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Abstract

The present paper examines how the aggregation and feature randomization principles
underlying the algorithm Random Forest (Breiman (2001)) can be adapted to bipartite
ranking. The approach taken here is based on nonparametric scoring and ROC curve
optimization in the sense of the AUC criterion. In this problem, aggregation is used to
increase the performance of scoring rules produced by ranking trees, as those developed
in Clémençon and Vayatis (2009c). The present work describes the principles for building
median scoring rules based on concepts from rank aggregation. Consistency results are
derived for these aggregated scoring rules and an algorithm called Ranking Forest is
presented. Furthermore, various strategies for feature randomization are explored through
a series of numerical experiments on artificial data sets.

Keywords: Bipartite ranking, nonparametric scoring, classification data, ROC opti-
mization, AUC criterion, tree-based ranking rules, bootstrap, bagging, rank aggregation,
median ranking, feature randomization.

1. Introduction

Aggregating decision rules or function estimators has now become a folk concept in machine
learning and nonparametric statistics. Indeed, the idea of combining decision rules with
an additional randomization ingredient brings a dramatic improvement of performance in
various contexts. These ideas go back to the seminal work of Amit and Geman (1997),
Breiman (1996), and Nemirovski (2000). However, in the context of the ”learning-to-rank”
problem, the implementation of this idea is still at a very early stage. In the present paper,
we propose to take one step beyond in the program of boosting performance by aggregation
and randomization for this problem. The present paper explores the particular case of
learning to rank high dimensional observation vectors in presence of binary feedback. This
case is also known as the bipartite ranking problem, see Freund et al. (2003), Agarwal
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et al. (2005), Clémençon et al. (2005). The setup of bipartite ranking is useful when
considering real-life applications such as credit-risk or medical screening, spam filtering, or
recommender systems. There are two major approaches to bipartite ranking: the preference-
based approach (see Cohen et al. (1999)) and the scoring-based approach (in the spirit of
logistic regression methods, see e.g. Hastie and Tibshirani (1990), Hilbe (2009)). The idea
of combining ranking rules to learn preferences was introduced in Freund et al. (2003) with
a boosting algorithm and the consistency for this type of methods was proved in Clémençon
et al. (2008) by reducing the bipartite ranking problem to a classification problem over pairs
of observations (see also Agarwal et al. (2005)). Here, we will cast bipartite ranking in the
context of nonparametric scoring and we will consider the issue of combining randomized
scoring rules. Scoring rules are real-valued functions mapping the observation space with
the real line, thus conveying an order relation between high dimensional observation vectors.

Nonparametric scoring has received an increasing attention in the machine learning li-
terature as a part of the growing interest which affects ROC analysis. The scoring problem
can be seen as a learning problem where one observes input observation vectors X in a high
dimensional space X and receives only a binary feedback information through an output
variable Y ∈ {−1,+1}. Whereas classification only focuses on predicting the label Ỹ of a
new observation X̃, scoring algorithms aim at recovering an order relation on X in order to
predict the ordering over a new sample of observation vectors X ′1, . . . , X

′
m so that there

as many as possible positive instances at the top of the list. From a statistical perspective,
the scoring problem is more difficult than classification but easier than regression. Indeed,
in classification, the goal is to learn one single level set of the regression function whereas,
in scoring, one wants to recover the nested collection of all the level sets of the regression
function (without necessarily knowing the corresponding levels), but not the regression
function itself (see Clémençon and Vayatis (2009b)). In previous work, we developed a tree-
based procedure for nonparametric scoring called TreeRank, see Clémençon and Vayatis
(2009c), Clémençon et al. (2010). The TreeRank algorithm and its variants produce
scoring rules expressed as partitions of the input space coupled with a permutation over
the cells of the partition. These scoring rules present the interesting feature that they can
be stored in an oriented binary tree structure, called a ranking tree. Moreover, their very
construction actually implements the optimization of the ROC curve which reflects the
quality measure of the scoring rule for the end-user.

