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Stéphan Clémençon∗
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Abstract

In this paper we describe a novel approach to the study of U -statistics in the
markovian setup, based on the (pseudo-) regenerative properties of Harris Markov
chains. Exploiting the fact that any sample path X1, . . . , Xn of a general Harris
chain X may be divided into asymptotically i.i.d. data blocks B1, . . . , BN of ran-
dom length corresponding to successive (pseudo-) regeneration times, we introduce
the notion of regenerative U -statistic ΩN =

∑
k 6=l ωh(Bk,Bl)/(N(N − 1)) related to a

U -statistic Un =
∑

i 6=j h(Xi, Xj)/(n(n − 1)). We show that, under mild conditions,
these two statistics are asymptotically equivalent up to the order OP(n−1). This result
serves as a basis for establishing limit theorems related to statistics of the same form
as Un. Beyond its use as a technical tool for proving results of a theoretical nature,
the regenerative method is also employed here in a constructive fashion for estimat-
ing the limiting variance or the sampling distribution of certain U -statistics through
resampling. The proof of the asymptotic validity of this statistical methodology is
provided, together with an illustrative simulation result.
Keywords and phrases: Markov chain, regenerative process, Nummelin splitting
technique, U -statistics, Hoeffding decomposition, limit theorems, Berry-Esseen in-
equality, regenerative block-bootstrap.
AMS 2000 Mathematics Subject Classification: 62M05, 62F10, 62F12.

1 Introduction

Whereas the asymptotic properties of U -statistics based on independent and identically
distributed data are well understood since the sixties (see Chapter 5 in [39] and the
references therein), the study of this specific class of statistics, generalizing sample means,
for dependent data has recently received special attention in the statistical literature, see
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[21, 4, 14, 15, 20] for instance. Indeed, this class includes numerous statistics widely used in
practice such as the sample variance, and many other statistics may be well approximated
by a U -statistic. The problem of extending classical limit theorems for U -statistics in the
i.i.d. setup to the weakly dependent framework is generally tackled by means of coupling
techniques. Through this approach, under adequate mixing assumptions, the limiting
behavior of a U -statistic

∑
i6=j h(Xi, Xj) computed from a stationary weakly dependent

sequence X1, . . . , Xn may be deduced from that of a certain counterpart
∑

i6=j h(X
′
i, X

′
j)

based on an i.i.d. sequenceX ′
1, . . . , X

′
n with the same one-dimensional marginal µ. Hence,

coupling is the main tool used until now for deriving asymptotic results of dependent U -
statistics. Precisely, the Law of Large Numbers (LLN) has been established in [1] in the
case when the kernel h(x, y) is bounded and, in addition, either the stochastic process is
β-mixing (or absolutely regular in other terms) or else h(x, y) is continuous µ⊗ µ-almost
surely, while the general situation of unbounded kernels is handled in [14, 15]. The Central
Limit Theorem (CLT) for U -statistics based on data drawn from a β-mixing stationary
ergodic process has been established in [45]; see also a refinement in [21]. An extension to
the case of U -statistics of Lipschitz functionals of a β-mixing process has been subsequently
considered in [22], and in [16] with a weakened continuity assumption.

The purpose of this paper is to develop an alternative to the coupling methodology,
specifically tailored for regenerative processes or stochastic processes for which a regen-
erative extension may be built, namely pseudo-regenerative processes, see [43, 28]. This
includes the important case of general Harris Markov chains on which the present study
focuses. Indeed, sample paths of a Harris chain may be classically divided into i.i.d. regen-
eration blocks, namely data segments between random times at which the chain forgets its
past, termed regeneration times. Hence, many results established in the i.i.d. setup may
be extended to the markovian framework by applying the latter to (functionals of) the
regeneration blocks. Refer to [33] for the Strong Law of Large Numbers and the Central
Limit Theorem, as well as [13, 31, 32, 6] for refinements of the CLT; see also [19, 11]
for moment and deviation inequalities. This approach to the study of the behavior of
Markov chains based on renewal theory is known as the regenerative method, see [42]. In
the present article, we develop further this view, in order to accurately investigate the
asymptotic properties of U -statistics of positive Harris chains. Our approach crucially
relies on the notion of regenerative U -statistic approximant of a markovian U -statistic.
As the approximant is itself a standard U -statistic based on regeneration blocks, classical
theorems apply to the latter and consequently yield the corresponding results for the orig-
inal statistic. This way, a Strong Law of Large Numbers, a Central Limit Theorem and
a Berry-Esseen bound (where the constant involved can be possibly explicitly bounded)
are established for markovian U -statistics under weak hypotheses. We also examine the
question of studentizing markovian U -statistics in connection with the construction of
confidence intervals. Following in the footsteps of [7, 9], regeneration data blocks or ap-
proximants of the latter are used here in a practical fashion for computing a consistent
estimate of the limiting variance. Beyond gaussian asymptotic confidence intervals, we
propose to bootstrap certain markovian U statistics, using the specific resampling proce-
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dure introduced in [7] producing bootstrap data series with a renewal structure mimicking
that of the original chain. The asymptotic validity of the (approximate) regenerative
block-bootstrap of U -statistics is rigorously established. For illustration purpose, some
simulation results are displayed.

The rest of the paper is organized as follows. In Section 2, notation and the main as-
sumptions are first set out. The conceptual background related to the renewal properties
of Harris chains and the regenerative method is briefly exposed, together with some im-
portant examples of U -statistics in the markovian setup. The adaptation of the projection
method to our framework, leading to the notion of regenerative Hoeffding decomposition, is
tackled in Section 3 as a preliminary step to proving consistency and asymptotic normal-
ity of markovian U -statistics in the general positive recurrent case. Further limit results
are also given, together with some hints to establish moment and probability inequalities.
Section 4 is dedicated to the studentization of markovian U -statistics for the purpose of
building confidence intervals and to the extension of the (approximate) regenerative block-
bootstrap in the U -statistics setup. Finally, our methodology is illustrated on a simulation
example in Section 5. Technical proofs are deferred to the Appendix.

2 Theoretical background

We start off with setting out the notations needed in the sequel and then briefly recall the
concepts related to the Markov chain theory that shall be used in the subsequent analysis.

2.1 Notation and primary assumptions

Throughout the article, X = (Xn)n∈N denotes a ψ-irreducible1 time-homogeneous Markov
chain, valued in a measurable space (E, E) with transition probability Π(x, dy) and initial
distribution ν (refer to [36] for an account of the Markov chain theory). In addition, Pν

denotes the probability measure on the underlying space such that X0 ∼ ν, we write Px

when considering the Dirac mass at x ∈ E. The expectations under Pν and Px will be
denoted by Eν [.] and Ex[.] respectively, the indicator function of any event A by IA. We as-
sume further that the chain X is Harris recurrent, meaning that the chain visits an infinite
number of times any subset B ∈ E such that ψ(B) > 0 with probability one whatever the
initial state, ψ being a maximal irreducibility measure, i.e. Px(

∑
n≥1 I{Xn∈B} = ∞) = 1,

for all x ∈ E.
1Let ψ be a positive measure on a countably generated measurable space (E, E). Recall that a Markov

chain X with state space E is said ψ-irreducible if and only if, for all B ∈ E , the chain visits the subset B
with strictly positive probability as soon as ψ(B) > 0 whatever the initial state, i.e. ∀x ∈ E,

P
n≥1 Px(Xn ∈

B) > 0. Moreover, an irreducibility measure is said maximal if it dominates any other irreducibility
measure. Such a measure always exists for an irreducible chain, see Theorem 4.0.1 in [33].
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2.2 (Pseudo-) Regenerative Markov chains

Within this framework, a Markov chain is said to be regenerative when it possesses an
accessible atom, i.e., a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all
(x, y) ∈ A2. Denote then by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A,
by τA(j) = inf {n > τA(j − 1), Xn ∈ A} , for j ≥ 2, the successive return times to A, by
PA[.] the probability measure on the underlying space such that X0 ∈ A and by EA[.] the
PA-expectation.

In the atomic case, it follows from the strong Markov property that the blocks of
observations in between consecutive visits to the atom

B1 = (XτA(1)+1, ..., XτA(2)), . . . , Bj = (XτA(j)+1, ..., XτA(j+1)), . . . (1)

form a collection of i.i.d. random variables, valued in the torus T = ∪∞n=1E
n, and the

sequence {τA(j)}j≥1, corresponding to successive times at which the chain forgets its past,
is a (possibly delayed) renewal process. We point out that the class of atomic chains is
not as restrictive as it seems at first glance. It contains all chains with a countable state
space (any recurrent state is an accessible atom), as well as many specific Markov models
arising from the field of operations research, see [2] for instance.

