely to yield a gain in the total num-
ber of required wavelengths. More precisely, we introduce a
parameter i varying from 0 to W; then we examine only the i layers
of values W � i + 1, . . . , W � 1, W.

Figs. 8 and 9 give respectively the average number of required
wavelengths and the CPU time in seconds with respect to the
value of the parameter i for the instance G57–500 (results turned
out to be similar for the other instances). The label N (none) on
the x-axis corresponds to the result given by G, whereas the label
A (all) corresponds to G+ when all the layers have been rearranged
(i = W).

We observe that the CPU time varies almost linearly with
respect to the number of rearranged layers i and that the quality
of the solution increases when the post-optimization method is ap-
plied to more layers. However, this gain is larger for the high layers
than for the low layers (the slope of the graph decreases when i in-
creases), as expected. For the considered instance, we see that we
could have dealt with only one third, or even one quarter, of the
layers, reducing thus the CPU time in the same proportion, without
loosing much in terms of quality of the provided solutions. Thus we
can choose the number of rearranged layers with respect to the
available time. Anyway, in order not to add an extra parameter,
we do not adopt this possibility in the following.

3.2. Global results for twelve sets of one hundred instances each

We report now the results concerning 12 sets of 100 instances:
4 sets, called Y1;Y2;Y3 and Y4, contain graphs of type Y; 3 sets,
called Z1;Z2 and Z3, contain graphs of type Z; the other sets con-
tain graphs of type W. For each instance of each set, we apply the
methods G and G+, repeating them in order to reach a chosen dura-
tion; in the following, RG still denotes the repetition of G. Of course,
the result provided at the end is the best value found during the
repetition. In these experiments, because of the gap between
the CPU times of one application of G and one application of G+



Fig. 7. Distributions of W for G200; the x-axis represents the number of required wavelengths W, and the y-axis represents the number of times that each value has been
observed during the 100 runs.

41

42

43

44

2 4 35N 1 3 20 25 30155 10

w

A i

Fig. 8. Number of wavelengths according to the number of rearranged layers for
G57-500.

N 5 35 A

2.5

2

0.5

1.5

1

25 30201510

CPU time

i

Fig. 9. CPU time, in seconds, according to the number of rearranged layers for G57-
500.

304 L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306
(see Section 3.1), G is repeated a large number of times and the
method G+ a small number. In the following, qRG and qG+ will
respectively denote the averages of the number of repetitions of
RG and of G+ during the given CPU time.

Remember that any instance of RWA is made of a graph and a
set of SLDs. We first explain how the graph of each instance is gen-
erated (see above for the specification of the types Y, Z and W).

- For each instance of Y1;Y2;Y3 and Y4, we randomly choose a
graph of type Y with the following parameters (note that the
probabilities p applied here are similar to the ones in Noronha
et al. (2008), which range between 3% and 5%):
� for Y1: 150 vertices and a probability equal to 2%;
� for Y2: 100 vertices and a probability equal to 3%;
� for Y3: 70 vertices and a probability equal to 5%;
� for Y4: 40 vertices and a probability equal to 7%.

– For Z1;Z2 and Z3, the considered graphs are of type Z (they are
grids embedded on a torus). We choose the dimensions of the
grids so that the number of vertices is about 100, as in Noronha
et al. (2008). More precisely:
� for the instances of the first set Z1, the graph is the grid

10 � 10;
� for the instances of the second set Z2, the graph is the grid

17 � 6;
� for the instances of the third set Z3, the graph is the grid

25 � 4.
So the instances belonging to a given set Z1;Z2 or Z3 all share the
same graph, but of course the set of SLDs will not be the same.
– The last five sets involve graphs of type W. For the first of these

five sets, the graph is G29;G57 is the graph associated with the
following two sets; the graph of the fourth set is G50; while G65
is the graph of the last set; see their characteristics above. For
simplicity, we call G29;G57;G50 and G65 the sets of instances
involving respectively the graphs G29;G57;G50 and G65.