The use of resampling in this context was first considered in Clémençon et al. (2009).
A more thorough analysis is developed throughout this paper and we show how to combine
feature randomization and bootstrap aggregation techniques based on the ranking trees
produced by the TreeRank algorithm in order to increase ranking performance in the
sense of the ROC curve. In the classification setup, theoretical evidence has been recently
provided for the aggregation of randomized classifiers in the spirit of random forests (see
Biau et al. (2008)). However, in the context of ROC optimization, combining scoring rules
through naive aggregation does not necessarily make sense. Our approach builds on the
advances in the rank aggregation problem. Rank aggregation was originally introduced in
social choice theory (see Barthélémy and Montjardet (1981) and the references therein) and
recently ”rediscovered” in the context of internet applications (see Pennock et al. (2000)).
For our needs, we shall focus on metric-based consensus methods (see Hudry (2004) or
Fagin et al. (2006), and the references therein), which provide the key to the aggregation of
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ranking trees. In the paper, we also discuss various aspects of feature randomization which
can be incorporated at various levels in ranking trees. Also a novel ranking methodology,
called Ranking Forest, is introduced.

The article is structured as follows. Section 2 sets out the notations and shortly describes
the main notions for the bipartite ranking problem. Section 3 describes the elements from
the theory of rank aggregation and measures of consensus leading to the aggregation of
scoring rules defined over finite partitions of the input space. The next section presents the
main theoretical results of the paper which are consistency results for scoring rules based on
the aggregation of randomized piecewise constant scoring rules. Section 5 presents Rank-
ing Forest, a new algorithm for nonparametric scoring which implements the theoretical
concepts developed so far. Section 6 presents an empirical study of the Ranking For-
est algorithm with numerical results based on simulated data. Finally, some concluding
remarks are collected in Section 7. Reminders, technical details and proofs are deferred to
the Appendix.

2. Probabilistic setup for bipartite ranking

ROC analysis is a popular way of evaluating the capacity of a given scoring rule to dis-
criminate between two populations, see Egan (1975). ROC curves and related performance
measures such as the AUC have now become of standard use for assessing the quality of
ranking methods in a bipartite framework. Throughout this section, we recall basic concepts
related to bipartite ranking from the angle of ROC analysis.

Modeling the data. The probabilistic setup is the same as in standard binary classification.
The random variable Y is a binary label, valued in {−1,+1}, while the random vector X =
(X(1), . . . , X(q)) models some multivariate observation for predicting Y , taking its values in
a high-dimensional space X ⊂ Rq, q ≥ 1. The probability measure on the underlying space
is entirely described by the pair (µ, η), where µ denotes the marginal distribution of X and
η(x) = P{Y = +1 | X = x}, x ∈ X , the posterior probability. With no restriction, here we
assume that X coincides with the support of µ.

The scoring approach to bipartite ranking. An informal way of considering the ranking
task under this model is as follows. Given a a sample of independent copies of the pair
(X,Y ), the goal is to learn how to order new data X1, . . . , Xm without label feedback, so
that positive instances are mostly at the top of the resulting list with large probability. A
natural way of defining a total order on the multidimensional space X is to map it with
the natural order on the real line by means of a scoring rule, i.e. a measurable mapping
s : X → R. A preorder1 4s on X is then defined by: ∀(x, x′) ∈ X 2, x 4s x

′ if and only if
s(x) ≤ s(x′).

Measuring performance. The capacity of a candidate s to discriminate between the positive
and negative populations is generally evaluated by means of its ROC curve (standing for
”Receiver Operating Characteristic” curve), a widely used functional performance measure
which we recall here.

1. A preorder is a binary relation which is reflexive and transitive.
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Figure 1: ROC curves.

Definition 1 (True ROC curve) Let s be a scoring rule. The true ROC curve of s is
the ”probability-probability” plot given by:

t ∈ R 7→ (P {s(X) > t | Y = −1} ,P {s(X) > t | Y = 1}) ∈ [0, 1]2 .

By convention, when a jump occurs in the plot of the ROC curve, the corresponding ex-
tremities of the curve are connected by a line segment, so that the ROC curve of s can be
viewed as the graph of a continuous mapping α ∈ [0, 1] 7→ ROC(s, α).

We refer to Clémençon and Vayatis (2009c) for a list of properties of ROC curves (see
the Appendix section therein). The ROC curve offers a visual tool for assessing ranking
performance (see Figure 1): the closer to the left upper corner of the unit square [0, 1]2

the curve ROC(s, .), the better the scoring rule s. Therefore, the ROC curve conveys a
partial order on the set of all scoring rules: for all pairs of scoring rules s1 and s2, we say
that s2 is more accurate than s1 when ROC(s1, α) ≤ ROC(s2, α) for all α ∈ [0, 1]. By
a standard Neyman-Pearson argument, one may establish that the most accurate scoring
rules are increasing transforms of the regression function which is equal to the conditional
probability function η up to an affine transformation.