In the regenerative setting, all stochastic stability properties may be expressed in terms
of speed of return to the atom. For instance, the chain is positive recurrent2 if and only
if the expected return time to the atom is finite, i.e. EA[τA] <∞, see Theorem 10.2.2 in
[33]. Its invariant probability distribution µ is then the occupation measure given by

µ(B) =
1

EA[τA]
EA

[
τA∑
i=1

I{Xi∈B}

]
, for all B ∈ E . (2)

There loosely exists no such accessible atom in the general Harris case. However, it is
always possible to go back to the regenerative setup. It is indeed possible to construct an
artificial regeneration set through the Nummelin splitting technique, see [34]. This relies
on the following condition referred to as minorization condition:

∀(x,B) ∈ E × E , Πm(x,B) ≥ s(x) · Φ(B), (3)

where m ∈ N∗, s : E → [0, 1[ is a µ-integrable function such that µ(s) =
∫
x∈E s(x)µ(dx)

and Φ(dx) is a probability measure on (E, E), denoting by Πm the m-th iterate of the
transition kernel Π. Recall that, as soon as µ is positive recurrent and E is countably
generated, it is always possible to find (m, s,Φ) such that condition (3) holds , see [34].
For simplicity, we assume that m = 1 here and throughout (notice that this framework

2Recall that an irreducible chain X with transition probability Π(x, dy) is said positive recurrent when
there exists a probability distribution µ that is invariant for the latter, i.e. µ(dy) =

R
x∈E

µ(dx)Π(x, dy). If
it exists, such a probability is unique and is called the stationary distribution, see Theorem 10.0.1 in [33].
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includes most examples encountered in practice, see [10]). Writing then the one-step
transition probability as a conditional mixture of two distributions

Π(x, dy) = s(x)Φ(dy) + (1− s(x))
Π(x, dy)− s(x)Φ(dy)

1− s(x)
, for all x ∈ E,

the Nummelin technique then consists in building a sequence Y = (Yn)n∈N of independent
Bernoulli r.v.’s such that (X,Y ) is a bivariate Markov chain, referred to as the split chain,
with state space E × {0, 1}, the marginal Y indicating whether the chain (X,Y ), and
consequently the original one, regenerates. Precisely, given Xn = x, Yn is distributed
according to the Bernoulli distribution of parameter s(x): if Yn = +1, which thus happens
with probability s(x), Xn+1 is then drawn from Φ(dy), otherwise it is distributed according
to (Π(x, dy)−s(x)Φ(dy))/(1−s(x)). This way, As = E×{1} is an accessible atom for the
split chain and the latter inherits all communication and stochastic stability properties
from the original chain. Notice finally that, when m > 1, the blocks determined by the
successive visits to E×{0, 1} are not independent any more, but 1-dependent (see §17.3.1
in [33]), a form of dependence that can also be handled, see [5].

2.3 The regenerative method

The regenerative method originates from [42] and has been thoroughly developed since
then in the purpose of investigating the properties of Markov chains. One may refer to
Chapter 17 in [33], for a systematic use of this approach with the aim to study averages
of instantaneous functionals of positive Harris chains, Sn(f) = n−1

∑n
i=1 f(Xi) where

f : E → R is a measurable mapping. Roughly speaking, the task is to exploit the
decomposition

Sn(f) =
1
n

τA∑
i=1

f(Xi) +
1
n

ln−1∑
j=1

f(Bj) +
1
n

n∑
i=1+τA(ln)+1

f(Xi), (4)

where f(Bj) =
∑τA(j+1)

i=1+τA(j) f(Xi) for j ≥ 1 and ln =
∑n

i=1 I{Xi∈A} is the number of
regenerations up to n, with the convention that empty summation equals to zero. This
may be viewed as the natural counterpart of the parameter µ(f) =

∫
x∈E f(x)µ(dx), which

we assume well-defined. As the f(Bj)’s are i.i.d. and ln/n → 1/EA[τA] almost-surely as
n → ∞ from basic renewal theory, standard limit theorems such as the SLLN, CLT or
LIL may be straightforwardly derived using classical results available in the i.i.d. setup.

We point out that, when dealing with higher order limit theorems or non asymptotic
results, applying the regenerative method involves in addition the use of a specific par-
titioning technique due to the fact that, for fixed n, the blocks B1, . . . , Bln−1 are not
independent, the sum of their lengths is indeed less than n. The partition actually corre-
sponds to all the possible ways for the chain of regenerating up to time n. Refinements of
the CLT for Sn(f) have been established this way, refer to [13] for a local Berry-Esseen the-
orem and [32, 6] for Edgeworth expansions. In [11], it is also shown how the regenerative
method yields sharp tail bounds for Sn(f).
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This approach has also been employed from a statistical perspective. In [3, 18], it is
used for investigating the consistency properties of certain delta estimators of the station-
ary and transition densities. A practical use of the decomposition into regeneration blocks
or approximate of the latter (see section 4) is at the center of a general methodology for
constructing bootstrap confidence intervals of µ(f) and extreme-value statistics, see [7, 9].
It is the major goal of this paper to extend the range of applicability of the regenerative
method to the study of the consistency properties of markovian U -statistics such as the
ones mentioned below. Beyond the asymptotic study, we shall also tackle here the question
of constructing gaussian and bootstrap confidence intervals based on such statistics.

We also point out that the use of the regenerative method is naturally not restricted
to the markovian setup, the latter applies to any stochastic process with a regenerative
extension.

2.4 U-statistics in the Markov setup - Examples

From now on, the chain X is assumed positive recurrent with limiting probability distri-
bution µ. We focus here on parameters of type

µ(h) =
∫

x1∈E
. . .

∫
xk∈E

h(x1, . . . , xk)µ(dx1) . . . µ(dxk), (5)

where k ≥ 2 and h : Ek → Rl is a measurable function, l ≥ 1, such that the quantity (5)
is well-defined. For simplicity’s sake, we shall restrict ourselves to the case where k = 2
and the kernel h(x, y) is symmetric, i.e. ∀(x, y) ∈ E2, h(x, y) = h(y, x). All results of
this paper straightforwardly extend to the general case. As in the i.i.d. setting, a natural
counterpart of (5) based on a sample path X1, . . . , Xn is given by

Un(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj). (6)

Many statistics widely used in practice fall within this class, among which popular disper-
sion estimators such as the following ones.

• The sampling variance. Suppose that E ⊂ R. Provided that
∫
x∈E x

2µ(dx) <∞,
a natural estimate of µ’s variance σ2

µ is

σ̂2
µ =

1
n− 1

n∑
i=1

(Xi − X̄n)2,

where X̄n = n−1
∑n

i=1Xi is the sample mean. It may be indeed rewritten as (6)
with h(x, y) = (x− y)2/2.
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• The Gini mean difference. The Gini index provides another popular measure
of dispersion. It corresponds to the case where E ⊂ R and h(x, y) = |x− y|:

Gn =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |.

Other important examples arise from the field of nonparametric testing. For instance,
the next markovian U -statistic may be considered when testing symmetry around zero for
the stationary distribution, following the example of the i.i.d. situation.

• The Wilcoxon statistic. Suppose that E ⊂ R is symmetric around zero. As
an estimate of the quantity

∫
(x,y)∈E2{2I{x+y>0} − 1}µ(dx)µ(dy), it is pertinent to

consider the statistic

Wn =
2

n(n− 1)

∑
1≤i<j≤n

{2 · I{Xi+Xj>0} − 1},

which is relevant for testing whether µ is located at zero or not.

Regarding analysis of extreme values in the multidimensional setup, it is noteworthy
that particular markovian U -statistics arise in the study of depth statistical functions for
dynamic systems.

• The Takens estimator. Suppose that E ⊂ Rd, d ≥ 1. Denote by ||.|| the usual
euclidian norm on Rd. In [14], the following estimate of the correlation integral,
Cµ(r) =

∫
(x,x′) I{||x−x′||≤r}µ(dx)µ(dx′) with r > 0, is considered:

Cn(r) =
1

n(n− 1)

∑
1≤i6=j≤n

I{||Xi−Xj ||≤r}.

In the case where a scaling law holds for the correlation integral, i.e. when there
exists (α, r0, c) ∈ R∗3

+ such that Cµ(r) = c · r−α for 0 < r ≤ r0, the U -statistic

Tn =
1

n(n− 1)

∑
1≤i6=j≤n

log
(
||Xi −Xj ||

r0

)

is used in order to build the Takens estimator α̂n = −T−1
n of the correlation dimen-

sion α.

Many other functionals that are relevant in the field of statistical analysis of marko-
vian data may also be approximated by U -statistics. It is the case of ratio statistics for
instance, such as the estimator of the extreme value index introduced in [9]. Some of the
results established in this paper are particularly useful for investigating their asymptotic
properties, see [12].

7



The reason for investigating asymptotic properties of markovian U -statistics naturally
arises from the ubiquity of the Markov assumption in time-series analysis. Additionally,
we point out that, in many cases, where no explicit closed analytical form for a distri-
bution µ of interest, allowing for direct computation or crude Monte-Carlo estimation of
the parameter (5), is available, the popular MCMC approach consists in considering the
target distribution µ as the limiting probability measure of a positive recurrent Markov
chain, where simulation is computationally feasible. Statistical inference of µ’s features is
then based on a sample path of the chain with long runlength, which corresponds to the
asymptotic framework of this article. For instance, refer to [25] or [38] for recent accounts
of the Markov Chain Monte-Carlo methodology.

3 Asymptotic theory of markovian U-statistics

Throughout this section, we suppose that the chain X is regenerative, with an atom A and
denote by Bj the corresponding regeneration blocks of observations. All results carry over
to the general positive Harris case, using the Nummelin technique, see §2.2. As previously
mentioned, we confine the present the study to statistics of the form

Un(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj),

where h : R2 → R is a symmetric kernel. In the subsequent analysis, we investigate the
asymptotic properties of this statistic, as an estimator of the parameter

µ(h) =
∫

(x,y)∈E2

h(x, y)µ(dx)µ(dy), (7)

which we assume to be well defined, i.e. µ(|h|) < ∞. In the regenerative setup, the
parameter of interest may be rewritten as follows, cf Eq. (2):

µ(h) =
1
α2

· EA

τA(1)∑
i=1

τA(2)∑
j=1+τA(1)

h(Xi, Xj)

 , (8)

where α = EA[τA] denotes the mean cycle length.
Extensions to more general settings are straightforward, including non symmetric ker-

nels, U -statistics of higher order k > 2, V -statistics, as well as generalized U and V -
statistics. Owing to space limitations, details are omitted here.