Then for each set of instances, we randomly generate 100 sets of
SLDs. For each instance, each SLD of each set of SLDs is randomly
generated thanks to the process described above, at the beginning
of Section 3. So, the 100 instances of any set of instances are all dif-
ferent. The number of SLDs depends on the studied set. The num-
bers of SLDs are the following: 1500 SLDs for the sets Y1;Y2;Y3 or
Y4; 2000 SLDs for the sets Z1;Z2 or Z3; 2000 SLDs for the set G29;
3000 SLDs for the first set G57; 1000 SLDs for the second set G57;
1500 SLDs for the two sets G50 and G65.

For each set, we also choose a CPU time (see below). Note that
the CPU time allocated to the repetition of each method can be
very large. For example, the CPU time devoted to each instance
of the first set G57 is 30 minute. It means that it required 100 hour
of CPU time to deal with the application of both methods to the
100 instances of this set. Because of that, it is impossible to try long
CPU times for each instance. Moreover, some other experiments
that we performed with other CPU times show that the qualitative
conclusions reported below remain the same for these other CPU
times. So, instead of reporting all these experiments, we choose
to report some of them, with different CPU times ranging from



Table 2
Average results for 12 series of 100 instances.

Set n m nb_SLD time (s) qRG qG+ WRG WG+ (WRG �WG+)/WRG (%)

Y1 150 234.92 1500 60 501.09 1.37 30.22 26.64 11.85
Y2 100 152.88 1500 60 1008.15 4.25 23.59 20.90 11.40
Y3 70 130.83 1500 60 1032.45 4.70 24.42 22.25 8.89
Y4 40 57.81 1500 60 1595.17 3.66 43.90 38.35 12.64
Z1 100 200 2000 60 464.22 1.01 31.71 28.43 10.34
Z2 102 204 2000 60 403.90 1.06 38.97 36.62 6.03
Z3 100 200 2000 300 1837.89 2.96 54.92 50.71 7.67
G29 29 44 2000 120 2565.99 4.49 59.49 53.34 10.34
G57 57 85 3000 1800 10310.42 13.47 93.31 85.39 8.49
G57 57 85 1000 900 31052.61 106.61 44.00 40.23 8.57
G50 50 88 1500 60 1209.27 3.55 34.30 30.57 10.87
G65 65 108 1500 120 2071.78 6.76 34.76 31.85 8.37

Table 3
Results for seven instances with known optimum.

n m nb-SLD qRG qG+ Wmin RG G+ WRG WG+ WRG�WGþ
WRG

(%)

nb0 nb1 nb2 nb3 nb0 nb1

30 85 1500 1275.56 8.63 22 0 29 71 0 100 0 23.71 22 7.21
30 82 2000 750.82 3.50 28 0 0 80 20 53 47 30.20 28.47 5.73
40 214 2000 620.12 8.97 13 5 95 0 0 84 16 13.95 13.16 5.66
40 139 2000 643.34 5.41 19 0 100 0 0 81 19 20 19.19 4.05
40 119 2000 655.39 3.94 22 0 86 14 0 99 1 23.14 22.01 4.88
50 142 2500 374.73 1.83 24 0 0 79 21 30 70 26.21 24.70 5.76
50 155 2000 583.02 4.47 18 0 100 0 0 99 1 19 18.01 5.21

L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306 305
60 second to 1800 second according to the considered instance.
We prefer to specify the results for different CPU times because
it brings diversity and thus a more complete lighting on the behav-
iour of our method. More precisely, the CPU times are the following
for each instance of each set: 60 second for Y1;Y2;Y3 or Y4;
60 second for Z1 or Z2; 300 second for Z3; 120 second for G29;
1800 second for each instance of the first set G57; 900 second for
each instance of the second set G57; 60 second for G50; 120 second
for G65.

In Table 2, we successively specify for each set of instances: the
set of instances, what specifies also the type of the graph involved
in these instances; the number n of vertices of the graphs, accord-
ing to the set; the number m of edges or the average of the number
of edges of these graphs; the number nb_SLD of SLDs to route; the
given CPU time, in seconds; the averages qRG and qG+ of the num-
ber of repetitions of G and G+ during the given CPU time; the aver-
ages of the computed numbers of wavelengths WRG and WG+; the
average of the relative gain (WRG � WG+)/WRG.