Definition 2 (Optimal scoring rules) We call optimal scoring rules the elements of
the set S∗ of scoring functions s∗ such that ∀(x, x′) ∈ X 2, η(x) < η(x′)⇒ s∗(x) < s∗(x′).

The fact that the elements of S∗ are optimizers of the ROC curve is shown in Clémençon
and Vayatis (2009c) (see Proposition 4 therein). When, in addition, the random variable
η(X) is assumed to be continuous, then S∗ coincides with the set of strictly increasing
transforms of η. The performance of a candidate scoring rule s is often summarized by a
scalar quantity called the Area Under the ROC Curve (AUC) which can be considered as a
summary of the ROC curve. In the paper, we shall use the following definition of the AUC.
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Definition 3 (AUC) Let s be a scoring rule. The AUC is the functional defined as:

AUC(s) = P{s(X1) < s(X2) | (Y1,Y2) = (−1,+1)}

+
1

2
P{s(X1) = s(X2) | (Y1, Y2) = (−1,+1)},

where (X1, Y1) and (X2, Y2) denote two independent copies of the pair (X,Y ), for any
scoring function s.

This functional provides a total order on the set of scoring rules and, equipped with
the convention introduced in Definition 1, AUC(s) coincides with

∫ 1
0 ROC(s, α) dα (see, for

instance, Proposition 1 in Clémençon et al. (2011)). We shall denote the optimal curve
and the corresponding (maximum) value for the AUC criterion by ROC∗ = ROC(s∗, .) and
AUC∗ = AUC(s∗), where s∗ ∈ S∗. The statistical counterparts of ROC(s, .) and AUC(s)
based on sampling data Dn = {(Xi, Yi) : 1 ≤ i ≤ n} are obtained by replacing the class

distributions by their empirical versions in the definitions. They are denoted by R̂OC(s, .)

and ÂUC(s) in the sequel.

Piecewise constant scoring rules. In the paper, we will focus on a particular subclass of
scoring rules.

Definition 4 (Piecewise constant scoring rule) A scoring rule s is piecewise con-
stant if there exists a finite partition P of X such that for all C ∈ P, there exists a constant
kC ∈ R such that ∀x ∈ C, s(x) = kC.

This definition does not provide a unique characterization of the underlying partition.
The partition P is minimal if, for any two of its elements C 6= C′, we have kC 6= kC′ . The
scoring rule conveys an ordering on the cells of the minimal partition.

Definition 5 (Rank of a cell) Let s be a scoring rule and P the associated minimal
partition. The scoring rule induces a ranking �s over the cells of the partition. For a given
cell C ∈ P, we define its rank R�s(C) ∈ {1, . . . , |P|} as the rank affected by the ranking �s
over the elements of the partition. By convention, we set rank 1 to correspond to the highest
score.

The advantage of the class of piecewise constant scoring rules is that they provide
finite rankings on the elements of X and they will be the key for applying the aggregation
procedure.

3. Aggregation of scoring rules

In recent years, the issue of summarizing or aggregating various rankings has been a topic of
growing interest in the machine-learning community. This evolution was mainly motivated
by practical problems in the context of internet applications: design of meta-search engines,
collaborative filtering, spam-fighting, etc. We refer for instance to Pennock et al. (2000);
Dwork et al. (2001); Fagin et al. (2003); Ilyas et al. (2002). Such problems have led to a
variety of results, ranging from the generalization of the mathematical concepts introduced
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in social choice theory (see Barthélémy and Montjardet (1981) and the references therein)
for defining relevant notions of consensus between rankings (Fagin et al. (2006)), to the
development of efficient procedures for computing such ”consensus rankings” (Betzler et al.
(2008); Mandhani and Meila (2009); Meila et al. (2007)) through the study of probabilistic
models over sets of rankings (Fligner and Verducci (Eds.); Lebanon and Lafferty (2003)).
Here we consider rank aggregation methods in the perspective of extending the bagging
approach to ranking trees.

3.1 The case of piecewise constant scoring rules

The ranking rules considered in this paper result from the aggregation of a collection of
piecewise constant scoring rules. Since each of these scoring rules is related to a possibly
different partition, we are lead to consider a collection of partitions of X . Hence, the aggre-
gated rule needs to be defined on the least fine subpartition of this collection of partitions.