3.1 Regenerative U-statistics

In the i.i.d. setup, a major tool in establishing the asymptotic theory of U -statistics is
the projection method, introduced in [27] and popularized in more general situations under
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the name of Hajek’s projection, see [26]. It consists in approximating the recentered U -
statistic by its orthogonal projection onto the space of averages of zero-mean i.i.d. random
variables, viewed as a subspace of the Hilbert space of centered square integrable r.v.’s,
under suitable moment assumptions. This way, limit results established for sums of i.i.d.
r.v.’s carry over to U -statistics, which enables the asymptotic theory of more general
functionals to be derived.

In the markovian context, the theory of sums of i.i.d. variables also yields the limit
distribution theory of sums

∑
i≤n f(Xi) via the regenerative method. Indeed, the original

average is approximated by an average of (asymptotically) i.i.d. block sums f(Bj), see
§2.3. In order to successively exploit these two approximation methods for investigating
the limit behavior of markovian U -statistics, we introduce the following notion.

Definition 1 (Regenerative kernel) Let h : E2 → R be a kernel. The regenerative
kernel related to h is the kernel ωh : T2 → R given by

ωh ((x1, . . . , xn), (y1, . . . , ym)) =
n∑

i=1

m∑
j=1

h(xi, yj),

for all x(n) = (x1, . . . , xn) and y(m) = (y1, . . . , ym) in the torus T = ∪n≥1E
n.

It is noteworthy that the kernel ωh is symmetric, as soon as h is. It will be useful in
the following to consider U -statistics based on regeneration data segments solely.

Definition 2 (Regenerative U-statistic) Let h : E2 → R be a symmetric kernel such
that µ(|h|) < ∞ and set h̃ = h − µ(h). A regenerative U -statistic related to the kernel h
is a U -statistic with kernel ωh̃:

RL(h) =
2

L(L− 1)

∑
1≤k<l≤L

ωh̃(Bk,Bl),

where L ≥ 1 and B1, . . . , BL are regeneration blocks of the chain X.

We point out that RL(h) is a standard U -statistic with mean zero. Hence, we may
consider its Hoeffding decomposition: RL(h) = 2SL(h) +DL(h), where

SL(h) =
1
L

L∑
k=1

h1(Bk) and DL(h) =
2

L(L− 1)

∑
1≤k<l≤L

h2(Bk,Bl),

with ∀(b1, b2) ∈ T2,

h1(b1) = E[ωh̃(b1,B1)] and h2(b1, b2) = ωh̃(b1, b2)− h1(b1)− h1(b2).

The U -statistic DL(h) is degenerate, i.e. its kernel satisfies: ∀b1 ∈ T, E[h2(b1,B1)] = 0.
Assuming that E[ω2

h(B1,B2)]/α2 =
∫
(x,y)∈E2 h

2(x, y)µ(dx)µ(dy) < ∞, its variance is of
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order 1/L2 and cov(h1(B1), h2(B1,B2)) = 0. The leading term in this orthogonal de-
composition is thus the average of i.i.d. random variables 2SL(h), when the conditional
expectation h1 is non zero. As L→∞, L−1/2RL(h) then converges in distribution to the
normal N (0, 4s2(h)), with s2(h) = E[h2

1(B1)]. One may refer to Chapter 5 in [39] for a
detailed account of the theory of U -statistics in the i.i.d. setting.

The following technical assumptions are involved in the subsequent analysis.

A0 (Block-length: moment assumption.) Let q ≥ 1, we have EA

[
τ q
A

]
<∞.

A1 (Block-sums: moment assumptions.) Let k ≥ 1, we have

EA


 τA∑

i=1

τA∑
j=1

|h(Xi, Xj)|

k
 <∞ and EA


 τA∑

i=1

τA(2)∑
j=1+τA

|h(Xi, Xj)|

k
 <∞.

A2 (Non-regenerative block.) Let l ≥ 1, we have Eν

[
τ l
A

]
<∞ as well as

Eν


 τA∑

i=1

τA∑
j=1

|h(Xi, Xj)|

l
 <∞ and Eν


 τA∑

i=1

τA(2)∑
j=1+τA

|h(Xi, Xj)|

l
 <∞.

A3 (Linear term: moment assumptions.) Let m ≥ 0, we have

Eν

[(
τA∑
i=1

h1(Xi)

)m]
<∞ and EA

( τA∑
i=1

h1(Xi)

)m+2
 <∞.

A4 (Uniform moment assumptions.) Let p ≥ 0, we have

sup
x∈E

Eν

 τA∑
j=1

h̄(x,Xj)

p <∞ and sup
x∈E

EA

 τA∑
j=1

h̄(x,Xj)

p+2 <∞,

where ∀(x, y) ∈ E2, h̄(x, y) = h(x, y)−
∫
z∈E h(x, z)µ(dz).

A5 (Non-degeneracy.) We have

EA

( τA∑
i=1

h1(Xi)

)2
 > 0.
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Notice that assumption A1 combined with A2 implies assumption A3 when k = m ≥ 1
by Jensen’s inequality. In a similar fashion, using in addition Fubini’s theorem, assumption
A4 implies A3 when p = m, since h1(x)/α =

∫
x∈E h(x, y)µ(dy) − µ(h) for all x ∈ E. In

the case where the kernel h is bounded, conditions A1 −A4 can be reduced to moment
assumptions related to the return time τA solely.

Remark 3 (On moment conditions) From a practical perspective, we recall that block-
moment assumptions can be generally checked for the split Markov chain by establishing
drift conditions of Lyapounov’s type for the original chain, see Chapter 11 in [33] and
[23], as well as the references therein. We also refer to [8] for an explicit checking of such
conditions on several important examples and to §4.1.2 for sufficient conditions formulated
in terms of uniform speed of return to small sets.

3.2 Consistency and asymptotic normality

We start off by stating the key result in deriving the asymptotic theory of markovian
U -statistics by means of the regenerative method. It reveals that the U -statistic Un(h)
can be approximated by the corresponding regenerative U -statistic based on the (random
number of) observed regeneration blocks up to a multiplicative factor.

Proposition 4 (Regenerative approximation) Suppose that assumptions A0 −A2

are fulfilled with q = k = l = 2. Set Wn(h) = Un(h)−µ(h)−(ln−1)(ln−2)Rln−1(h)/(n(n−
1)). Then, as n→∞, the following stochastic convergences hold:

(i) Wn(h) → 0, Pν-almost surely,

(ii) Eν

[
(Wn(h))2

]
= O(n−2).

This result yields the strong consistency of markovian U -statistics. The next theorem
is immediate, since the SLLN holds for the U -statistic RL(h).

Theorem 5 (Strong Law of Large Numbers) Suppose that assumptions A0 −A2

are fulfilled with q = k = l = 2. Then, as n→∞, we have:

Un(h) → µ(h), Pν-almost surely.

In a similar fashion, using the approximation result stated in Proposition 4, the CLT
applied to the supposedly non degenerate U -statistic RL(h) yields the analogous result for
markovian U -statistics.

Theorem 6 (Central Limit Theorem) Suppose that assumptions A0 −A2 with q =
k = l = 2 and A5 are fulfilled. Then, we have the convergence in distribution under Pν :

√
n (Un(h)− µ(h)) ⇒ N (0, σ2(h)), as n→∞,

where σ2(h) = 4EA

[
(
∑τA

i=1 h1(Xi))
2
]
/α3.
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Remark 7 (Stochastic stability assumptions) We point out that, in contrast to
results established by means of coupling techniques, stationarity is not required here and
moment assumptions involved in the theorem above are weaker than those stipulated in [21]
(whose results hold true however for a more general class of weakly dependent processes).
Indeed, though expressed in terms of β-mixing coefficients decay rate, the latter boil down to
conditions A0 −A2 with q, k and l all strictly larger than 2, refer to Chapter 9 in [37] for
a precise study of relationships between mixing conditions and block-moment assumptions.

Remark 8 (On the asymptotic variance) Observe that, for all x ∈ E, one may write

h1(x)/α =
∫
y∈E h(x, y)µ(dy)− µ(h)

def
= h0(x) by virtue of Kac’s formula (2). In addition,

it follows from the analysis carried out in §17.4.3 of [33] that the asymptotic variance of
Un(h) can be expressed as follows

σ2(h) = 4
∫

x∈E
{2ĥ0(x)h0(x)− h2

0(x)}µ(dx),

where ĥ0(x) = Ex[
∑∞

n=0 h0(Xi)] is the solution of the Poisson equation:

ĥ0(x)−
∫

y∈E
ĥ0(x)Π(x, dy) = h0(x), x ∈ E.

In the regenerative case, one may also take ĥ0(x) = Ex[
∑τA

i=1 h0(Xi)].

The next result concludes the subsection by showing that the distance of the markovian
U -statistic Un(h) to its asymptotic mean µ(h) is maximally of the order

√
log log n/n as

n→∞.

Theorem 9 (Law of Iterated Logarithm) Suppose that assumptions A0 −A2 with
q = k = l = 2 and A5 are fulfilled. Then,

lim sup
n→∞

√
n (Un(h)− µ(h))√
2σ2(h) log log n

= +1 Pν-almost surely .

3.3 Further asymptotic results

Here, we consider some refinements of the limit theorems stated in the previous subsection.
The first result shows that, as an estimator of µ(h), the bias of the U -statistic (6) is of
order O(n−1). In order to state it precisely, we consider the following technical conditions.

