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Abstract—Extensive research in recent years has shown the
benefits of cognitive radio technologies to improve the flexibility
and efficiency of spectrum utilization. This new communication
paradigm, however, requires a well-designed spectrum allocation
mechanism. In this paper, we propose an auction framework
for cognitive radio networks to allow unlicensed secondaryusers
(SUs) to share the available spectrum of licensed primary users
(PUs) fairly and efficiently, subject to the interference tempera-
ture constraint at each PU. To study the competition among SUs,
we formulate a non-cooperative multiple-PU multiple-SU auction
game and study the structure of the resulting equilibrium by
solving a non-continuous two-dimensional optimization problem.
A distributed algorithm is developped in which each SU updates
its strategy based on local information to converge to the
equilibrium. We then extend the proposed auction framework
to the more challenging scenario with free spectrum bands. We
develop an algorithm based on the no-regret learning to reach
a correlated equilibrium of the auction game. The proposed
algorithm, which can be implemented distributedly based onlocal
observation, is especially suited in decentralized adaptive learn-
ing environments as cognitive radio networks. Finally, through
numerical experiments, we demonstrate the effectiveness of the
proposed auction framework in achieving high efficiency and
fairness in spectrum allocation.

I. I NTRODUCTION

Cognitive radio [1] has emerged in recent years as a
promising paradigm to enable more efficient and spectrum
utilization. Apart from the conventional command and control
model, three more flexible spectrum management models are
presented in [2], namely, exclusive use (or operator sharing),
commons and shared use of primary licensed spectrum. In the
last model, unlicensed secondary users (SUs) are allowed to
access the spectrum of licensed primary users (PUs) in an
opportunistic way. In such a model, a well-designed spectrum
allocation mechanism is crucial to achieve efficient spectrum
usage and harmonious coexistence of PUs and SUs. On one
hand, the radio resource allocation mechanism should ensure
that the spectrum resource (unused by PUs) is allocated
efficiently and fairly among SUs. On the other hand, the
communication of PUs should not be disturbed by the SUs.

In this paper, we tackle the challenging research problem of
designing efficient spectrum allocation mechanism for cogni-
tive radio networks. We consider a generic network scenario
in which multiple PUs and SUs coexist. To use the spectrum
resource efficiently, the SUs share the available spectrum of
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the PUs under the condition that theinterference temperature
constraint [3] is always satisfied at each PU, i.e. the total
received power of the SUs at each PU should be kept under
some threshold in order to protect the PU’s traffic. The
considered scenario can represent various network scenarios,
e.g. the PUs are the access points of a mesh network and the
SUs are the mobile devices.

In our work, we develop an auction framework to allow SUs
to share the available spectrum of PUs. Under the proposed
auction framework, each PU acts as a resource provider by (1)
announcing a price and a reserve bid (2) allocating the received
power as a function of the bids submitted by SUs. Each
SU acts as a customer by (1) submitting a two-dimensional
bid indicating which PU to bid for resource and how much
to bid (2) paying the chosen PU an amount of payment
proportional to the allocated resource and the announced price.
To study the competition among SUs, we formulate a non-
cooperative auction game and study the structure of the result-
ing Nash equilibrium (NE) by solving a non-continuous two-
dimensional optimization problem. A distributed algorithm is
developped in which each SU updates its strategy based on
local information to converge to the NE. Our analysis can serve
as a decision and control framework for the SUs to exploit the
underutilized spectrum resource.

We then extend the proposed auction framework to the
more challenging scenario with free spectrum bands. In this
context, a SU should strike a balance between accessing a free
spectrum band with more interference if the competitors take
the same strategy, and paying more for communication gains
by staying with a licensed band. We show that theping-pong
effect may occur under the best-response update, i.e., a SU
keeps switching between the free band and a licensed band.
To eliminate the ping-pong effect, we develop an algorithm
based on the no-regret learning [4] to reach a correlated equi-
librium (CE) [5] of the auction game. The proposed algorithm,
which can be implemented distributedly and requires only
local observation, is especially suited in decentralized adaptive
learning environments as cognitive radio networks.

Due to their perceived fairness and allocation efficiency [6],
auctions are among the best-known market-based mechanisms
to allocate spectrum [7], [8], [9], [10], [11], [12]. In most
proposed auctions, the spectrum resource is treated as goods
in traditional auctions studied by economists, i.e., one licensed
band (or a collection of multiple bands) is awarded to one
SU. However, spectrum auction differs from conventional
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auctions in that it has to address radio interference. Spectrum
auction is essentially a problem of interference-constrained
resource allocation. Only a few papers have discussed spec-
trum auctions under interference constraint, among which [11]
and [12] studied conflict-free spectrum allocation with high
spectrum efficiency. [10] developed an auction-based spectrum
sharing framework to allow a single spectrum manager to
share its spectrum with a group of users, subject to the
interference temperature constraint at the measurement point, a
requirement proposed by FCC in [3]. Based on the same model
as [10], our work is among the relative few that investigate
the interference-constraint radio resource allocation problem
under the auction framework. Compared with previous work,
we make the following key contributions:

• Existing auction mechanisms mainly focus on single-
PU scenario with very limited analytical and numerical
studies on multiple-PU case. Our work, however, conduct
an in-depth analysis on the spectrum auction for multiple
PUs to allocate their spectrum to multiple SUs efficiently
and fairly. As a distinctive feature of the proposed auction
framework, the SUs’ strategy (bid) is two-dimensional
and non-continuous, leading to a competition scenario
with more complex interactions among players and re-
quiring an original study of the resulting equilibrium.

• We investigate the spectrum auction with free spectrum
bands and develop a distributed adaptive algorithm based
on no-regret learning to converge to a CE of the auction
game. To the best of our knowledge, our work is the first
to adapt the auction framework to address the spectrum
sharing problem in heterogeneous environments with both
licensed and free bands.