Definition 6 (Subpartition of a collection of partitions) Consider a collection
of B partitions of X denoted by Pb, b = 1, . . . , B. A subpartition of this collection is a
partition P∗B made of nonempty subsets C ⊂ X which satisfy the following constraint : for
all C ∈ P∗B, there exists (C1, . . . , CB) ∈ P1 × · · · × PB such that

C ⊆
B⋂
b=1

Cb .

We denote P∗B =
⋂
b≤B Pb.

One may easily see that P∗B is a subpartition of any of the Pb’s, and the largest one
in the sense that any partition P which is a subpartition of Pb for all b ∈ {1, . . . , B} is a
subpartition of P∗B. The case where the partitions are obtained from a binary tree structure
is of particular interest as we shall consider tree-based piecewise constant scoring rules
later on. Incidentally, it should be noticed that, from a computational perspective, the
underlying tree structures considerably help in getting the cells of P∗B explicitly. We refer
to the Appendix for further details.

Now consider a collection of piecewise constant scoring rules sb, b = 1, . . . , B, and
denote their associated (minimal) partitions by Pb. Each scoring rule sb naturally induces
a ranking (or a preorder) �∗b on the partition P∗B. Indeed, for all (C, C′) ∈ P∗2B , one writes
by definition C �∗b C′ (respectively, C ≺∗b C′) if and only if Cb �∗b C′b (respectively, Cb ≺∗b C′b)
where (Cb, C′b) ∈ P2

b are such that C × C′ ⊂ Cb × C′b.
The collection of scoring rules leads to a collection of B rankings on P∗B. Such a collection

is called a profile in voting theory. Now, based on this profile, we would like to define a
”central ranking” or a consensus. Whereas the mean, or the median, naturally provides
such a summary when considering scalar data, various meanings can be given to this notion
for rankings (see Appendix B).

3.2 Probabilistic measures of scoring agreement

The purpose of this subsection is to extend the concept of measures of agreement for rankings
to scoring rules defined over a general space X which is not necessarily finite. In practice,
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however, we will only consider the case of piecewise constant scoring rules and we shall rely
on the definition of the probabilistic Kendall tau.

Notations. We already introduced the notation �s for the preorder relation over the cells
of a partition P as induced by a piecewise scoring rule s. We shall use the ’curly’ notation for
the preorder relation 4s on X which is described through the following condition: ∀C, C′ ∈
P, we have x 4s x

′, ∀x ∈ C, ∀x′ ∈ C′, if and only if C �s C′. This is also equivalent to
s(x) ≤ s(x′), ∀x ∈ C, ∀x′ ∈ C′. We now introduce a measure of similarity for preorders on
X induced by scoring rules s1 and s2.

We recall here the definition of the theoretical Kendall τ between two random variables.

Definition 7 (Probabilistic Kendall τ) Let (Z1, Z2) be two random variables defined
on the same probability space. The probabilistic Kendall τ is defined as

τ(Z1, Z2) = 1− 2dτ (Z1, Z2) ,

with:

dτ (Z1, Z2) = P{(Z1 − Z ′1) · (Z2 − Z ′2) < 0}+
1

2
P{Z1 = Z ′1, Z2 6= Z ′2}

+
1

2
P{Z1 6= Z ′1, Z2 = Z ′2}.

where (Z ′1, Z
′
2) is an independent copy of the pair (Z1, Z2).

As shown by the following result, whose proof is left to the reader, the Kendall τ for
the pair (s(X), Y ) is related to AUC(s).

Proposition 8 We use the notation p = P{Y = 1}. For any real-valued scoring rule s, we
have:

1

2
(1− τ(s(X), Y )) = 2p(1− p) (1−AUC(s)) +

1

2
P{s(X) 6= s(X ′) , Y = Y ′} .

For given scoring rules s1 and s2 and considering the probabilistic Kendall tau for
random variables s1(X) and s2(X), we can set: dX(s1, s2) = dτ (s1(X), s2(X)). One may
easily check that dX defines a distance between the orderings 4s1 and 4s2 induced by s1

and s2 on the set X (which is supposed to coincide with the support of the distribution
of X). The following proposition shows that the deviation between scoring rules in terms
of AUC is controlled by a quantity involving the probabilistic agreement based on Kendall
tau.