A6 (Cramer condition - linear term.) We have:

lim sup
t→∞

∣∣∣∣∣EA

[
exp

{
it

τA∑
i=1

h1(x)

}]∣∣∣∣∣ < 1.

12



A7 (Uniform Cramer condition.) We have:

sup
x∈E

lim sup
t→∞

∣∣∣∣∣EA

[
exp

{
it

τA∑
i=1

h̄(x,Xi)

}]∣∣∣∣∣ < 1,

where ∀(x, y) ∈ E2, h̄(x, y) = h(x, y)−
∫
z∈E h(x, z)µ(dz).

We point out that condition A6 (respectively, condition A6) is fulfilled as soon as there
exists no regular grid (i.e. grid of the form {a+b ·h : h ∈ Z} for (a, b) ∈ R2) that contains
the set {h1(x) : x ∈ E} (respectively, that contains the set {h̄(x, y) : (x, y) ∈ E2}).

Proposition 10 (Asymptotic bias) Suppose that assumptions A0 with q = 4 + δ for
some δ > 0, A1 with k = 2, A4 with p = 2, A6 and A7 are fulfilled. Then, as n → ∞,
we have:

Eν [Un(h)] = µ(h) + 2 · ∆ + φν − 2β/α+ γ

n
+O(n−3/2),

where ∆ = EA

[∑
1≤k<j≤τA

h(Xk, Xj)
]
/α, β = EA [τA

∑τA
i=1 h0(Xi)], φν = Eν [

∑τA
i=1 h0(Xi)]

and γ = EA[
∑τA

i=1(τA−j)h0(Xi)]/α, with h0(x) =
∫
y∈E{h(x, y)−µ(h)}µ(dx) for all x ∈ E.

Remark 11 (On asymptotic bias components) As may be shown by a careful exam-
ination of Lemma 19’s proof, the component ∆ of the first order term corresponds to the
contribution to the bias of the block-diagonal sum

∑ln−1
j=1

∑
1+τA(j)≤k<l≤τA(j+1) h(Xk, Xl),

φν to that of the sum
∑ln−1

j=1 ωh(B0,Bj) which involves the first (nonregenerative) data seg-
ment, −2β/α to the one of

∑
1≤j<k≤ln−1 ωh(Bj ,Bk), while the component γ is induced by

the quantity
∑ln−1

j=1

∑n
i=1+τA(ln) ωh(Bj , Xi) involving the last (nonregenerative) data block.

The next result provides a Berry-Esseen bound for the U -statistic (6), generalizing the
result obtained in [13] for sample mean statistics.

Theorem 12 (A Berry-Esseen bound) Under assumptions A0 with q = 2, A1 with
k = 2, A2 with l = 2, A3 with m = 3 and A5, there exists a constant K <∞ such that,
for all n ≥ 1:

sup
x∈R

∣∣Pν

{√
nσ(h)−1 (Un(h)− µ(h)) ≤ x

}
− Φ(x)

∣∣ ≤ Kn−1/2. (9)

The proof of the theorem above combines the Stein’s approach and the partitioning
technique mentioned in §2.3 to a Berry-Esseen bound for Markovian sample mean statistics
(see Theorem 17). Incidentally, it should be noticed that the latter result improves upon
that of [13], insofar as an estimate of the constant K involved in the upper bound obtained
by the proof technique we used can be exhibited (refer to Theorem 12’s proof in the
Appendix).
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It is not the purpose of this paper to extend all probabilistic results proved for i.i.d.
U -statistics to the markovian setup, but rather to illustrate, through the statement of
a few important theorems, how the regenerative method combined with the standard
projection technique enables a precise study of the asymptotic behavior of markovian U -
statistics. The same approach can be used for establishing a functional version of the
CLT for instance, as well as probability/moment bounds, following in the footsteps of
[11], even though these are not asymptotic results. However, we point out that proving
an Edgeworth expansion up to O(n−1) for Un(h), as in the case of sample mean statistics
(see [31, 6]), is not as straightforward. Even if one tries to reproduce the argument in
[6], consisting in partitioning the underlying probability space according to every possible
realization of the regeneration time sequence between 0 and n, the problem boils down to
control, as m→∞, the asymptotic behavior of the distribution

P

 ∑
1≤i6=j≤m

ωh(Bi,Bj)/σ2
U, m ≤ y,

m∑
j=1

l(Bj) = k

 ,

where l(Bj) = τA(j + 1) − τA(j) denotes the length of the block Bj , j ≥ 1. Precisely,
a local Edgeworth expansion of this probability distribution is required (analogous to
the one obtained by [24] in the case of the sample mean). The major barrier lies in the
simultaneous presence of the lattice component and the degenerate part of the U -statistics.
To our knowledge, no result of this type has been established in the literature and we leave
this question for further research.

4 Studentization and bootstrap confidence intervals

We now turn to the problem of constructing confidence intervals based on markovian
U -statistics or their regenerative versions.

4.1 Normalization of markovian U-statistics

Here we show how one may benefit from the underlying regenerative structure of the
data for computing a proper standardization of markovian U -statistics. This is of crucial
importance, insofar as it permits the construction of asymptotic (gaussian) confidence
intervals.

4.1.1 Regenerative case

Let L ≥ 1. Consider the empirical counterpart of the conditional expectation based on all
the first L regenerative data blocks, except Bj , j ∈ {1, . . . , L}:

ĥ1,−j(b) =
1

L− 1

L∑
k=1, k 6=j

ωh(b,Bk)−
2

L(L− 1)

∑
1≤k<l≤L

ωh(Bk,Bl), (10)
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as well as the Jacknife estimator of the asymptotic variance s2(h), see [17]:

ŝ2L(h) =
1
L

L∑
k=1

ĥ2
1,−k(Bk). (11)

We may now introduce the norming constant related to the U -statistic Un(h):

σ̂2
n(h) = 4 (ln/n)3 ŝ2ln−1(h). (12)

The next results shows that, equipped with this simple normalization, it is possible to con-
struct asymptotically pivotal quantities in order to produce limiting confidence intervals
for the parameter µ(h).

Proposition 13 (Studentization) Suppose that assumptions A0 −A2 with q = k =
l = 2 and A5 are fulfilled. Then, the next asymptotic results hold.

(i) The statistic σ̂2
n(h) is a strongly consistent estimator of σ2(h):

σ̂2
n(h) → σ2(h) Pν-almost-surely, as n→∞.

(ii) In addition, when recentered and renormalized by
√
n/σ̂2

n(h), the statistic Un(h) is
asymptotically normal:

√
n

σ̂n(h)
(Un(h)− µ(h)) ⇒ N (0, 1) in Pν-distribution as n→∞.

4.1.2 General case - the ”plug-in” approach

As pointed out in subsection 2.2, a positive Harris chain X possesses no regenerative
set in general. Even though it can be viewed as a marginal of a regenerative Nummelin
extension {(Xn, Yn)}n∈N built from parameters (s,Φ,m) of a minorization condition (3)
fulfilled by the original chain, it should be noticed that the split chain is a theoretical
construction and the Yn’s cannot be observed in practice. However, it has been suggested
in [7] to extend regeneration-based inference techniques the following way: generate first
a sequence (Ŷ1, . . . , Ŷn) from the supposedly known parameters (s,Φ) in a way that
((X1, Y1), . . . , (Xn, Yn)) and ((X1, Ŷ1), . . . , (Xn, Ŷn)) have close distributions in the
Mallows sense and then apply adequate statistical procedures to the data blocks thus
defined B̂1, . . . , B̂ bNn

(corresponding to the successive times when Ŷ visits the state 1), as
if they were really regenerative. Here we briefly recall the basic principle underlying this
approach.

For simplicity, we assume that condition (3) is fulfilled with m = 1 (see §2.2). Observe
first that, conditioned upon X(n) = (X1, . . . , Xn), the random variables Y1, . . . , Yn are
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mutually independent and, for all i ∈ {1, . . . , n}, Yi is drawn from a Bernoulli distribution
with parameter given by:

δ(Xi, Xi+1) = s(Xi)×
dΦ

dΠ(Xi, .)
(Xi+1), (13)

where dΦ/dΠ(x, .) denotes (a version of) the density of Φ(dy) with respect to Π(x, dy).
Suppose that a transition kernel Π̂(x, y) providing an accurate estimation of Π(x, dy) and
such that ∀x ∈ E, Π̂(x, y) ≥ δφ(y), is available. Given X(n), the construction of the
Ŷi’s boils down to drawing mutually independent Bernoulli random variables, the param-
eter of Ŷi’s conditional distribution being obtained by replacing the unknown quantity
dΦ/dΠ(Xi, .)(Xi+1) by its empirical counterpart dΦ/dΠ̂(Xi, .)(Xi+1) in (13). A more
detailed description of this plug-in approximation is available in [10] together with a dis-
cussion of numerical issues regarding its practical implementation. In particular, special
attention is paid to the problem of selecting the parameters (s,Φ) in a data-driven fash-
ion. As shown in [33] (see Chapter 5 therein), one may always choose s(x) of the form
s(x) = δ · I{x∈S} where δ ∈]0, 1[, S is a measurable set such that µ(S) > 0 in which
Φ’s support is included. Such a subset S is generally called a small set for the chain X.
Considering λ a measure of reference on (E, E) dominating the collection of probability
distributions {Π(x, dy), x ∈ E} and, consequently, the minorizing probability Φ(dy), one
may then re-write the Bernoulli parameters as δ(x, y) = δI{x∈S}×dφ/dπ(x, y), (x, y) ∈ S2,
where π(x, .) = dΠ(x, .)/dλ and φ = dΦ/dλ.