The rest of this paper is structured as follows. Section II
presents our system model and auction framework followed
by the formulation of the non-cooperative auction game.
Section III solves the auction game and analyzes the struc-
tural properties of the resulting NE. Section IV extends our
auction framework to the more challenging scenario with free
spectrum bands. Simulation results are presented in Section V.
Section VI concludes the paper.

II. SYSTEM MODEL AND SPECTRUM AUCTIONS

This section introduces the notation and the system model
of our work, followed by the presentation of the proposed
spectrum auction framework and the formulation of the auction
game under the framework.

A. Cognitive radio network model

We consider a cognitive radio network consisting of a set
of primary users referred to as PUs and a set of secondary
transmitter-receiver pairs referred to as secondary usersor
SUs. We useN = {1, 2, · · · , N} andM = {1, 2, · · · , M}
to denote the PU set and the SU set, respectively. We use
Si and Di to denote the transmitter and the receiver of SU
i ∈ M. Each PUn ∈ N operates on a spectrum bandn with
bandwidthBn that is non-overlapped with the spectrum bands
of other PUs, i.e.n1

⋂
n2 = Φ, ∀n1, n2 ∈ N .1

1The extension of our analysis to the more competitive scenario where the
PUs’ bands are overlapped with each other is left for future work.

SU i’s valuation of the spectrum is defined by a utility func-
tion Ui(γi), whereγi is the received signal-to-interference-
plus-noise ratio (SINR) at SU i’s receiverDi. Ui(γi) character-
izes the application payoff (e.g. satisfaction level) of SUi from
SINR γi. We assumeUi(γi) is continuously differentiable,
strictly increasing and concave inγi with Ui(0) = 0. For each
SU i, the received SINR using PUn’s band is given by

γi =
pihii

n0Bn +
∑

j 6=i pjhji

, (1)

wherepi denotes SUi’s transmission power,hji denotes the
channel gain from SUj’s transmitterSj to SU i’s receiver
Di, n0 denotes the background noise power spectral density.

In the considered scenario, to ensure that the transmissions
of PUs are not significantly degraded by the SUs, an inter-
ference temperature constraint is imposed such that the total
received power of SUs at PUn must satisfy

M∑

i=1

pigin ≤ Pn ∀n ∈ N ,

where gin is the channel gain fromSi to PU n, Pn is the
tolerable interference threshold at PUn.

B. Spectrum auction framework

We apply auction mechanisms to tackle the spectrum allo-
cation problem. By definition, an auction is a decentralized
market mechanism for allocating resources and can be formu-
lated as a non-cooperative game, where players are bidders,
strategies are bids, both allocations and payments are functions
of bids. A well-known auction is the Vickrey-Clarke-Groves
(VCG) auction [6], which is shown to have social optimal
outcome. However, the VCG auction requires global informa-
tion to perform centralized computations. To overcome this
limitation, two one-dimensional share auction mechanisms,
namely the SINR auction and the power auction are proposed
in [10] to study the spectrum allocation problem in single-PU
networks. In the following, we extend the work of [10] to the
multiple-PU scenario by proposing the two-dimensional SINR
and power auction, as shown in Algorithm 1.2

Algorithm 1 Two-dimensional spectrum auction algorithm
Price announcing:Each PUn announces a reserve bidβn

and a priceπn > 0.
Bidding: Based onβn and πn, each SUi submits a bid
(ai, bi) whereai ∈ N andbi ≥ 0.
Spectrum allocation:Each SUi is allocated a transmission
powerpi from PU ai as follows:

pi =
Pai

giai

bi∑
j∈M,aj=ai

bj + βai

. (2)

Payment collection:Each SUi pays PUai a paymentCi =
πai

γigiai
in the SINR auction andCi = πai

pigiai
in the

power auction.

2In our study, we assume that SUs are honest, and indeed make the
payments. We do not consider the issue ofpayment enforcement, which may
require a separate mechanism and is beyond the scope of the paper.
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Under the above auction framework, the received SINR of
SU i is

γi =
Pai

hii

giai

bi

n0Bai




∑

j∈M,aj=ai

bj + βai



 +
∑

j∈M,aj=ai,j 6=i

Pai

hji

gjai

bj

. (3)

In contrast to [10] where SUs are charged the same price
per unit SINR, we apply the economic concept ofprice dis-
crimination in the proposed SINR auction by imposinggiai

as
a user-dependent pricing factor on SUi. The design rationale
is that for two SUs choosing the same PU, the SU causing
more interference at the PU should be charged more per unit
SINR than the SU causing less interference. As we will show
via numerical experiments, this feature is especially suited in
multi-PU case by resulting a more balanced equilibrium. For
the power auction, noticing that the received power of SUi
at PU ai is pigiai

, the auction scheme actually inplements a
pricing policy under which a priceπn per unit received power
is imposed by PUn to the SUs connecting to it.

C. Non-cooperative spectrum auction game formulation

Under the proposed auction framework, we model the
interaction among SUs as a non-cooperative spectrum auction
game, denoted asGNSA andGNPA for the SINR and power
auction, respectively.3 Let si = (ai, bi) denote the strategy of
SU i ands−i denote the strategy of the SUs excepti, given the
price vectorπ = (πn, n ∈ N ), each SUi chooses its strategy
si to maximize hissurplus functiondefined as follows:

Si(si, s−i) = Ui(γi(si, s−i)) − Ci(si, s−i).

The resulting non-cooperative SINR (power) auction game
can then be defined formally as:

GNSA(GNPA) : max
si=(ai,bi),ai∈N ,bi≥0

Si(si, s−i), ∀i ∈ M.