Proposition 9 (AUC and Kendall τ) Assume p ∈ (0, 1). For any scoring rules s1 and
s2 on X , we have:

|AUC(s1)−AUC(s2)| ≤ dX(s1, s2)

2p(1− p)
=

1− τX(s1, s2)

4p(1− p)
.
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The converse inequality does not hold in general. Indeed, scoring rules with same AUC
may yield to different rankings. However, the following result guarantees that a scoring rule
with a nearly optimal AUC is close to the optimal scoring rules in the sense of Kendall tau,
under the additional assumption that the noise condition introduced in Clémençon et al.
(2008) is fulfilled.

Proposition 10 (Kendall τ and optimal AUC) Assume that the random variable η(X)
is continuous and that there exist c <∞ and a ∈ (0, 1) such that:

∀x ∈ X , E
[
|η(X)− η(x)|−a

]
≤ c . (1)

Then, we have, for any scoring rule s and any optimal scoring rule s∗ ∈ S∗:

1− τX(s∗, s) ≤ C · (AUC∗ −AUC(s))a/(1+a) ,

with C = 3 · c1/(1+a) · (2p(1− p))a/(1+a) .

Remark 11 (On the noise condition) As shown in previous work, the condition (1) is
rather weak. Indeed, it is fulfilled for any a ∈ (0, 1) as soon the probability density function
of η(X) is bounded (see Corollary 8 in Clémençon et al. (2008)).

The next result shows the connection between the Kendall tau distance between pre-
orders on X induced by scoring rules s1 and s2 that are both constant on the cells of a
partition P and a specific notion of distance between the rankings �s1 and �s2 on P.

Lemma 12 Let s1, s2, two piecewise constant scoring rules. We have:

dX(s1, s2) = 2
∑

1≤k<l≤K
µ(Ck)µ(Cl) · Uk,l(�s1 ,�s2) , (2)

where, for two orderings �, �′ on a partition of cells {Ck : k = 1, . . . ,K}, we have:

Uk,l(�,�′) = I{(R�(Ck)−R�(Cl))(R�′(Ck)−R�′(Cl)) < 0}

+
1

2
I{R�(Ck) = s�(Cl), R�′(Ck) 6= R�′(Cl)}

+
1

2
I{R�′(Ck) = R�′(Cl), R�(Ck) 6= R�(Cl)} .

The proof is straightforward and thus omitted.

Notice that the term Uk,l(�s1 ,�s2) involved in Eq. (2) is equal to 1 when the cells Ck and
Cl are not sorted in the same order by s1 and s2 (in absence of ties), to 1/2 when they are tied
for one ranking but not for the other, and to 0 otherwise. As a consequence, the agreement
τX(s1, s2) may be viewed as a ”weighted version” of the rate of concordant pairs of the
cells of P measured by the classical Kendall τ (see the Appendix B). A statistical version
of τX(s1, s2) is obtained by replacing the values of µ(Ck) by their empirical counterparts in
Eq. (2). We thus set:

τ̂X(s1, s2) = 1− 2d̂X(s1, s2), (3)
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where d̂X(s1, s2) = 2/(n(n−1))
∑

i<jK(Xi, Xj) is a U -statistic of degree 2 with symmetric
kernel given by:

K(x, x′) = I{(s1(x)− s1(x′)) · (s2(x)− s2(x′)) < 0}+
1

2
I{s1(x) = s1(x′), s2(x) 6= s2(x′)}

+
1

2
I{s1(x) 6= s1(x′), s2(x) = s2(x′)} .

Remark 13 Other measures of agreement between 4s1 and 4s2 could be considered al-
ternatively. For instance the definitions previously stated can easily be extended to the
Spearman correlation coefficient ρX(s1, s2) (see Appendix B), that is the linear correlation
coefficient between the random variables Fs1(s1(X)) and Fs2(s2(X)), where Fsi denotes the
cdf of si(X), i ∈ {1, 2}.

3.3 Median rankings

The method for aggregating rankings we consider here relies on the so-called median pro-
cedure, which belongs to the family of metric aggregation procedures (see Barthélémy and
Montjardet (1981) for further details). Let d(., .) be some metric or dissimilarity measure
on the set of rankings on a finite set Z. By definition, a median ranking among a profile
Π = {�k: 1 ≤ k ≤ K} with respect to d is any ranking �med on Z that minimizes the sum

∆Π(�)
def
=
∑K

k=1 d(�,�k) over the set R(Z) of all rankings � on Z:

∆Π(�med) = min
�: ranking on Z

∆Π(�). (4)