The accuracy of the resulting approximation, measured in terms of Mallows distance
between the random vectors (Y1, . . . , Yn) and (Ŷ1, . . . , Ŷn), mainly depends on the quality
of the transition density π̂(x, y) = dΠ̂(x, .)/dλ(y) as an estimate of π(x, y) over S2. A
sharp bound, based on a coupling argument, is given in Theorem 3.1 of [7] under the
following assumptions.

A8. The Mean Squared Error of π̂ is of order αn when error is measured by the sup-norm
over S2:

Eν

[
sup

(x,y)∈S2

|π̂(x, y)− π(x, y)|2
]

= O(αn),

where (αn) denotes a sequence of nonnegative numbers decaying to zero at infinity.

A9. The parameters S and Φ of condition (3) are chosen so that: infx∈S φ(x) > 0.

A10. We have sup(x,y)∈S2 π(x, y) <∞ and supn∈N sup(x,y)∈S2 π̂n(x, y) <∞ Pν-a.s. .

In addition, the following hypotheses guarantee that block-length moment assumptions
hold for the split chain, see Chapter 11 in [33] (notice that the latter do not depend on
the chosen small set S). Consider the hitting time to the set S: τS = inf{n ≥ 1, Xn ∈ S}.

A11. Let q ≥ 1, we have: supx0∈S Ex0

[
τ q
S

]
<∞.

16



A12. Let l ≥ 1, we have: Eν

[
τ l
S

]
<∞.

In the general case, the plug-in approach to Un(h)’s standardization thus consists in
computing the quantities (10), (11) and (12) by using the pseudo-blocks B̂1, . . . , B̂ bNn

instead of (X,Y )’s regeneration blocks. We denote by σ̃2
n(h) the resulting estimate of the

asymptotic variance. The next theorem reveals that the plug-in approximation step does
not spoil the studentization of the statistic.

Proposition 14 (Studentization (bis)) Suppose that hypotheses A5 and A7 −A12,
with q = 4 and l = 2, are fulfilled. Assume also that the kernel h is bounded, i.e. ||h||∞ =
sup(x,y)∈E2 |h(x, y)| <∞. Then, we have, as n→∞,

√
n

σ̃n(h)
(Un(h)− µ(h)) ⇒ N (0, 1) in Pν-distribution.

Remark 15 (On the boundedness assumption) From a careful examination of Propo-
sition 14’s argument, one may shows that the convergence stated above extends to a
more general framework, including cases where h(x, y) is not bounded. Assumptions of
the form supx0∈S E[(

∑τS
i=1

∑τS(2)
j=1+τS

|h(Xi, Xj))|)k] < ∞ with k ≥ 1 suitably chosen and
τS(2) = inf{n > τS , Xn ∈ S} would then be required, as well as much technicality (in
order to extend the coupling results involved in the proof mainly, see also Theorem 3.2’s
proof in [7]). For brevity’s sake, here we restrict ourselves to the bounded case and leave
extensions to the reader.

4.2 Regenerative block-bootstrap for markovian U-statistics

This subsection is devoted to extend the (approximate) regenerative block-bootstrap
methodology, (A)RBB in abbreviated form, originally proposed in [7] for bootstrapping
standard markovian sample means n−1

∑
i≤n f(Xi), to markovian U -statistics. We start

off with describing the resampling algorithm in this context and then establish the asymp-
totic validity of the bootstrap distribution estimate thus produced.

4.2.1 The (A)RBB algorithm

Suppose that a sample path X(n) = (X1, . . . , Xn) drawn from a general Harris chain
X is observed, from which a random number Nn = ln − 1 of regeneration blocks, or
pseudo-regeneration blocks using the plug-in method described in §4.1.2, are formed:
B1, . . . , BNn . Consider then a U -statistic Un(h) = Un(X1, . . . , Xn) with kernel h(x, y)
and standardization σ̂n(h) = σn(B1, . . . , BNn) built as described in section 4, estimating
the parameter µ(h) ∈ R. The (A)RBB algorithm below produces an estimate of the sam-
pling distribution of σ̂n(h)−1{Un(h) − µ(h)}. It is performed in three steps, as follows.
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(Approximate) Regenerative Block-Bootstrap

1. Generate sequentially bootstrap data blocks B∗1 , ..., B∗k by drawing with replace-
ment from the initial blocks B1, ..., BNn until the length l∗(k) of the bootstrap
data series (B∗1 , . . . , B∗k) is larger than n. Let N∗

n = inf{k > 1 | l∗(k) > n} − 1.

2. From the bootstrap data blocks generated at step 1, build a trajectory of length
n∗ = l∗(N∗

n) by binding the blocks together

X∗(n) = (X∗
1 , ..., X

∗
n∗),

and compute the (A)RBB version of the U -statistic

U∗n(h) =
2

n∗(n∗ − 1)

∑
1≤i<j≤N∗

n

h(X∗
i , X

∗
j ),

and of its standardization as well: σ∗2n (h) = 4(N∗
n/n

∗)3s∗2N∗
n
(h) with

s∗2N∗
n
(h) =

1
N∗

n

N∗
n∑

k=1

h∗21,−k(B∗k),

h∗1,−j(b) =
1

N∗
n − 1

N∗
n∑

k=1, k 6=j

ωh(b,B∗k)− 2
N∗

n(N∗
n − 1)

∑
1≤k<l≤N∗

n

ωh(B∗k,B∗l ),

for all b ∈ T.

3. Eventually, the (A)RBB estimate of the root P{(Un(h) − µ(h))/σn ≤ x} is the
distribution given by

H(A)RBB(x) = P∗
{
σ∗−1

n (U∗n(h)− Un(h)) ≤ x
}
,

where P∗ denotes the conditional probability given the original data X(n).

Of course, the bootstrap distribution estimate is in practice approximated by a Monte-
Carlo scheme, by iterating the steps of the algorithm above.

4.3 Asymptotic validity of the (A)RBB for markovian U-statistics

The next theorem reveals that the (A)RBB is asymptotically correct under the hypotheses
previously listed, paving the way for non Gaussian confidence interval construction in a
valid asymptotic framework. It straightforwardly derives from the results stated in §3.3.
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Theorem 16 ((A)RBB asymptotic validity) We have the following convergences in
distribution.

(i) (Regenerative case) Under the same assumptions as Theorem 12, the RBB dis-
tribution is asymptotically valid: as n→∞,

sup
x∈R

∣∣∣∣P∗{√n∗U∗
n(h)− Un(h)
σ̂n(h)

≤ x

}
− Pν

{√
n
Un(h)− µ(h)

σ(h)
≤ x

}∣∣∣∣ = OPν (n−1/2),

(ii) (Pseudo-regenerative case) If, in addition, assumptions A8 −A10 are fulfilled,
we also have: as n→∞,

sup
x∈R

∣∣∣∣P∗{√n∗U∗
n(h)− Un(h)
σ̂∗n(h)

≤ x

}
− Pν

{√
n
Un − µ(h)
σ̂n(h)

≤ x

}∣∣∣∣ = OPν (n−1/2).

Remark 17 (Higher-order accuracy) We point out that, in contrast to the sample
mean case (see [7]), we have not been able to prove the second order accuracy of the
(A)RBB procedure, even up to oPν (n−1/2) only, when applied to a Markovian U -statistic.
The argument would indeed involve an Edgeworth expansion for the distribution of such a
statistic, a result that cannot be asserted unless major advances in the asymptotic analysis
of i.i.d. sequences of 1-lattice random vectors have been made, refer to the final discussion
of §3.3.

5 An illustrative simulation result

In this section, we now illustrate the inference principles described and studied above
through a simple numerical example: sampling data are drawn from a regenerative chain,
such as the ones encountered in Operations Research for modeling queuing or storage
systems, see [2]. Precisely, we analyze a simulated sequence X1, . . . , Xn of waiting times
in a GI/G/1 queuing system, in the absence of prior knowledge on the underlying model
except the regenerative Markovian structure. Such a model may be classically viewed as
a random walk on the half line, since one may write

Xn+1 = (Xn + Sn −∆Tn+1)+,

where x+ = max(x, 0) denotes the positive part of any real number x ∈ R, (∆Tn)n≥1

and (Sn)n≥1 the sequences of interarrival and service times respectively, assumed i.i.d.
and independent from each other. Suppose in addition that the mean interarrival time
E[∆Tn] = 1/λ and the mean service time E[Sn] = 1/θ are both finite and that the load
condition ”λ/θ < 1” is fulfilled. The discrete-time process X is then a positive recurrent
regenerative Markov chain with the ”empty file” A = {0} as a Harris recurrent atom, see
§14.4.1 in [33]. In the case where interarrival and service times are both exponentially
distributed, X is classically geometrically ergodic and has a limiting distribution µ with
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Figure 1: Comparison of bootstrap, gaussian and true distribution estimates of the distri-
bution of σ2

µ’s U -estimator for the M/M/1 model: Monte-Carlo in black, percentile RBB
in solid red, studentized RBB in dashed red, Gaussian with standard deviation σn in solid
green, Gaussian with standard deviation σBOOT in dashed green.

exponential tails, refer to §16.1.3 in [33] (in particular, the moment assumption A0 is thus
fulfilled for any q ≥ 1).