The solution of the auction game is characterized by a Nash
Equilibrium (NE), a strategy profiles∗ = (s∗i , s

∗
−i) from which

no player has incentive to deviate unilaterally [13], i.e.,

Si(s
∗
i , s

∗
−i) ≥ Si(si, s

∗
−i), ∀i ∈ M, ∀ai ∈ N , ∀bi ≥ 0.

As a distinguished feature from the single-PU auction, the
auction framework proposed in our work is two-dimensional
and involves both PU selection and bid adjustment, which
leads to a competition scenario with more complex interactions
among players. Consequently, characterizing structural prop-
erties of the auction game in our context requires an original
study of the game equilibria that cannot draw on existing well-
known results, as will be shown in later analysis.

III. SOLVING THE AUCTION GAME : NE ANALYSIS

In this section, we solve the auction game by deriving the
NE of the game and study the structure properties of the NE.
To this end, we focus on the following optimization problem

3In this work, we do not consider the PUs as players. A significant extension
of our work presented in this paper is to model the spectrum auction as a
Stackelberg game, in which the PUs are the leaders that choose their strategy
(price) first, and the SUs are the followers that respond by choosing their
strategies (bids) accordingly, knowing the leaders’ strategies [13]. We leave
this extension of exploring the Stackelberg game for futurework.

faced by each SUi in the spectrum auction game, given the
price of PUsπ = {πn, n ∈ N} and strategies of otherss−i:

s∗i = (a∗
i , b

∗
i ) = argmax

si

Si(si, s−i), (4)

which, according to the following lemma, can be written as

s∗i = (a∗
i , b

∗
i ) = argmax

ai∈N
argmax

bi≥0
Si(si, s−i).

Lemma 1. max
(ai,bi)

Si(si, s−i) = max
ai∈N

max
bi≥0

Si(si, s−i).

Proof: On one hand, it follows from (4) that

Si((a
∗
i , b

∗
i ), s−i) ≥ max

ai∈N
max
bi≥0

Si((ai, bi), s−i).
4

On the other hand, we have

max
ai∈N

max
bi≥0

Si((ai, bi), s−i) ≥ max
bi≥0

Si((a
∗
i , bi), s−i)

≥ Si((a
∗
i , b

∗
i ), s−i).

Combining the above results completes our proof.

A. SINR auction

We start with the SINR auction game. Unlike the single-
PU auction studied in [10], where each SU maximizes its
surplus function over its bid only, the SU optimization problem
in the multiple-PU case is a joint two-dimensional problem
over the submitted bid and the PU to whom the SU bids
for spectrum. To solve the SUs’ optimization problem, a
straightforward way to find(a∗

i , b
∗
i ) is to search over all

possible PU settings and perform optimization over bid for
every setting, which is computationally intensive and makes
the resulting NE intractable. In our analysis, we overcome
this technical difficulty by decomposing the two-dimensional
optimization problem based on the structural properties ofthe
surplus function, detailed in Lemma 2.

Lemma 2. For each SUi, givenπ and s−i, it holds that

a∗
i = argmax

n∈N
Si(γ

∗
in) = argmax

n∈N
Ui(γ

∗
in) − πnginγ∗

in,

whereγ∗
in = min{U ′−1

i (πngin), Pnhii/(n0Bngin)}, ∀n ∈ N .

Proof: Let γin denote the SINR of SUi when connecting
to PU n, recall (3), we can show that:

1) γin is upper-bounded byPnhii/(n0Bngin);
2) For γin ≤ Pnhii/(n0Bngin), there is an one-to-one

mapping betweenγin andbi.

From Lemma 1, the optimization problem of SUi is thus
equivalent to the following one:

max
n∈N

max
γin≤

Pnhii
n0Bngin

Si(n, γin).

Moreover, when choosing PUn, Si can be written as a
function of γin as

Si(γin) = Ui(γin) − πnginγin,

whose derivative is
∂Si

∂γin

= U ′
i(γin) − πngin.

Following the concavity ofUi, U ′
i is monotonously de-

creasing in γin. Hence Si is a quasi-concave function
of γin, thus has a unique global maximizerγ∗

in =

4For the sake of simplicity, in case of non-ambiguity, we note
Si((a∗

i
, b∗

i
), s−i) as a function ofsi, i.e. Si(si) or Si(a∗

i
, b∗

i
).
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min {U ′−1
i (πngin), Pnhii/(n0Bngin)}. The maximum ofSi

under PUn is given bySi(γ
∗
in). It then follows that

a∗
i = argmax

n∈N
Si(γ

∗
in) = argmax

n∈N
Ui(γ

∗
in) − πnginγ∗

in,

whereγ∗
in = min{U ′−1

i (πngin), Pnhii/(n0Bngin)}.
Specifically, whenπn is significantly large, more precisely,

πngin ≥ U ′
i(Pnhii/n0Bngin), ∀n ∈ N , ∀i ∈ M, Lemma 2

can be simplified to Corollary 1.

Corollary 1. If πngin ≥ U ′
i(Pnhii/n0Bngin), ∀n ∈ N , ∀i ∈

M, it holds thata∗
i = argminn∈N πngin.

Proof: Recall that Ui(γi) is concave in γi,
πngin ≥ U ′

i(Pnhii/n0Bngin) leads to U ′−1
i (πngin) ≤

Pnhii/(n0Bngin). It then follows from Lemma 2 that
γ∗

in = U ′−1
i (πngin) and

a∗
i = argmax

n∈N
Si(U

′−1
i (πngin))

= argmax
n∈N

Ui(U
′−1
i (πngin)) − πnginU ′−1

i (πngin).