These results confirm the ones of Section 3.1. The gains pro-
vided by the post-optimization method with respect to RG range
here between 6% and almost 13%, with an average of about 10%.
For the instances involving G57 as their graphs and with 1000 or
3000 SLDs, we may compare the results obtained when the CPU
time is large with the results reported in Section 3.1. In Section 3.1,
one application of G+ provided an average gain of 6.04% for G57-
1000 and of 5.35% for G57-3000 with respect to RG. For G57-
1000, RG was repeated 163 times in average; for G57-3000, it
was repeated 243 times in average. It is sometimes considered that
multi-start procedures as RG have a slow convergence and that it is
necessary to run them a long time. We observe here that, even with
larger numbers of repetitions, namely more than 31,000 times for
1000 SLDs and more than 10,000 times for 3000 SLDs, RG does not
provide better results than G+ within a same CPU time. In fact, the
gain of G+ with respect to RG is even larger when the CPU time in-
creases: it becomes equal to 8.57% in average for 1000 SLDs instead
of 6.04% and to 8.49% for 3000 SLDs instead of 5.35%. We may ex-
plain this phenomenon by the fact that, within the same CPU time
(15 minute for 1000 SLDs and 30 minute for 3000 SLDs), the repe-
tition of G+ (G+ is repeated about 107 times for 1000 SLDs and
about 13 times for 3000 SLDs) is more beneficial than the one of
RG. With this respect, we may consider that the convergence of
RG is reached in our experiments. The results of Table 2 show that
repeating G+ may improve the results provided by G+, what is not
surprising, if greater CPU times are available.

3.3. Global results for seven instances with known optimum

As explained above, the use of the bound B defined at the begin-
ning of Section 3 allowed us to find instances for which we know
the optimal value. It is the case for the seven instances of which
we report the results now.

These graphs are of type Y. Two have 30 vertices, three have 40
vertices and two have 50 vertices. For each instance, we perform
100 trials. For each trial, we give a CPU time equal to 60 second.
In Table 3, we give for each instance:

– the number n of nodes;
– the number m of edges of the graph;
– the number nb-SLD of SLDs to route;
– the number of repetititions qRG of RG and qG+ of G+ during the

60 second;
– the minimum number Wmin of necessary wavelengths;
– nbi denotes, for 0 6 i 6 3, the number of times that the best

solution provided by the considered method is equal to Wmin + i
(for G+, the values nbi which are not specified are egal to zero);

– the following two columns give the average of the numbers WRG

and WG+ of wavelengths computed by RG and by G+ over the
100 trials;

– the last column gives the relative gain of G+ with respect to RG.

In a sense, these instances may seem easier than the previous
ones. But, even for these easier instances, the post-optimization
provides an improvement with respect to RG. The probability to
reach the optimum is much larger for G+ than for RG: G+ found
the optimum in 78% of the 700 trials summarized in Table 3, versus
only 0.7% for RG.



306 L. Belgacem et al. / European Journal of Operational Research 232 (2014) 298–306
3.4. Further comments

We may observe that the relative gain provided by G+ with re-
spect to RG is always positive in our experiments. More precisely, if
we consider only the results reported above, the gain, with the
same CPU time, is between about 4% and more than 13%. Another
important asset of G+ is illustrated by the histograms of Figs. 5–7
and by Table 3: G+ succeeds in finding some values of W that nei-
ther G nor RG can reach during the 100 trials. When the number of
SLDs increase, the gap between the histograms of G+ in the one
hand and those of G and RG on the other hand becomes larger.