We considered the problem of computing confidence intervals for the variance σ2
µ =

varµ(X0) of the waiting time distribution in steady-state, from a sample path of length
n = 5000 simulated from such a M/M/1 model, with parameters λ = 0.2 and θ = 0.8.
Based on the simulated trajectory, we computed the U -estimate of σ2

µ and the related
normalizing constant, yielding Un = 1.407 and σ̂n = 5.462. We also generated B = 199
RBB replications, leading to bootstrap versions U∗b

n , with b ∈ {1, . . . , B}, of the U -statistic,
as well as the corresponding normalization constants σ̂∗bn . A ”bootstrap norming constant”

σ̂2
BOOT =

1
B

B∑
b=1

(
U∗b

n − U∗
n

)2
,

with U∗
n = 1

B

∑B
b=1 U

∗b
n , has also been computed. The studentized bootstrap replicates

are given by: ∀b ∈ {1, . . . , B},

t∗bn =
U∗b

n − Un

σ̂∗bn /
√
n∗

The four distribution estimates are displayed in Fig. 1, together with a Monte-Carlo
estimate based on M = 500 replications of the simulation scheme. On this exemple,
the RBB estimate (percentile version) clearly provides the best approximation, reflecting
the high skewness of the target distribution. For instance, the corresponding two-sided
confidence interval with level 95% leads to a coverage probability of 91.2%.
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Appendix - Technical proofs

Proof of Proposition 4

The proof is based on the next result, a slight adaptation of Proposition 8 in [19].

Lemma 18 (Rosenthal inequality) Let p ≥ 2 and f : E → R be a measurable
function such that the expectations EA[(

∑τA
i=1 |f |(Xi))p] and Eν [(

∑τA
i=1 f(Xi))p] are both

finite. Rather than replacing f by f − µ(f), suppose that µ(f) = 0. Then, there exists a
constant Cp <∞ such that: ∀n ≥ 1,

np

3p−1
Eν [|Sn(f)|p] ≤

(
p

p− 1

)p

Cp

nEA

[∣∣∣∣∣
τA∑
i=1

f(Xi)

∣∣∣∣∣
p]

+

nEA

( τA∑
i=1

f(Xi)

)2
p/2


Eν

[∣∣∣∣∣
τA∑
i=1

f(Xi)

∣∣∣∣∣
p]

+ EA

[(
τA∑
i=1

|f |(Xi)

)p]
.

One may take Cp = 2p or 7.35p/(1 ∨ log p) when p > 2 and C2 = 1/2.

Proof. Based on the decompostion (4), we have

np

3p−1
·Eν [|Sn(f)|p] ≤ Eν

[∣∣∣∣∣
τA∑
i=1

f(Xi)

∣∣∣∣∣
p]

+ E

max
1≤l≤n

∣∣∣∣∣∣
l∑

j=1

f(Bj)

∣∣∣∣∣∣
p+ EA

[(
τA∑
i=1

|f |(Xi)

)p]
.

(14)
By Lp-Doob’s inequality applied to the submartingale {|

∑
j≤l f(Bj)|}l≥1 combined with

Rosenthal inequality (see Theorem 2.9 in [35] for instance), we obtain that the middle term
on the left hand side is bounded by (p/(p−1))pCp{nE[|f(B1)|2p]+(nE[(f(B1))2])p/2}, while
the first and last terms are finite by assumption.

For notational simplicity, we abusively denote the (possibly empty) non regenerative
blocks of observations by B0 = (X1, . . . , XτA) and Bln = (X1+τA(ln), . . . , Xn). Observe
first that the event {ln ≤ 2} occurs with a probability of order O(n−2). Indeed, as it is
included in {τA > n/3} ∪ {τA(2) − τA > n/3} ∪ {τA(3) − τA(2) > n/3}, it immediately
follows from the union bound combined with the moment assumptions A1 −A2 that
Pν(ln ≤ 2) = O(n−2). On the complementary event {ln > 2}, one may then write

Wn(h) = (I) + (II),
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where

(I) =
2

n(n− 1)

{
ln∑

k=0

ωh̃(B0,Bk) +
ln∑

k=1

ωh̃(Bln ,Bk)

}
,

(II) =
2

n(n− 1)

{
ln−1∑
k=1

ωh̃(Bk,Bk)−
n∑

i=1

h̃(Xi, Xi)

}
,

Therefore, we have ln/n → α−1 Pν-a.s. and it follows from the SLLN for sums of
i.i.d. random variables that n−1

∑ln−1
k=1 ωh̃(Bk,Bk) → (E[ωh(B1,B1)] − µ(h)EA[τ2

A])/α as
n → ∞ with probability one under Pν . Observe in addition that EA[

∑τA
i=1 |h(Xi, Xi)|] ≤

E[ω|h|(B1,B1)] <∞, we may thus apply the SLLN for positive Harris chains (see Theorem
17.1.7 in [33]) and obtain that n−1

∑n
i=1 h̃(Xi, Xi) →

∫
x∈E h(x, x)µ(dx)− µ(h) Pν-almost

surely as n→∞. Hence, the term (II) almost-surely goes to zero under Pν . Additionally,
under the stipulated moment assumptions, we also have:

n−2Eν

( ln∑
k=1

ωh̃(B0,Bk)

)2
 ≤ Eν

[(
ω|h̃|(B0,B1)

)2
]
,

≤ 2
{

Eν

[(
ω|h|(B0,B1)

)2]+ µ(h)2Eν [τA]EA[τA]
}
<∞.

Similarly, we have

n−2Eν

( ln∑
k=1

ωh̃(Bk,Bln)

)2
 ≤ 2

{
E
[(
ω|h|(B1,B2)

)2]+ µ(h)2(EA[τA])2
}
<∞,

By a straightforward Borel-Cantelli argument, we obtain that the term (I) almost-surely
converges to zero as n→∞ under Pν .

The L2-bound then follows from (the argument of) Lemma 18 applied to f(x) =
h(x, x).

Proof of Theorem 5

On the event {ln ≥ 2}, which occurs with probability 1−O(n−2), we may write

Un(h̃) = Wn(h) +
(ln − 1)(ln − 2)

n(n− 1)
Rln−1.

As L→∞, by virtue of the SLLN for U -statistics, we have RL(h) → 0 Pν-almost surely,
see [39] for instance. The desired result then follows from Proposition 4 combined with
the fact that Pν{limn→∞ ln/n→ α−1} = 1.
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Proof of Theorem 6

Observe that one may decompose Un(h̃) as follows

Wn(h) +
(ln − 1)(ln − 2)

n(n− 1)
{2Sln−1(h) +Dln−1(h)} .

Following in the footsteps of the argument of Theorem 17.2.2 in [33], we have, under
Pν , (ln/

√
n)Sln−1 ⇒ N (0, s2h/α) as n → ∞, provided that s2h > 0 (cf assumption A5).

By virtue of assertion (ii) in Proposition 4, we have
√
nWn(h) → 0 in Pν-probability

as n → ∞. We shall now prove that Dln−1 = oPν (1/
√
n) as n → ∞. Let ε > 0 and

κ ∈]0, 1/2[, write

Pν

{√
n|Dln−1| ≥ ε

}
≤

∑
l: |l−n|<nκ+1/2

Pν

{√
n|Dl(h)| ≥ ε

}
+ Pν

{
|ln − n/α| ≥ nκ+1/2

}
≤

∑
l: |l−n|<nκ+1/2

nE[D2
l ]

ε2
+ C · n−2κ

by applying Lemma 18 with f(x) = I{x∈A}. Therefore, for all l ≥ 2,

E[D2
l ] =

2
l(l − 1)

E[(ωh̃(B1,B2))2],

which, when combined to the previous bound, yields

Pν

{√
n|Dln−1| ≥ ε

}
≤ 2nκ+1/2E[(ωh̃(B1,B2))2]/((n− nκ+1/2)ε2) + C · n−2κ.

Since the bound on the right hand side goes to zero when n → ∞, we obtain that√
nDln−1 → 0 in Pν-probability. Eventually, one concludes the proof by observing that

ln/n→ α Pν-almost-surely and applying Slutsky’s lemma.

Proof of Theorem 9

Since ln ∼ n/α Pν-almost-surely as n → ∞, it follows from the LIL for non-degenerate
U -statistics that

lim sup
n→∞

√
nRln−1(h)√

8αs2h log log n
= +1

with probability one under Pν . Therefore, Proposition 4 combined with the fact that
σ2

h = 4s2h/α
3 entails that

lim sup
n→∞

√
nRln−1(h)√

8αs2h log log n
= lim sup

n→∞

√
nUn(h)√

2σ2
h log log n

Pν-almost surely,

which proves the desired result.
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Proof of Proposition 10

For clarity’s sake, we recall the following result, established at length in [30].

Lemma 19 (Malinovskii, 1985) Let f : E → R be a measurable function such that
µ(|f |) < ∞. Suppose in addition that µ(f) = 0, the expectations EA[(

∑τA
i=1 f(Xi))4],

Eν [(
∑τA

i=1 f(Xi))2] and EA[τ4
A] are finite and the Cramer condition

lim sup
t→∞

EA

[∣∣∣∣∣exp

(
it

τA∑
i=1

f(Xi)

)∣∣∣∣∣
]
< 1

is fulfilled. Then, there exists a constant C independent from the initial distribution ν
such that: ∀n ∈ N∗,

Eν

[
n∑

i=1

f(Xi)

]
= φν(f)− β(f)/α+ γ(f) + C · n−1/2,

where φν(f) = Eν [
∑τA

i=1 f(Xi)], γ(f) = EA[
∑τA

i=1(τA−i)f(Xi)]/α, β(f) = EA[τA
∑τA

i=1 f(Xi)].