Let x = πngin, regardSi = Ui(U
′−1
i (x)) − xU ′−1

i (x) as a
function of x, after some mathematical operations, we have

∂Si

∂x
= −U ′−1

i (x),

which, following the concavity ofUi, is non-positive.Si(x)
is thus non-increasing inx. Hence

a∗
i = argmax

n∈N
Si(U

′−1
i (πngin)) = argmin

n∈N
πngin,

which concludes our proof.
If we denoteπngin as the effective price for SUi when

choosing PUn, Corollary 1 states that SUi always chooses
the PU with the minimum effective price.

As the key results of this subsection, we have demonstrated
that in the SINR auction game, the choice of PU only
depends on the effective price set by PUs. Consequently, the
optimization problem of each SUi can be decomposed into
two sub-problems, which can be performed sequentially:

1) i chooses PUa∗
i based on the effective price of PUs and

stay with PUa∗
i ;

2) i performs bid optimization by adjusting its bid submit-
ted to PUa∗

i , which is degenerated into single-PU case.
The following theorem on the NE of the SINR auction game

is then immediate whose proof follows straightforwardly from
that of Theorem 1 and Proposition 6 in [10].

Theorem 1. For the SINR auction withβn > 0, ∀n ∈ N ,
there exists a threshold price vectorπs

th = {πs
th,n, n ∈ N}

such that if the price vectorπ > πs
th,5 a NE exists to which

the best response update converges. The NE is unique ifa∗
i

is singleton for every SUi. On the other hand, if there exists
somen0 ∈ N such thatπn0

≤ πs
th,n0

, there is no NE.

B. Power auction

In this subsection, we turn to the power auction game. As
the payment functionCi in the power auction has a different
structure to that in the SINR auction (i.e.Ci is a function ofpi

instead ofγi), the decomposition in the previous analysis on
the SINR auction is no more applicable here. To characterize

5Throughout the paper, the inequality between two vectors isdefined as
the inequality in all components of the vectors.

the equilibrium of the power auction game, we make the
following approximation in the subsequent analysis:∑

aj=ai,j 6=i

bj � bi, ∀i ∈M, or equivalently,
∑

sj=ai,j 6=i

bj ∼
∑

sj=ai

bj . (5)

The approximation (5) is accurate in large systems where the
bid variation of any individual player has neglectable influence
on the system state. More specifically, under (5), the impact
of bi on the interference at the receiverDi, denoted asIi, can
be neglected, in other words,Ii can be regarded independent
w.r.t. bi. The utility function of SUi can then be written as:

Si = Ui(γi) −
πai

giai
Ii

hii

γi.

whereIi = n0Bai
+

∑
j∈M,j 6=i,aj=ai

pjhji.
To solve the power auction game, we transform the original

gameGNPA into another gameG′
NPA in which the strategy

of SU i is (ai, γi) instead of(ai, bi) in GNPA. Under the
approximation (5),γi can be regarded as a linear function
of bi. As Ii is independent w.r.t.bi, any unilateral change in
bi can be transformed into related change inγi without any
influence onγ−i. Thus the original gameGNPA is equivalent
to the transformed gameG′

NPA, formally expressed as

G′
NPA : max

si=(ai,γi)
Si(si, s−i), i ∈ M.

We now concentrate on the new gameG′
NPA. Performing

the same analysis as Lemma 1 and Corollary 1 by noticing
that Ii ≥ n0Bai

, we have the following result that decouples
the PU selection and the adjustment ofγi in G′

NPA.

Lemma 3. If πnginn0Bn/hii ≥ U ′
i(Pnhii/n0gin), ∀n ∈

N , ∀i ∈ M, it holds thata∗
i = argminn∈N πnginIi/hii.

Compared with the SINR auction game where the effective
price imposed by PUn to SU i is πngin, in the power auction
game, the corresponding effective price becomesπnginIi/hii.
Lemma 3 states that SUi always chooses the PU with the
minimum effective price. Armed with Lemma 3, we can then
establish the existence of NE inG′

NPA under the condition
that the prices set by PUs are sufficiently high.

Theorem 2. Under the approximation(5) and the condition
in Lemma 3,G′

NPA admits a NE.

Proof: For any SUi, under the strategy of otherss−i =
(a−i, γ−i), it follows from Lemma 3 thati chooses PUa∗

i =
minn∈N πnginIi/hii, i.e., for anya′

i 6= a∗
i , it holds that

πa∗

i
hia∗

i
Ii(a

∗
i )

hii

≤
πa′

i
hia′

i
Ii(a

′
i)

hii

.

It then follows that for anyγi ≥ 0

Si(a
∗
i , γi) = Ui(γi) −

πa∗

i
hia∗

i
Ii(a

∗
i )

hii

γi ≥

Ui(γi) −
πa′

i
hia′

i
Ii(a

′
i)

hii

γi = Si(a
′
i, γi),

which implies that given the opponents’ strategy, choosingPU
a∗

i is always the dominating strategy for anyγi.
On the other hand, performing the same analysis as

Lemma 1, we can show that inG′
NPA,

max
(ai,γi)

Si(si, s−i) = max
γi

max
ai

Si(si, s−i).

The optimization problem for SUi thus becomes

max
(ai,γi)

Si(si, s−i) = max
γi

Si(a
∗
i , γi),
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in which the utility function of SUi is Si(a
∗
i , γi), which

is concave inγi. Furthermore, it follows fromIi ≥ n0Bn

and pi ≤ Pn/giai
when SU i chooses PUn that γi ≤

maxn∈N hiiPn/(giai
n0Bn). Thus the strategy spaceγ =

(γi, i ∈ M) is a nonempty, convex, and compact set. It then
follows from Theorem 1 in [14] thatG′

NPA admits a NE.
Due to the complexity of the power auction game in which

each SU has to solve a two-dimentional, non-continuous and
non-decomposable optimization problem, we do not have a
formal proof of the uniqueness of the NE and the convergence
under the best response update. However, our experiment
results show that the convergence is achieved in the vast
majority of cases (cf. Section V-C).

