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ABSTRACT

This paper describes a fast and efficient template-based

chord recognition method. We introduce three chord mod-

els taking into account one or more harmonics for the notes

of the chord. The use of pre-determined chord models

enables to consider several types of chords (major, mi-

nor, dominant seventh, minor seventh, augmented, dimin-

ished...). After extracting a chromagram from the signal,

the detected chord over a frame is the one minimizing a

measure of fit between the chromagram frame and the chord

templates. Several popular measures in the probability and

signal processing field are considered for our task. In or-

der to take into account the time persistence, we perform a

post-processing filtering over the recognition criteria. The

transcription tool is evaluated on the 13 Beatles albums

with different chord types and compared to state-of-the-

art chord recognition methods. We particularly focus on

the influence of the chord types considered over the per-

formances of the system. Experimental results show that

our method outperforms the state-of-the-art and more im-

portantly is less computationally demanding than the other

evaluated systems.

1. INTRODUCTION

Chord transcription is a compact representation of the har-

monic content and structure of a song. Automatic chord

transcription finds many applications in the field of Musi-

cal Information Retrieval such as song identification, query

by similarity or structure analysis.

The features used for chord recognition may differ from

a method to another but are in most cases variants of the

12-dimensional Pitch Class Profiles [1]. Every component

represents the spectral energy of a semi-tone on the chro-

matic scale regardless of the octave. The succession of

these chroma vectors over time is called chromagram : the

chord recognition task consists in outputting a chord label

for every chromagram frame.
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The first chord recognition systems consider many chord

types. The method proposed by Fujishima [1] considers

27 chord types. The transcription is done either by mini-

mizing the Euclidean distance between Pitch Class Profiles

and 12-dimensional chord templates constituted by 1’s (for

the chromas present in the chord) and 0’s (for the other

chromas) or by maximizing a weighted dot product. Sheh

& Ellis [2] use a Hidden Markov Model composed of 147

hidden states each representing a chord (7 types of chords

and 21 root notes). All the HMM parameters are learned

by a semi-supervised training with an EM algorithm.

These two methods have been improved upon by reduc-

ing the number of chord types considered. Fujishima’s sys-

tem is improved in [3] by reducing the number of chords

types from 27 to 4 (major, minor, augmented, diminished)

and by calculating a more elaborate chromagram includ-

ing notably a tuning algorithm. Chord transcription is then

realized by retaining the chord with larger dot product be-

tween the chord templates and the chromagram frames.

Sheh & Ellis method is modified in [4] : the number of

hidden states is reduced from 147 to 24 by only consid-

ering major and minor chords for the 12 semi-tones root

notes. Musical knowledge is introduced into the model by

initializing the HMMs parameters with values inspired by

musical and cognitive theory. Since then, almost all the

chord transcription methods [5], [6], [7], [8], [9], only con-

sider major and minor chords.

Our chord recognition system is based on the intuitive

idea that for a given 12-dimensional chroma vector, the

amplitudes of the chromas present in the chord should be

larger than the ones of the non-played chromas. By intro-

ducing chord templates for different chord types and roots,

the chord present on a frame should therefore be the one

whose template is the closest to the chroma vector accord-

ing to a specific measure of fit.

The paper is organized as follows. Section 2 gives a de-

scription of our recognition system. Section 3 describes the

corpus and the protocol of evaluation. Section 4 presents

the results of our system, a study on the influence of the

chord types considered, a comparison with the state-of-the-

art and an analysis of the frequent errors. Finally the main

conclusions of this work are summarized in Section 5.



2. DESCRIPTION OF THE SYSTEM

2.1 General idea

Given N successive chroma vectors {cn}n, K chord tem-

plates {pk}k and a measure of fit D, we define :

dk,n = D (hk,n cn;pk) . (1)

hk,n is a scale parameter whose role is to fit the chroma

vector cn with the chord template pk according to the mea-

sure of fit used. In practice, hk,n is calculated such as :

hk,n = argmin
h

D (h cn;pk) . (2)

The detected chord k̂n for frame n is then the one min-

imizing the set {dk,n}k
:

k̂n = argmin
k

{dk,n} . (3)

In our system, the chroma vectors are calculated from

the music signal with the same method as Bello & Pickens

[4]. The frame length is set to 753 ms and the hop size is

set to 93 ms. We use the code kindly provided by these

authors.

We have omitted for sake of conciseness the expressions

of dk,n and hk,n which are easily obtained by canceling the

gradient of (1) wrt hk,n.