It should be noticed that, in the subsequent calculations, the constant C is not nec-
essarily the same at each appearance. Rather than replacing h by h− µ(h), assume that
µ(h) = 0. One may write

Eν [Un(h)] =
2

n(n− 1)
· Eν

n−1∑
i=1

EXi

 n∑
j=i+1

h(Xi, Xj)


We set, for all x ∈ E,

∫
y∈E h(x, y)µ(dy) = h1(x)/α and let h̄(x, y) = h(x, y) − h0(x).

Taking f(y) = h̄(x, y), by virtue of Lemma 19 we obtain that: ∀x ∈ E, ∀k ≥ 1,

Ex

 k∑
j=1

h̄(x,Xj)

 = Ex

 k∑
j=1

h(x,Xj)

− kh0(x) = H(x) + C · k−1/2,

where

H(x) = Ex

 τA∑
j=1

h̄(x,Xj)

− α−1EA

τA τA∑
j=1

h̄(x,Xj)

+ α−1EA

 τA∑
j=1

(τA − j)h̄(x,Xj)

 .
Applying again Lemma 19 (to f(x) = H(x)− µ(H) this time), this yields: ∀n ≥ 1,

Eν [
∑

1≤i<j≤n

h(Xi, Xj)] = Eν

[
n−1∑
i=1

(n− i)h0(Xi)

]
+nµ(H)+φν(H)+γ(H)−β(H)/α+C·n1/2,

(15)
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where, by virtue of Kac’s lemma and using the fact that µ(h0) = 0, we have:

µ(H) =
1
α

EA

 ∑
1≤k<j≤τA

h(Xk, Xj)

− 1
α

EA

 τA∑
j=1

(τA − j)h0(Xj)


− 1

α
EA

τA τA∑
j=1

h0(Xj)

+
1
α

EA

 τA∑
j=1

(τA − j)h0(Xj)


=

1
α

EA

 ∑
1≤k<j≤τA

h(Xk, Xj)

− 1
α

EA

τA τA∑
j=1

h0(Xj)

 .
By applying Lemma 19 once again with f(x) = h0(x), we obtain that

Eν

[
n−1∑
i=1

h0(Xi)

]
= φν(h0)− β(h0)/α+ γ(h0) + C · n−1/2. (16)

Now, in order to prove that
∑

n≥1 Eν [nh0(Xn)] is summable, notice that the condition

EA

[
τA∑

n=1

r(n)f(Xn)

]
<∞

is fulfilled, when taking f(x) = 1 + |h0(x)| and r(n) = n3. Indeed, by Hölder inequality
we have:

EA

[
τA∑
i=1

r(i)f(Xi)

]
≤ EA

[
τ4
A

]
+
(
E
[
τ4
A

])3/4 ·

EA

( τA∑
i=1

|h0|(Xi)

)4
1/4

.

The upper bound being finite under our assumptions, it follows from Theorem 2.1 in [44]
that: as n→∞,

|Eν [h0(Xn)] | = |Eν [h0(Xn)]− µ(h0)| = o(r(n)).

Hence, we have
∑∞

i=1 |Eν [ih0(Xi)]| < ∞. Eventually, combined with Eq. (15), (16) and
(16), this permits us to conclude the proof.

Proof of Theorem 12

With no restriction, we may assume that µ(h) = 0 for notational simplicity. We first recall
the following result, which provides a very convenient way of establishing a Berry-Esseen
bound for functionals of i.i.d. random variables through linearization. Refer to Lemma
1.3 in [40] for a detailed proof based on Stein’s method.
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Lemma 20 (Stein’s lemma) Let Ln be a random variable such that E
[
L2

n

]
= 1 and

such that there exists some constant C <∞ (possibly depending on Ln’s distribution), the
following Berry-Esseen type bound holds: ∀n ≥ 1,

sup
x∈R

|P {Ln ≤ x} − Φ(x)| ≤ C√
n
.

Then, for any sequence of random variables {∆n}n≥1, we have: ∀n ≥ 1,

sup
x∈R

|P{Ln + ∆n ≤ x} − Φ(x)| ≤ C√
n

+ 8
(
E
[
∆2

n

])1/2
.

We first state the following Berry-Esseen theorem, improving upon the result stated
in [13] for sample mean statistics in the markovian setup (see Theorem 1 therein), insofar
as the constant involved in the bound can be (over-) estimated, as may be shown by
examining carefully its proof, which relies on Lemma 20 too and is postponed to the next
subsection.

Theorem 21 (A Berry-Esseen bound for the sample mean statistic) Suppose
that the expectations Eν [τA], EA

[
τ3
A

]
, Eν [

∑τA
i=1 |f(Xi)|] and EA

[∑τA
i=1 |f(Xi)|3

]
are all

finite. Then, there exists a constant K <∞ such that for all n ≥ 1:

sup
x∈R

∣∣∣∣∣∣Pν

 1√
γ2

fn

n∑
i=1

{f(Xi)− µ(f)} ≤ x

− Φ(x)

∣∣∣∣∣∣ ≤ Kn−1/2, (17)

where γ2
f = α−1EA

[
(
∑τA

i=1{f(Xi)− µ(f)})2
]

is assumed to be strictly positive.

Consider now the following decomposition
√
n

σ(h)
Un(h) = Ln + ∆n,

where

Ln =
2
α

n−1/2

σ(h)

n∑
i=1

h1(Xi)

and σ(h)n−1/2∆n = I + II + III + IV with

I = Wn(h),

II =
2

n(n− 1)

∑
1≤k<l≤ln−1

h2(Bk,Bl),

III = 2
(
ln − 2
n− 1

− 1
α

)
× 1
n

τA(ln)∑
i=1+τA(1)

h1(Xi),

IV = − 2
α

1
n


τA∑
i=1

h1(Xi) +
n∑

i=1+τA(ln)

h1(Xi)

 .
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The second order moments of the r.v.’s I and IV are bounded by C/n for some properly
chosen constant C < ∞, refer to Proposition 4’s argument. Additionally, by examining
Lemma 18’s proof, one may establish that those of the two factors involved in the term
III are bounded by C ′/n for some constant C ′ < ∞ and, consequently, that of the r.v.
III as well, by a straightforward Cauchy-Schwarz argument. Observe also that the second
order moment of the variable II is bounded by E[max1≤l≤n (Dl(h))

2]. Now, writing the
(degenerate) U -statistic Dl(h) as a martingale (see §5.1.5 in [39] for instance), L2 Doob’s
inequality permits to show that the latter quantity is of order O(n−2). Finally, we obtained
that E[∆2

n] ≤ C ′′/n for some constant C ′′ <∞.
The desired Berry-Esseen bound then follows from this variance control combined with

Lemma 20 and Theorem 21.

Proof of Theorem 21

Repeating the argument of Theorem 12, combined with the partitioning technique men-
tioned in §2.3, one may obtain an explicit constant in the markovian version of the Berry-
Esseen inequality for sample mean statistics, in contrast to the result established in [13]
(see also [6]).

For notational simplicity, we suppose µ(f) = 0. We write

Sn(f) =
1
n

τA∑
i=1

f(Xi) +
1
n

ln−1∑
j=1

f(Bj) +
1
n

n∑
i=1+τA(ln)+1

f(Xi).

Since ln ∼ n/α as n→∞ with Pν-probability one, consider the r.v.

Zn = n−1/2

bn/αc∑
j=1

f(Bj)/σ(f)

and write
√
nSn(f)/σ(f) = Zn + ∆n. Since Zn is a recentered and standardized sum of

i.i.d. random variables with finite moment of order 3, the usual Berry-Esseen theorem
applies and yields: ∀n ≥ 1,

sup
x∈R

|P {Zn ≤ x} − Φ(x)| ≤ γB ·
κ3√
n
. (18)

The constant γB = 0.7056 has been recently obtained in [41]. Now, observe that

σ(f)
n1/2

∆n =
1
n

τA∑
i=1

f(Xi) +
1
n

ln−1∑
bn/αc−1

f(Bj) +
1
n

n∑
i=τA(ln−1)+1

f(Xi)

with the convention that
∑ln−1

bn/αc−1 f(Bj) is equal to
∑ln−1

j=bn/αc f(Bj) if ln > bn/αc, to 0 if

ln = bn/αc and to
∑bn/αc−1

j=ln
f(Bj) if ln < bn/αc, when ln ≥ 2. We have
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σ2(f)
3

E
[
∆2

n

]
≤ 1
n

Eν

[
(f(B0))2

]
+ Eν

n−1/2
ln−1∑

bn/αc−1

f(Bj)

2
+

1
n

EA

( τA∑
i=1

|f |(Xi)

)2
 (19)

Thus, it essentially remains to control the term

Eν

 1
σ(f)n1/2

ln−1∑
bn/αc−1

f(Bj)

2 = I + II, (20)

where

I = Eν

 1
σ(f)n1/2

ln−1∑
j=bn/αc

f(Bj) · I{ln>bn/αc}

2
II = Eν

 1
σ(f)n1/2

bn/αc−1∑
j=ln

f(Bj) · I{ln<bn/αc}

2
The second term on the right hand side of Eq. (20) can be bounded as follows

II ≤ Eν

[∣∣∣∣ ln − bn/αcn

∣∣∣∣]Eν

|ln − bn/αc|−1/2
ln−1∑

bn/αc−1

f(Bj)
σ(f)

· I{ln<bn/αc}

2 . (21)

We control the first factor in the upper bound stated above using the continuous
inclusion L2 ↪→ L1 and Lemma 18 applied to f(x) = I{x∈A} − µ(A), as follows

Eν

[(
ln − bn/αc

n

)2
]