C. The two-level game model

To get more insight on the structure of the auction game,
we introduce and analyze in this subsection the following two-
level game model: the lower level bidding game under fixed
PU setting (Definition 1) and the higher level PU selection
game (Definition 2).

Definition 1. Given a fixed PU settinga = {ai, i ∈ M},
the bidding game, denoted asGB

NSA(a) and GB
NPA(a)

for the SINR and power auction respectively, is a tuple
(M,A, {Si, i ∈ M}), where the SU setM is the player set,
A = [0, +∞)M is the strategy set,{Si} is the utility function
set with Si being the surplus function. Each player (SU)i
selects its strategy (bid)bi ≥ 0 to maximize its utilitySi.

The above defined bidding game can be analyzed in the
same way as the single-PU bidding game presented in [10]
with the following result on the NE.

Lemma 4. For the SINR auction (for the power auction under
the approximation (5)) withβn > 0, ∀n ∈ N , there exists a
threshold price vectorπsb

th(a) (πpb
th(a)) such that there exists

a NE to which the best response update converges if the price
vectorπ > πsb

th(a) (π > πpb
th(a)), there is no NE otherwise.

Proof: The proof for the SINR auction follows immedi-
ately from Theorem 1 and Proposition 6 in [10]. For the power
auction, we show that under the condition in the lemma, the
best response function has the same structure as that in the
SINR auction in [10] whose convergence to NE is proven
(Theorem 1 in [10]). To this end, recall that under (5), the
utility function can be written as

Si = Ui(γi) −
πgi0Ii

hii

γi,

whereIi is independent ofbi. For each SUi, we can solve
the best responsebi = B(b−i) as follows:




bi = +∞ if π ≤ hii

Iigi0
U ′

i(
Pai

hii

n0Bai
giai

)

π =
hiiU

′

i(γi)
Iigi0

if hii

Iigi0
U ′

i(
Pai

hii

n0Bai
giai

) < π < hii

Iigi0
U ′

i(0)

bi = 0 if π ≥ hii

Iigi0
U ′

i(0)

(6)

Noticing the structural similarity between (6) and (22) in [10],
we can establish the existence of NE and the convergence to
the NE under the best response update (6).

Definition 2. The PU selection game, denoted asGPU
NSA and

GPU
NPA for the SINR and power auction respectively, is a tuple

(M,A = {Ai}, {Ŝi, i ∈ M}), whereM is the player set,

Ai = N is the strategy set of SUi, the utility function of
SU i is defined asŜi(ai, a−i) , Si(a,b∗) where b∗(a) =
{b∗i (a), i ∈ M} denotes the NE of the bidding game under
the PU settinga. Each player (SU)i selects its strategy (PU)
ai ∈ N to maximize its utilityŜi.

To analyze the PU selection game, we write the optimization
problem of each SUi as

max
ai

Ŝi(ai, a−i) = max
ai

Si(a,b∗(a)).

Noticing that in the bidding game under PU settinga, it holds
that Si(a,b∗(a)) = maxbi

Si(ai, bi), we thus have

max
ai

Ŝi(ai, a−i) = max
ai

max
bi

Si(ai, bi),

which, according to Lemma 1, is the same optimization
problem as for the global auction game analyzed previously.
Hence, we can map the NE of the PU selection game and the
corresponding bidding game to the NE of the global auction
game, as stated in the following theorem.

Theorem 3. Any (pure) NE of the auction game can be
mapped to a (pure) NE of the PU selection gamea∗ and
the corresponding NE of the bid gameb∗(a∗) under the PU
settinga∗, i.e., any pure NE of the power auction game can
be expressed ass∗ = (a∗

i , b
∗
i (a

∗), i ∈ M).

By decomposing the global auction game into the PU
selection game and the bidding game, we introduce a two-level
architecture into the spectrum auction problem, in which the
higher level PU selection game is a finite strategy game. This
hierarchicalization can help us analyze the spectrum auction
in more complex scenarios, as explored in the next section.

IV. SPECTRUM AUCTION WITH FREE SPECTRUM BANDS

Until now, we have analyzed the spectrum auction game in
which the unlicensed SUs purchase spectrum ressource from
licensed PUs. In this section, we extend our auction framework
to the more challenging scenario with free spectrum bands. In
such context, the SUs have the choice between accessing the
licensed spectrum bands owned by PUs which is charged as a
function of the enjoyed SINR or received power at PUs, and
switching to the unlicensed spectrum bands which are free
of charge but become more crowded when more SUs operate
in these spectrum bands. Consequently, the SUs should strike
a balance between accessing the free spectrum bands with
probably more interference and paying for communication
gains by staying with the licensed bands. In the subsequent
study, we assume that there is one free spectrum band available
for all SUs. The extension to multiple free band case is
straightforward.

We start with the SINR auction. In the new scenario
with a free band, we define the spectrum band setN =
{1, · · · , N, N + 1} where band1 to N are the licensed bands
processed by PU1 to N , bandN + 1 denotes the free band
with bandwidthBN+1. Compared with the previous analysis
without free spectrum band, each SUi has an additional choice
of switching to bandN + 1 and the corresponding utility is

Si(N + 1) = Ui(γi), (7)

whereγi is the SINR of SUi. It is obvious to see that all SUs
operating atBN+1 transmits at its maximum power, denoted
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aspmax
j , j ∈ M, to maximize their utility. Hence

γi =
pmax

i hii

n0BN+1 +
∑

j 6=i,aj=N+1 pmax
j hji

.