2.2 Chord models

The intuitive chord model is a simple binary mask consti-

tuted of 1’s for the chromas present in the chord and 0’s for

the other chromas [1], [3].

Yet, the information contained in a chromagram cap-

tures not only the intensity of every note but a blend of in-

tensities for the harmonics of every note. Like Gomez [10]

and Papadopoulos [5], we assume an exponentially de-

creasing spectral profile for the amplitudes of the partials.

An amplitude of 0.6i−1 is added for the ith harmonic of

every note in the chord.

In our system three chord models are defined, corre-

sponding to 1, 4 or 6 harmonics. Examples for C major

and C minor chords are displayed on Figure 1.

From these three chord models we can build chord tem-

plates for all types of chords (major, minor, dominant sev-

enth, diminished, augmented,...). By convention in our

system, the chord templates are normalized so that the sum

of the amplitudes is 1.

2.3 Measures of fit

We consider for our recognition task several measures of

fit, popular in the field of signal processing : the Euclidean

distance (later referred as EUC), the Itakura-Saito diver-

gence [11] and the Kullback-Leibler divergence [12].

Since the Itakura-Saito and Kullback-Leibler divergence

are not symmetrical, they can be calculated in two ways.

D (hk,n cn|pk) will respectively define IS1 and KL1, while

D (pk|hk,n cn) will define IS2 and KL2.
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Figure 1. Chord templates for C major / C minor with 1, 4

or 6 harmonics.

2.4 Filtering methods

In order to take into account the time-persistence, we intro-

duce some post processing filtering methods which work

upstream on the calculated measures and not on the se-

quence of detected chords.

The new criterion d̃k,n is based on L successive val-

ues {dk,n′}
n−L−1

2
≤n′≤n+

L−1

2

previously calculated. In

our system two types of filtering are used.

The low-pass filtering takes the mean of the L values.

It tends to smooth the output chord sequence and to reflect

the long-term trend in the chord change.

The median filtering takes the median of the L values.

It has been widely used in image processing and is partic-

ularly efficient to correct random errors.

In every case, the detected chord k̂n on frame n is the

one that minimizes the set of values
{

d̃k,n

}

k
:

k̂n = argmin
k

{

d̃k,n

}

(4)

3. EVALUATION

3.1 Corpus

The evaluation database used in this paper is made of the

13 Beatles albums (180 songs, PCM 44100 Hz, 16 bits,

mono). The chord annotations for these 13 Beatles albums

are kindly provided by Harte and Sander [13].

In these annotation files, 17 types of chords and one

‘no chord’ label (N) corresponding to silences or untuned

material are present.

The most common chord types in the corpus are major

(63.89% of the total duration), minor (16.19%), dominant

seventh (7.17%) and ‘no chord’ states (4.50%). Figure 2

shows the repartition of the chord types among the 13 al-

bums of the Beatles. We can see that the number of major,

minor and dominant seventh chords varies much with the

album. Yet, the last six albums clearly contain more chord
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Figure 2. Repartition of the chord types as percentage of

the total duration for the 13 Beatles albums.

types (other than major, minor and dominant seventh) than

the first seven ones.

3.2 Protocol of evaluation

The evaluation method used in this paper corresponds to

the one used in MIREX 08 for the Audio Chord Detection

task. 1

As the evaluation method only takes into account major

and minor chords, the 17 types of chords present in the an-

notation files are first mapped into major and minor types

following the rules used in MIREX 08 :

• major : maj, dim, aug, maj7, 7, dim7, hdim7, maj6,

9, maj9, sus4, sus2

• minor : min, min7, minmaj7, min6, min9

For the systems detecting more chord types (dominant

seventh, diminished, etc.), once the chords have been de-

tected with their appropriate models, they are then mapped

to the major and minor following the same rules than for

the annotation files.

A score is calculated for each song as the ratio between

the lengths of the correctly analyzed chords and the to-

tal length of the song. The final Average Overlap Score

(AOS) is then obtained by averaging the scores of all the

180 songs. An example of calculation of an Overlap Score

is presented on Figure 3.

4. RESULTS

The five previously described measures of fit (EUC, IS1,

IS2, KL1 and KL2), three chord models (1, 4 or 6 harmon-

ics) and two filtering methods (low-pass and median) with

neighborhood sizes from L = 1 to L = 25 are tested. For

every method we only present the results for the optimal

parameters (measure of fit, chord models, filtering method

and neighborhood size).