≤ 2
{
Eν

[
n−2(ln − n/α)2

]
+ n−2

}
≤ 24

n
EA

[(
1− τA

α

)2
]

+
6
n2

EA

( τA∑
i=1

∣∣I{Xi∈A} − 1/α
∣∣)2


+ 2n−2. (22)

The second factor involved in the upper bound (21) can be estimated using the parti-
tioning technique used in [30] (see also [6]). This consists in viewing the event {ln < bn/αc}
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as the union of the events El,r,s = {τA = r,
∑l−1

j=1 l(Bj) = n − r − s, l(Bl) > s} with
l < bn/αc and 1 ≤ r, s ≤ n (recall that we set l(Bj) = τA(j + 1)− τA(j) for j ≥ 1). Using
the Markov property, this yields

Eν

|ln − bn/αc|−1/2
ln−1∑

bn/αc−1

f(Bj)/σ(f) · I{ln<bn
α
c}

2 =
bn/αc−1∑

l=1

n∑
r=1

n∑
s=1

al,r,s

with, for 1 ≤ l < bn/αc and 1 ≤ r, s ≤ n,

al,r,s = Pν{τA = r}PA{τA > s}

×
∫
x2PA

|l − bn/αc|−1/2

bn/αc−1∑
j=l

f(Bj)/σ(f) ∈ dx,
l−1∑
j=1

l(Bj) = n− r − s


= Pν{τA = r}PA{τA > s}

×
∫
x2PA

|l − bn/αc|−1/2

bn/αc−1∑
j=l

f(Bj)/σ(f) ∈ dx

PA


l−1∑
j=1

l(Bj) = n− r − s


≤ Pν{τA = r}PA{τA > s}PA


l−1∑
j=1

l(Bj) = n− r − s


using the fact that the random variable |l−[n/α]|−1/2

∑bn/αc−1
j=l f(Bj)/σ(f) is independent

from
∑l−1

i=1 l(Bj) and has variance 1. We thus obtained that the second factor involved in
the upper bound (21) is smaller than 1. Combined with (22), this yields a control of the
term II.

Turning now to the term I in (20), we use Cauchy-Schwarz’s inequality again to get:

I ≤ Eν

[∣∣∣∣n− τA(bn/αc)
n

∣∣∣∣]Eν

 ln−1∑
bn/αc−1

f(Bj)
σ(f)|n− τA(bn/αc)|1/2

· I{ln≥bn/αc}

2 . (23)

For the second factor, by conditioning upon τA(bn/αc) and using next the Markov prop-
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erty, one gets:

Eν

 ln−1∑
bn/αc−1

f(Bj)
σ(f)|ln − bn/αc|1/2

· I{ln≥bn/αc}

2 =
n−bn/αc∑

k=0

EA

lk−1∑
j=1

f(Bj)
k1/2σ(f)

2
× Pν {τA(bn/αc) = n− k}

≤
n−bn/αc∑

k=0

EA

max
1≤l≤k

 l∑
j=1

f(Bj)
k1/2σ(f)

2
× Pν {τA(bn/αc) = n− k}

≤ 2
n−bn/αc∑

k=0

Pν {τA(bn/αc) = n− k} ≤ 2,

using L2-Doob’s inequality.

For showing that the first factor is smaller than C/
√
n for some constant C < ∞, it

suffices to observe that τA(bn/αc) = τA +
∑bn/αc−1

j=1 {τA(j + 1)− τA(j)} can be written as
a sum of independent r.v.’s and use the continuous inclusion L2 ↪→ L1.

Now, noticing that
n1/2(µn(f)− µ(f)) = Wn + ∆n,

apply lemma 18 with the bounds (18), (19) to get the desired result.

Proof of Proposition 13

It suffice to observe that the preliminary results stated in [17] imply that, as L → ∞,
ŝ2L(h) → s2(h) = EA

[
(
∑τA

i=1 h1(Xi))
2
]

with probability one. Assertion (i) thus follows
from the fact that ln/n almost surely converges to 1/α as n → ∞. The second assertion
immediately results from the first one combined with Theorem 6 and Slutsky’s lemma.

Proof of Proposition 14

The proof immediately results from the CLT stated in Theorem 6 applied to the split
chain combined with the following result.

Proposition 22 Suppose that assumptions of Proposition 14 are fulfilled. We then have:
as n→∞,

σ̃2
n(h) → σ2(h) in Pν-probability.

Proof. For simplicity, we assume that µ(h) = 0. Let l̂n = N̂n + 1 be the number of times
Ŷ visits the state 1 between time 1 and n. We also introduce versions of the quantities
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(10) and (11) based on the pseudo-regenerative blocks: ∀b ∈ T, ∀j ∈ {1, . . . , l̂n − 1},

h̃1,−j(b) =
1

l̂n − 2

bln−2∑
k=1, k 6=j

ωh(b, B̂k)−
2

(l̂n − 1)(l̂n − 2)

∑
1≤k<l≤bln−1

ωh(B̂k, B̂l),

and

s̃2bln−1
(h) =

1

l̂n − 1

bln−1∑
k=1

h̃1,−k(B̂k).

The proof re-uses the coupling-based argument of Theorems 3.1 and 3.2 in [7]. Recall first
that, by virtue of Lemma 4.3 in [7], we have l̂n/n = 1/α + oPν (α1/2

n ) as n → ∞, where
α is the mean length of the split chain cycles Bj , j ≥ 1. We next establish the following
result.

Lemma 23 Under the assumptions of Proposition 14, we have, for all j ≤ l̂n − 1,

1

l̂n − 1

bln−1∑
j=1

{
h̃2

1,−j(B̂j)− h2
1(B̂j)

}
→ 0 in Pν-probability as n→∞.

Proof. Recall that ωh(b1, b2) = h1(b1) + h1(b2) + h2(b1, b2) for all (b1, b2) ∈ T2, since we
assumed µ(h) = 0 here. Hence, we have: ∀j ≤ l̂n − 1,

h̃1,−j(B̂j) = h1(B̂j) +
1

l̂n − 2

∑
k 6=j

h1(B̂k) +
1

l̂n − 2

∑
k 6=j

h2(B̂j , B̂k)

− 2

(l̂n − 1)(l̂n − 2)

∑
k<l

ωh(B̂l, B̂k).

Lemma 4.2 in [7] entails that, as n → ∞, the sum of the second and third terms on the
right hand side of the equation above is equal to

1
ln − 2

∑
k 6=j

h1(Bk) +
1

ln − 2

∑
k 6=j

h2(B̂j ,Bk) + oPν (n−1α1/2
n ),

and thus tends to zero in Pν-probability as n → ∞, by virtue of the LLN and using the
fact that EA[h1(B1)] = E[h2(b,B1)] = 0 for any b ∈ T. In addition, notice that

1
n2

∑
k<l

ωh(B̂l, B̂k) =
1
n2

∑
bτ1<i<m≤bτ2 h(Xi, Xm) − 1

n2

bln−1∑
k=1

ωh(B̂k, B̂k),

where τ̂(1) = inf{k ∈ {1, . . . , n} : Ŷn = +1} and τ̂(l̂n) = max{k ∈ {1, . . . , n} : Ŷn = +1}.
Using Lemma 4.1 combined with the boundedness assumption for h, one gets that the
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first term on the right hand side of the equation above is equal to Un(h) + OPν (α1/2
n /n),

and thus converges to µ(h) = 0 in Pν-probability. The second term is bounded in absolute
value by ||h||∞n−2

∑bln−1
k=1 L2(B̂j), where L(b) denotes the length of any block b ∈ T. The

second assertion of Lemma 4.2 in [7] applied to g(x) ≡ 1 implies that this bound is
equal to ||h||∞n−2

∑ln−1
k=1 L2(Bj) + OPν (αn/n) as n → ∞ and thus tends to zero, since

n−1
∑ln−1

k=1 L2(Bj) → E[L2(B1)] Pν-almost-surely. The result stated in the lemma then
immediately follows.
Using again Lemma 4.2 in [7], we obtain that

1

l̂n − 1

bln−1∑
j=1

h2
1(B̂j) =

1
ln − 1

ln−1∑
j=1

h2
1(Bj) +OPν (αn).

The desired convergence then results from Lemma 23 combined with the fact that, as
n→∞, (ln − 1)−1

∑ln−1
j=1 h2

1(Bj) → E[h2
1(B1)] = α3σ2(h)/4 Pν-almost-surely.

Proof of Theorem 16

This is a consequence of Theorem 12. We follow the standard argument used in the i.i.d.
case when a Berry-Esseen bound is available under adequate moment assumptions, see
[29] for instance. A Berry-Esseen bound naturally holds for the bootstrap distribution
too. As the constant involved in this bound only depends on moments taken with respect
to the empirical distribution of the (pseudo-) blocks, which converge to the empirical
counterparts at the rate O(n−1/2), the rate of convergence to the asymptotic distribution
is of the same order and the theorem follows.
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[30] V.K. Malinovskĭi. On some asymptotic relations and identities for Harris recurrent
Markov chains. In Statistics and Control of Stochastic Processes, pages 317–336, 1985.
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[32] V.K. Malinovskĭi. Limit theorems for Harris Markov chains II. Theory Prob. Appl.,
34:252–265, 1989.

[33] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer-
Verlag, 1996.

[34] E. Nummelin. A splitting technique for Harris recurrent chains. Z. Wahrsch. Verw.
Gebiete, 43:309–318, 1978.

[35] V.V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Ran-
dom Variables. Oxford Science Publications, 1995.

[36] D. Revuz. Markov Chains. 2nd edition, North-Holland, 1984.

34
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