From Corollary 1, each SUi faces the choice of accessing
the licensed band with minimum effective price and the free
band N + 1. As in Definition 1 and 2, we can define the
corresponding PU selection game and bidding game in the
new context6. The PU selection game is a finite strategy game
and hence has at least one pure or mixed NE. By performing
the same analysis as that in Section III-C, we can establish a
mapping between a NE of the auction game and a NE of the
PU selection game in the new context.

We then address the problem of how to reach a NE of the PU
selection game, which is also a NE of the global auction game.
We first notice that the myopic best response update in the PU
selection game is not guaranteed to converge to a NE. In fact,
during the course of PU selection, the SUs may notice that the
utility of accessing a licensed spectrum is higher than staying
in the free spectrum, and thus switch to the licensed spectrum
accordingly. Since the SUs do this simultaneously, the free
spectrum becomes under-loaded and the SUs will switch back
to the free spectrum in the next iteration. This phenomenon,
in which a player keeps switching between two strategies, is
known as ping-pong effect.

To eliminate the ping-pong effect, we develop an algorithm
based on the no-regret learning to converge to a correlated
equilibrium (CE) of the PU selection game, which is shown
to be a CE of the global auction game, too. Before presenting
the proposed algorithm, we first provide a brief introduction
on CE and no-regret learning.

A. Overview of correlated equilibrium

The concept of CE was proposed by Nobel Prize winner,
Robert J. Aumann [5], in 1974. It is more general than NE.
The idea is that a strategy profile is chosen randomly according
to a certain distribution. Given the recommended strategy,it
is to the players’ best interests to conform with this strategy.
The distribution is called CE, formally defined as follows.

Definition 3. Let G = (N , (Σi, i ∈ N ), (Si, i ∈ N )) be
a finite strategy game, whereN is the player set,Σi is the
strategy set of playeri and Si is the utility function ofi, a
probability distributionp is a correlated equilibrium ofG if
and only if∀i ∈ N , ri ∈ Σi, it holds that∑

r−i∈Σ−i

p(ri, r−i)[Si(r
′
i, r−i) − Si(ri, r−i)] ≤ 0, ∀r′i ∈ Σi,

or equivalently,∑

r−i∈Σ−i

p(r−i|ri)[Si(r
′
i, r−i) − Si(ri, r−i)] ≤ 0, ∀r′i ∈ Σi.

The second formula means that when the recommendation to
player i is to choose actionri, then choosing actionr′i 6= ri

cannot lead to a higher expected payoff toi.

The CE set is nonempty, closed and convex in every finite
strategy game. Moreover, every NE is a CE and corresponds

6For the free band, there is no bidding game, or alternertively, we can
define a dumb bidding game for the free band, at the NE of which each SU
choosing the free band submits0 as bid and the utility is given by (7)

to the special case wherep(ri, r−i) is a product of each
individual player’s probability for different actions, i.e., the
play of the different players is independent.

B. Overview of no-regret learning

The no-regret learning algorithm [4] is also termed regret-
matching algorithm. The stationary solution of the no-regret
learning algorithm exhibits no regret and the probability of
choosing a strategy is proportional to the “regret” for not
having chosen other strategies. For any two strategiesri 6= r′i
at any timeT , the regret of playeri for not playingr′i is

RT
i (ri, r

′
i) , max(DT

i (ri, r
′
i), 0), (8)

where

DT
i (ri, r

′
i) ,

1

T

∑

t≤T

(St
i (r

′
i, r−i) − St

i (ri, r−i)). (9)

DT
i (ri, r

′
i) has the interpretation of average payoff that

player i would have obtained, if it had playedr′i every time
in the past instead ofri. RT

i (ri, r
′
i) is thus a measure of the

average regret. The probability that playeri choosesri is a
linear function of the regret. For every periodT , define the
relative frequency of players’ strategyr played till T periods
of time as follow:

zT (r) ,
1

T
N(T, r),

whereN(T, r) denotes the number of periods beforeT that
the players’ strategy isr. As an important property,zT is
guaranteed to converge almost surely (with probability one)
to a set of CE in no-regret learning algorithm.

C. Proposed algorithm based on no-regret learning

In this subsection, we develop an algorithm (Algorithm 2)
based on no-regret learning and prove its convergence to a CE
of the SINR auction game.

Algorithm 2 No-regret learning algorithm: SINR auction
Initialization: For each SUi, let p denote a random number
between0 and 1 and a∗

i = minn∈N πngin (if ai is not
a singleton, randomly choose one), setp0

ai=a∗

i
= p and

p0
ai=N+1 = 1−pai

. Let T0 be a sufficient iteration duration.
for t = kT0, k = 1, 2, 3, · · · do

Select spectrumai with probability pt
i(ai) and use best-

response update to converge to the NE of the bidding
game.
When the NE is achieved after sufficient time, update the
average regretRt

i.
Let at

i denote the spectrum which SUi selects for
iteration t, let µ be a large constant, calculatept+1

i as:{
pt+1

i (ai) = 1
µ
Rt

i, ∀ai ∈ N , ai 6= at
i

pt+1
i (ai) = 1 −

∑
n∈N ,n6=at

i
pt+1

i (n), ai = at
i

end for

Theorem 4. There exists a threshold price vectorπth such that
if the price vectorπ > πth, the proposed algorithm converges
surely to a CE of the SINR auction game.