1 http://www.music-ir.org/mirex/2008/

4.1 Results with major/minor chord types

Considering only major and minor chords (like most of the

chord recognition methods of the actual state-of-art), we

obtain a Average Overlap Score of 0.70 over the 13 Beatles

albums. The optimal parameters are the Kullback-Leibler

divergence KL2, the single harmonic chord model and the

median filtering with a neighborhood size of L = 17.

4.2 Introduction of other chord types

The simplicity of our method allows to easily introduce

chord templates for chord types other than major and mi-

nor : we study here the influence of the chord types consid-

ered over the performances of our system. The choice of

these chord types is guided by the statistics on the corpus

previously presented : we introduce in priority the most

common chords types of the corpus.

4.2.1 Dominant seventh and minor seventh chords

In the Beatles corpus, the two most common chord types

other than major and minor are dominant seventh (7) and

minor seventh (min7) chords. The results for major, minor,

dominant seventh and minor seventh chords are presented

in Table 1. The score displayed in a case is the best Average

Overlap Score obtained by considering the chord types of

the corresponding row and column.

min min7 min & min7

maj 0.70 0.64 0.69

7 0.69 0.63 0.65

maj & 7 0.71 0.66 0.69

Table 1. Average Overlap Scores with major, minor, dom-

inant seventh and minor seventh chords.

The best results are obtained by detecting major, minor

and dominant seventh chords, with the Kullback-Leibler

divergence KL2, the single harmonic chord model and the

median filtering with L = 17 giving a recognition rate of

71%. Only the introduction of dominant seventh chords,

which are very common in the Beatles corpus, enhances

the results. The introduction of minor seventh chords, which

are less common, degrades the results. Indeed, the struc-

ture of minor seventh chords (for example Cmin7) leads to

confusion between the actual minor chord and the relative

major chord (E♭ in our example).

4.2.2 Augmented and diminished chords

Augmented and diminished chords have been considered

in many template-based chord recognition systems [1], [3].

Interestingly, while the augmented and diminished chords

are very rare in the Beatles corpus (respectively 0.62% and

0.38% of the total length), the introduction of chord tem-

plates for augmented and diminished chords does not de-

grade the results. We obtain a recognition rate of 69%

by considering major, minor, augmented and diminished

chords and of 71% by taking into account major, minor,

dominant seventh, augmented and diminished chords.



ground truth :

transcription :

overlap :

Overlap Score = 3+4

10
= 0.70

C major A minor

C major F major A minor

Figure 3. Example of calculation of an Overlap Score.

4.2.3 Other chord types

The introduction of other chord types (ninth, major sev-

enth, sus4, etc.) does not improve the results. This can

be explained either by the structures of the chords which

can lead to confusions with other chord types or by the

low number of chords of these types in the Beatles cor-

pus. Indeed, the introduction of a model for a new chord

type gives a better detection for chords of this type but also

leads to new errors such as false detections. Therefore only

frequent chords types should be introduced, ensuring that

the enhancement caused by the better recognition of these

chord types is larger than the degradation of the results

caused by the false detections.

4.3 Influence of the album
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Figure 4. Average Overlap Scores for the 13 Beatles al-

bums (in chronological order) for the major/minor and the

major/minor/dominant seventh methods.

We can see on Figure 4 that results are better for the first

seven albums : this can be explained by the low number

of chords other than major, minor and dominant seventh

on these albums (see Figure 2). Surprisingly the introduc-

tion of dominant seventh chords tend to improve results not

necessarily on albums containing many dominant seventh

chords (for example album number 3) but on albums con-

taining many chords other than major, minor and dominant

seventh (for example albums number 8 & 11).

4.4 State-of-the-art

Our method is now compared to the following methods that

entered MIREX 08.

Bello & Pickens [4] use 24-states HMM with musically

inspired initializations, Gaussian observation probability

distributions and EM-training for the initial state distribu-

tion and the state transition matrix.

Ryynänen & Klapuri [6] use 24-states HMM with ob-

servation probability distributions computed by comparing

low and high-register profiles with some trained chord pro-

files. EM-training is used for the initial state distribution

and the state transition matrix.

Khadkevich & Omologo [7] use 24 HMMs : one for

every chord. The observation probability distributions are

Gaussian mixtures and all the parameters are trained through

EM.

Pauwels, Verewyck & Martens [8] use a probabilis-

tic framework derived from Lerdahl’s tonal distance metric

for the joint tasks of chords and key recognition.

These methods have been tested with their original im-

plementations on the same Beatles corpus than before and

evaluated with the same protocol (AOS). Results of this

comparison with the state-of-the-art are presented on Ta-

ble 2.