Moreover for heavy loads of traffic demands (1000 or 3000 SLDs
according to the considered network), the histograms for G+ be-
come apart completely from the ones of G and RG: the worst solu-
tion provided by G+ remains better than the best solution found by
G or RG. The same can be observed for several instances of Sec-
tion 3.3 and many instances of Section 3.2.
4. Conclusion

In this study, we considered a Routing and Wavelength Assign-
ment (RWA) problem in wavelength division multiplexing (WDM)
optical networks. More precisely, we considered the problem con-
sisting in minimizing the number of wavelengths required to
establish all the Scheduled Lightpath Demands (SLDs). In this
aim, we designed a post-optimization method in order to improve
a greedy heuristic which is already very efficient.

According to our experimental results, the post-optimization
method appears as improving significantly the results given by this
greedy heuristic, in a reasonable CPU time, while it is known in
combinatorial optimization that reducing the gap between the
computed solutions and the optimal ones becomes more and more
difficult when going closer to the optimum. Moreover, this method
can be applied to any other heuristics to deal with the routing and
the wavelength assignment of SLDs, and even to other problems
related to RWA in optical transport networks. It will be the topic
of our next studies.
References

Banerjee, D., & Mukherjee, B. (1996). A practical approach for Routing and
Wavelength Assignment in Large Wavelength-Routed Optical Networks. IEEE
Journal on Selected Areas in Communications, 14(5), 903–908.

Belgacem, L., & Puech, N. (2008). Solving large size instances of the RWA problem
using graph partitioning. In Proceedings of the 12th conference on optical network
design and modelling (pp. 1–6). Vilanova i la Geltr, Spain.

Chen, C., & Banerjee, S. (1996). A new model for optimal routing and wavelength
assignment in wavelength division multiplexed optical networks. In Proceedings
IEEE INFOCOM’96 (Vol. 1, pp. 164–171).

Chlamtac, I., Ganz, A., & Karmi, G. (1992). Lightpath communications: an approach
to high-bandwidth optical WANs. IEEE Transactions on Communications, 40,
1171–1182.

Choi, J. S., Golmie, N., Lapeyere, F., Mouveaux, F., & Su, D. (2000). A functional
classification of routing and wavelength assignment schemes in DWDM
networks: Static case. In Proc. VII Int. Conf. on optical communication and
networks. Nagoya, Japan, January 2000, doi: 10.1.1.96.9004.

Chu, X., Li, B., & Chlamtac, I. (2002). On the wavelength converter placement for
different RWA algorithms in wavelength-routed all-optical networks. In N.
Ghani, & K. M. Sivalingam (Eds.), Proc. SPIE, OptiComm 2002: Optical networking
and communications (Vol. 4874, pp. 186–197).

Gagnaire, M., Kuri, J., & Koubaa, M. (2009). From network planning to traffic
engineering in translucent optical WDM networks. Springer.

Gi Ahn, H., Lee, T.-J., Chung, M. Y., Choo, H. (2005). RWA on scheduled lightpath
demands in WDM optical transport networks with time disjoint paths. In Proc.
international conference on information networking (pp. 342–351).

Jaumard, B., Meyer, C., & Thiongane, B. (2006). ILP formulations for the routing and
wavelength assignment problem: Symmetric systems. In M. G. C. Resende & P.
M. Pardalos (Eds.), Handbook of optimization in telecommunications
(pp. 637–677). Springer.

Krishnaswamy, R. M., & Sivarajan, K. N. (2001). Algorithms for routing and
wavelength assignment based on solutions of LP-relaxation. IEEE
Communications Letters, 5(10), 435–437.

Kumar, M. S., & Kumar, P. S. (2002). Static lightpath establishment in WDM
networks – New ILP formulations and heuristic algorithms. Computer
Communications, 25, 109–114.

Kuri, J. (2003). Optimization problems in WDM optical transport networks with
scheduled lightpath demands. PhD thesis. ENST, Paris.

Kuri, J., Puech, N., & Gagnaire, M. (2003). Diverse routing of scheduled lightpath
demands in an optical transport network. In Proc. Design of Reliable
Communications Networks (DCRN2003) (pp. 69–76).

Kuri, J., Puech, N., Gagnaire, M., Dotaro, E., & Douville, R. (2003). Routing and
wavelength assignment of scheduled lightpath demands. IEEE Journal on
Selected Areas in Communications, 21(8), 1231–1240.