Proof: It follows from the structure of the bidding game
that a threshold price vectorπth exists such that if the
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price vectorπ > πth, the convergence to the NE of the
bidding game is guaranteed under the given spectrum setting.
It then follows from the convergence property of the no-regret
learning that the proposed algorithm converges surely to a CE
of the PU selection game, denoted asp, i.e.,

∑

aj∈N ,j∈M,j 6=i

p(a−i|ai)[Si((a
′
i, b

′
i
∗
), (a−i, b

′
−i

∗
))−

Si((ai, b
∗
i ), (a−i, b

∗
−i))] ≤ 0, ∀a′

i ∈ N ,

where b∗i and b′∗i is the strategy of SUi at the NE of
the bidding game under the spectrum setting(ai, a−i) and
(a′

i, a−i), respectively. It follows from the NE definition of
the bidding game that

Si((a
′
i, b

′
i
∗
), (a−i, b

′
−i

∗
)) = max

γi

Ui(γi) − πa′

i
gia′

i
γi.

On the other hand, we have

Si((a
′
i, b

′
i), (a−i, b

∗
−i)) ≤ max

γi

Ui(γi) − πa′

i
gia′

i
γi, ∀b′i ≥ 0.

Hence, it holds that
∑

aj∈N ,j∈M,j 6=i

p(a−i|ai)[Si((a
′
i, b

′
i), (a−i, b

∗
−i))−

Si((ai, b
∗
i ), (a−i, b

∗
−i))] ≤ 0, ∀a′

i ∈ N , ∀bi ≥ 0,

indicating thatp is also a CE of the SINR auction game.
As a desirable property, Algorithm 2 can be implemented

distributedly such that each SUi only needs to know the
price vectorπ, its own channel gainhii and that betweenSi

and each PUn gin. The best response update of the bidding
game can be implemented distributedly at each SUi based
on the knowledge ofhii and gin, the measurement ofn0

and the SINRγi, as detailed in [10]. We then show that the
average regret can be calculated at each SU without any other
information. Noticing (9) and recall the utility function of the
PU selection game in Definition 2, it suffices to show that
at each iterationt, Γt

i(a
t
i, a

t
−i) ,

∑
k≤t Ŝi(a

t
i, a

k
−i), ∀at

i ∈ N
can be calculated distributedly.

In fact, at each iterationk, Ŝi can be calculated as

Sk
i =

{
Ui(

hiip
max
i

I
N+1

i

) at
i = N + 1

Ui(γ
∗
iat

i

) − πat
i
giat

i
γ∗

iat
i

at
i 6= N + 1

,

whereγ∗
iat

i

= U ′−1
i (πat

i
giat

i
), IN+1

i is the interference expe-
rienced by SUi when choosing the free band, which can be
measured locally.Γt

i can then be calculated by induction as

Γt
i =

{
U t

i (a
t
i, a

t
−i) t = 1

Γt−1
i (at

i, a
t−1
−i ) + U t

i (a
t
i, a

t
−i) t > 1

.

Consequently, the average regret can then be calculated
based on only local measurement, which leads to the entirely
distributed implementation of the proposed algorithm.

For the power auction, a similar distributed algorithm based
on no-regret learning can be derived with convergence to a CE.

V. SIMULATION ANALYSIS

In this section, we conduct simulations to evaluate the per-
formance of the proposed auction framework and demonstrate
some intrincical properties of the proposed auction framework,
especially the fairness and efficiency, which are not explicitely
addressed in the analytical part of the paper. After presenting
the simulation setting, we introduce a reference power alloca-
tion scheme, called NAIVE, to which our proposed auction
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Fig. 1. Simulation setting

mechanisms are compared. In the first set of simulations,
we consider an illustrative scenario to compare the SINR,
power auctions with the NAIVE scheme. In the second set of
simulations, we focus on the power auction in realistic network
configurations with and without free spectrum band.

A. Simulation parameters and reference scheme

In our simulations, we consider a network of two PUs and
multiple SUs (transmitter-receiver pairs). PUs can be seenas
two access points or base stations covering two hexagonal
cells, as shown in Figure 1. They can accept a certain amount
of interference while allowing SUs to communicate during
uplink PU transmissions.

In all simulations, we setBn = 5 MHz and Pn = 2n0Bn

∀n. We adopt a typical urban path-loss model (C2 NLOS
WINNER model [15] for WiMAX) with carrier frequency
fc = 3.5 GHz and path-loss exponentα = 3.5. Shadowing
effect is neglected.

In order to show the performance gain brought by our
solutions, we introduce a reference power allocation scheme
termed NAIVE. In NAIVE, SUs choose the furthest PU based
on the knowledge of channel gainsgin

7. Each PUn then
allocates powerpi = Pn/(Mngin) to SU i choosing it, where
Mn is the number of SU choosing PUn. In the scenario with
a free band, the SUs in the NAIVE scheme switch to the
free band with certain probabilitypfree (we analyze the cases
pfree = 1/2 andpfree = 1/3). This simple scheme serves as
the reference scheme for performance comparison.

B. Illustrative example: SINR and power auctions

We start with an illustrative example to compare the SINR,
power auctions and the NAIVE scheme. We consider the fixed
network configuration illustrated in Figure 1 with two PUs and
four SUs withθi ∈ [1, 20], ∀i. There is no free band in this
example. The pricesπ1 = π2 are optimized by dichotomy8.

We study the dynamics of the spectrum acution game
under the best-response update. In the SINR auction, each
SU chooses the PU with the minimum effective price (cf.
Corollary 1) and then iteratively adjust its bid. Figure 2 (left)
shows the convergence of allocated power to SUs. After about
40 iterations, convergence is reached. Compared with the

7The rationale of the choice is that choosing the furthest PU causes the
least interference at the PU.

8Recall that the more competitive scenario where the PUs set their prices
to maximize their revenue consists of a significant extension of the current
work and is left for future studies.
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Fig. 3. Average utility per SU (left) and Jain’s fairness index calculated
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SINR auction where the choice of PU is done at the very
first iteration and is not modified afterwards, in the power
auction, the effective price is given by Lemma 3. As one part
of the effective price,Ii changes from one iteration to another
depending on the strategy of other SUss−i, thus the choice
of PU may also vary from one iteration to another. However,
as shown in Figure 2 (right), the final allocated power of each
SU converges after about10 iterations and the choice of PU is
stablized. Compared with the SINR auction, the power auction
converges in a faster but less smooth way.