AOS Time

Our method (Maj-Min-7) 0.71 796s

Bello & Pickens 0.70 1619s

Our method (Maj-Min) 0.70 790s

Ryynänen & Klapuri 0.69 1080s

Khadkevich & Omologo 0.64 1668s

Pauwels, Varewyck & Martens 0.62 12402s

Table 2. Comparison with the state-of-the-art.

First of all it is noticeable that all the methods give

rather close results : there is only a 9% difference between

the methods giving the best and worse results. Our method

gives the best results, but more importantly with a very

low computational time. It is indeed twice as fast as the

best state-of-the-art method (Bello and Pickens).



4.5 Analysis of the errors

In most chord transcription systems, the errors are often

caused by the structural similarity (common notes) and

the harmonic proximity between the real chord and the

wrongly detected chord.

Two chords are likely to be mistaken one for another

when they look alike, that is to say, when they share notes

(especially in template-based systems). Given a major or

minor chord, there are 3 chords which have 2 notes in com-

mon with this chord : the parallel minor/major, the relative

minor/major (or submediant) and the mediant chord.

Besides the structural similarity, errors can also be caused

by the harmonic proximity between the original and the de-

tected chord. Figure 5 pictures the doubly nested circle of

fifths which represents the major chords (capital letters),

the minor chords (lower-case letters) and their harmonic

relationships. The distance linking two chords on this dou-

bly nested circle of fifths is an indication of their harmonic

proximity.

Given a major or minor chord, the 4 closest chords on

this circle are the relative (submediant), mediant, subdom-

inant and dominant. One can notice that these 4 chords

are also structurally close to the original chord, since they

share 1 or 2 notes with it.

Figure 5. Doubly nested circle of fifths [4].

We have therefore brought out 5 potential sources of

errors among the 23 possible ones (i.e., the 23 other wrong

candidates for one reference chord). Examples of these

potential sources of errors for C major and C minor chords

are displayed on Figure 6.

Reference chord C Cm

parallel Cm C

relative (submediant) Am A♭

mediant Em E♭

subdominant F Fm

dominant G Gm

Figure 6. Particular relationships between chords and po-

tential sources of errors : examples for C major and C mi-

nor chords.

Figure 7 displays the repartition of these error types as a

percentage of the total number of errors for every evaluated

method. Errors due to the bad detection of the ’no chord’

states are represented with the ’no chord’ label.

The main sources of errors correspond to the situations

previously described and to the errors caused by silences

(’no chord’). Actually, in most methods, the 5 types of

errors previously considered (over the 23 possible ones)

represent approximately 60% of the errors.

The introduction of the dominant seventh chords clearly

reduces the proportion of the errors due to relative (subme-

diant) and mediant (-9%). Another noteworthy result is

that the methods by Ryynänen & Klapuri, Bello & Pick-

ens and our major/minor method approximately have the

same error repartition despite the different structures of the

methods, which proves that the semantic of the errors is

inherent to the task. Pauwels, Varewyck & Martens’ sys-

tem is mostly penalized by the wrong detection of the ’no

chord’ states, when Khadkevich & Omologo’s method pro-

duces a wider range of errors.

5. CONCLUSION

Our system offers a novel perspective about chord detec-

tion. The joint use of popular measures and filtering meth-

ods distinguishes from the predominant HMM-based ap-

proaches. The introduction of chord templates allows to

easily consider many chord types instead of only major and

minor chords. Since our method is only based on the chro-

magram no information about style, rhythm or instruments

is required and thank to the fact that no training or database

is needed, the computation time can be kept really low.
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[10] E. Gómez. Tonal description of polyphonic audio for

music content processing. In Proceedings of the IN-

FORMS Computing Society Conference, volume 18,

pages 294–304, Annapolis, MD, 2006.

[11] F. Itakura and S. Saito. Analysis synthesis telephony

based on the maximum likelihood method. In Proceed-

ings of the International Congress on Acoustics, pages

17–20, Tokyo, Japan, 1968.

[12] S. Kullback and R.A. Leibler. On information and suf-

ficiency. Annals of Mathematical Statistics, 22(1):79–

86, 1951.

[13] C. Harte, M. Sandler, S. Abdallah, and E. Gomez.

Symbolic representation of musical chords: A pro-

posed syntax for text annotations. In Proceedings of

the International Symposium on Music Information Re-

trieval (ISMIR), pages 66–71, London, UK, 2005.