Lee, K., Kang, K. C., Lee, T., & Park, S. (2002). An optimization approach to routing
and wavelength assignment in WDM all-optical mesh networks without
wavelength conversion. ETRI Journal, 24(2), 131–141.

Margara, L., & Simon, J. (2000). Wavelength assignment problem on all-optical
networks with k fibres per link. In 27th international colloquium automata,
languages and programming, ICALP 2000. LNCS (Vol. 1853, pp. 768–779).
Springer.

Noronha, T. F., Resende, M. G. C., & Ribeiro, C. C. (2008). Efficient implementations of
routing and wavelength assignment heuristics. LNCS (Vol. 5038). Springer.

Noronha, T. F., & Ribeiro, C. C. (2006). Routing and wavelength assignment by
partition coloring. European Journal of Operational Reseach, 171(3), 797–810.

Park, S., Yang, J. S., & Bang, Y.-C. (2007). On RWA algorithms for scheduled lightpath
demands. International Journal of Computer Science and Network Security, 7(3),
144–150.

Ramaswami, R., & Sivarajan, K. N. (1995). Routing and wavelength assignment in
all-optical networks. IEEE/ACM Transactions on Networking, 3(5), 489–500.

Ramaswami, R., & Sivarajan, K. N. (2002). Optical networks – A practical perspective
(2nd ed.). Morgan Kaufmann.

Saradhi, C.V., & Gurusamy, M. (2005). Graph theoretic approaches for routing and
wavelength assignment of scheduled lightpath demands in WDM optical
networks. In Proc. 2nd international conference on broadband networks (Vol. 2).

Skorin-Kapov, N. (2006). Heuristic algorithms for virtual topology design and
routing and wavelength assignment in WDM networks. PhD thesis, University
of Zagreb, Croatia.

Skorin-Kapov, N. (2006b). Heuristic algorithms for the routing and wavelength
assignment of scheduled lightpath demands in optical networks. IEEE Journal on
Selected Areas in Communications, 24(8), 2–15.

Skorin-Kapov, N. (2007). Routing and wavelength assignment in optical networks
using bin packing based algorithms. European Journal of Operational Research,
177(2), 1167–1179.

Skorin-Kapov, N. (2008). WDM optical networks planning using greedy algorithms.
In W. Bednorz (Ed.), Greedy algorithms (pp. 569–586). InTech Publishers.

Wauters, N., & Demeester, P. (1996). Design of the optical path layer in
multiwavelength cross-connected networks. IEEE Journal on Selected Areas in
Communications, 14(5), 881–892.

Zang, H., Jue, J. P., & Mukherjee, B. (2000). A review of routing and wavelength
assignment approaches for wavelength-routed optical WDM networks. SPIE
Optical Networks Magazine, 1(1), 47–60.

Zheng, J., & Mouftah, H. (2004). Optical WDM networks. Wiley Interscience.

http://refhub.elsevier.com/S0377-2217(13)00557-2/h0005
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0005
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0005
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0010
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0010
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0010
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0015
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0015
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0020
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0020
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0020
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0020
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0025
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0025
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0025
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0030
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0030
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0030
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0035
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0035
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0035
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0040
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0040
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0040
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0050
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0050
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0055
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0055
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0060
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0060
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0060
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0065
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0065
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0070
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0070
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0075
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0075
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0075
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0080
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0080
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0080
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0085
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0085
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0090
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0090
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0090
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0095
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0095
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0095
http://refhub.elsevier.com/S0377-2217(13)00557-2/h0100

	A post-optimization method for the routing and wavelength assignment problem applied to scheduled lightpath demands
	1 Introduction
	2 Resolution methods
	2.1 The greedy algorithm
	2.2 The post-optimization method
	2.3 Repetition of the greedy algorithm

	3 Experiments
	3.1 Detailed results for nine instances involving ? and ? 
	3.2 Global results for twelve sets of one hundred instances each
	3.3 Global results for seven instances with known optimum
	3.4 Further comments

	4 Conclusion
	References