In Figure 3, we focus on the efficiency and fairness of
the considered schemes by studying the average utility per
SU and the Jain’s fairness index [16]. The Jain’s index is
computed based on the normalized utilityUi/θi. From the
results, we observe that the SINR auction and the NAIVE
scheme have almost the same average utility, but the SINR
auction outperforms significantly the NAIVE scheme in terms
of fairness. The power auction, on the other hand, has a very
good performance in terms of both efficiency and fairness.

C. Realistic experiment: power auction

We now turn to more realistic scenarios. We focus on the
power auction as it achieves the best performance in the
above illustrative exemple. The power auction is also more
natural and realistic in that SUs pay for the interference
they create to PUs instead of the SINR they get as in the
SINR auction. In our simulation, the transmitters of SUs are
randomly located in each of the two cells. the receivers are
randomly drawn in a disk with radius100m whose center is
the corresponding transmitter. We run Monte Carlo simulations
with 1000 snapshots. At each snapshot, SU locations are
randomly drawn withθi randomly drawn in[1, 20].
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1) Convergence:As explained in Section III-B, the best-
response update is not guaranteed to converge. We thus study
the convergence probability. We consider that the convergence
is achieved if the best-response update in the power auction
converges within100 iterations, otherwise we consider that
the auction does not converge. Figure 4 shows the probability
of convergence as a function of the number of SU under this
criterion: in the vast majority cases (more precisely, in more
than95% cases), convergence is achieved. In the subsequent
simulations, in case of non-convergence, the results are based
on the allocated power values after100 iterations.

2) Load balancing: Figure 5 shows a scenario in which
PU 1 fixes its priceπ1 = 1030 and PU 2 varies its priceπ2

in the range[1025, 1035]. The total number of SUsM is set
to 40. As shown in the figure, the number of SUs choosing
PU 1 increases withπ2. The results demonstrate the benefit
of the proposed power auction framework in load balancing
by adjusting the prices of PUs. This feature is obviously not
possible in NAIVE.

3) Efficiency and fairness:We now focus on two key
performance metrics: efficiency and fairness. To this end, we
compare the power auction and the NAIVE scheme in terms
of average utility per SU and the Jain fairness index in two
configurations. In the first configurationM/2 system, half of
SUs are geographically located in cell 1 and the other half in
cell 2. In the second configurationM-2 system, the number
of SUs in cell 2 is constant (M2 = 2), while the number
of SU in cell 1 is variable in cell 1 (M1 = M − 2). The
two configurations represent two typical network scenarios,
the balanced one with a homogeneous distribution of SUs and
the unbalanced one with a heterogeneous distribution of SUs.
As for the illustrative example, we setπ1 = π2 and choose
the price by dichotomy for the given number of SUs.

Figure 6 (left) shows that the average utility per SU is
almost the same in the two configurations in the power auction
(see the M/2=M-2 MultiPU Power curve in the figure) and is
always higher than that in the NAIVE scheme. Figure 7 shows
that the Jain fairness index (calculated in the same way as in
the illustrative example) of power auction is always above that
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Fig. 7. Fairness comparison in balanced (M/2) and unbalanced (M-2) scenario
between power auction and NAIVE

of NAIVE. In particular, in the unbalanced scenario, the power
auction outperforms significantly the NAIVE scheme.

4) Power auction with a free band:We now study the
power auction and the proposed no-regret learning algorithm
(Section IV-C) by introducing a free band of5 MHz. pmax

i =
20 dBm, ∀i ∈ M. In the simulation, SUs in the NAIVE
scheme choose the free band with probabilitypfree = 1/2
or pfree = 1/3 and emit at the maximum powerpmax

i . The
power allocation of SUs staying in licensed bands follows the
same way as in the scenario without free band.

Figure 6 (right) shows the average utility of the power
auction and NAIVE. As can be observed, compared with the
scenario without free band, the average utility in NAIVE is
slightly degraded even a new band is introduced. In contrast,
the no-regret learning algorithm results a higher utility when
the free band is added. Consequently, the utility gap between
the power auction and NAIVE is more significant in the
scenario with free band. Furthermore, we observe the con-
vergence of the no-regret learning algorithm. Figure 8 shows
the evolution of the number of SUs choosing PU1, PU2 and
the free band forM = 50. The results demonstrate the benefit
of the proposed no-regret learning algorithm to converge toan
equilibrium with reasonable network efficiency in a distributed
fashion.

VI. CONCLUSION

In this paper, we proposed an auction framework for cog-
nitive radio networks to allow unlicensed SUs to share the
available spectrum of licensed PUs, subject to the interfer-
ence temperature constraint at each PU. We provided an in-
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Fig. 8. Evolution of number of SUs choosing PU1, PU2 and the free band

depth analysis on the resulting multiple-PU multiple-SU non-
cooperative auction game. We then extended the proposed
auction framework to the more challenging scenario with
free spectrum bands by developing an algorithm based on
no-regret learning to reach a CE of the auction game. The
proposed algorithm, which can be implemented distributedly
based on local observation, is especially suited in decentralized
adaptive learning environments as cognitive radio networks.
The simulation results demonstrate the effectiveness of the
proposed auction framework in achieving high efficiency and
fairness in spectrum allocation.

As stated in the paper, a significant extension of our work
is to study the more competitive Stackelberg game in which
PUs choose their prices to maximize their revenue. Studying
the efficiency of the spectrum auction in that scenario is the
subjet of our on-going work.
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