Notice that, when Z is of cardinality N <∞, there are

#R(Z) =

N∑
k=1

(−1)k
k∑

m=1

(−1)m
(

k
m

)
mN

possible rankings on Z (that is the sum over k of the number of surjective mappings from
{1, . . . , N} to {1, . . . , k}) and in most cases, the computation of (metric) median rankings
leads to NP-hard combinatorial optimization problems (see Wakabayashi (1998), Hudry
(2004), Hudry (2008) and the references therein). It is worth noticing that a median ranking
is far from being unique in general. One may immediately check for instance that any
ranking among the profile made of all rankings on Z = {1, 2} is a median in Kendall
sense, i.e. for the metric dτ . From a practical perspective, acceptably good solutions can
be computed in a reasonable amount of time by means of metaheuristics such as simulated
annealing, genetic algorithms or tabu search (see Spall (2003)). The description of these
computational aspects is beyond the scope of the present paper (see Charon and Hudry
(1998) or Laguna et al. (1999) for instance). We also refer to recent work in (Klementiev
et al. (2009)).

When it comes to preorders on a set X of infinite cardinality, defining a notion of
aggregation becomes harder. Given a pseudo-metric such as dτ and B ≥ 1 scoring rules
s1, . . . , sB on X , the existence of s̄ in S such that

∑B
b=1 dτ (s̄, sb) = mins

∑B
b=1 dτ (s, sb)

is not guaranteed in general. However, when considering piecewise constant scoring rules
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with corresponding finite subpartition P of X , the corresponding preorders are in one-to-one
correspondence with rankings on P and the minimum distance is thus effectively attained.

Aggregation of piecewise constant scoring rules. Consider a finite collection of piecewise
constant scoring rules ΣB = {s1, . . . , sB} on X , with B ≥ 1.

Definition 14 (True median scoring rule). Let S be a collection of scoring rules. We
call s̄B a median scoring rule for ΣB with respect to S if

s̄B = arg min
s∈S

∆B(s),

where ∆B(s) =
∑B

b=1 dX(s, sb) for s ∈ S.

The empirical median scoring rule is obtained in a similar way, but the true distance
dX is replaced by its empirical counterpart dτ̂X , see Eq. (3).

The ordinal approach. Metric aggregation procedures are not the only way to summarize
a profile of rankings. The so-called ”ordinal approach” provides a variety of alternative
techniques for combining rankings (or, more generally, preferences), returning to the famous
”Arrow’s voting paradox”. The ordinal approach consists of a series of duels (i.e. pairwise
comparisons) as in Condorcet’s method or successive tournaments as in the proportional
voting Hare system, see Fishburn (1973). Such approaches have recently been the subject
of a good deal of attention in the context of preference learning (also referred to as methods
for ranking by pairwise comparison, see Hüllermeier et al. (2008) for instance).

Ranks vs. Rankings. Let ΣB = {s1, . . . , sB}, B ≥ 1, be a collection of piecewise constant

scoring rules and X′(m) = {X ′1, . . . , X ′m} a collection of m ≥ 1 i.i.d. copies of the input
variable X. When it comes to rank the observations X ′i ”consensually”, two strategies can
be considered: (i) compute a ”median ranking rule” based on the B rankings of the cells for
the largest subpartition and use it for ranking the new data as previously described, or (ii)

compute, for each scoring rule sb, the related rank vector of the data set X′(m), and then a
”median rank vector”, i.e. a median ranking on the set X′(m) (data lying in a same cell of
the largest subpartition being tied). Although they are not equivalent, these two methods
generally produce similar results, especially when m is large. Indeed, considering medians
in the sense of probabilistic Kendall τ , it is sufficient to notice that the Kendall τ distance
dτ between rankings on X′(m) induced by two piecewise constant rules s1 and s2 can be
viewed as an empirical estimate of dX(s1, s2) based on the data set X′(m). Now assume the
collection ΣB is obtained from training data Dn. The difference between (i) and (ii) is that

(i) does not use the data to be ranked X′(m) but only relies on training data Dn. However,

when both the size of the training sample Dn and of the test data set X′(m) are large, the
two approaches lead to the optimization of related quantities.

4. Consistency of aggregated scoring rules

We now provide statistical results for the aggregated scoring rules in the spirit of random
forests (Breiman (2001)). In the context of classification, consistency theorems were derived
in Biau et al. (2008). Conditions for consistency of piecewise constant scoring rules have
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been studied in Clémençon and Vayatis (2009c) and Clémençon et al. (2011). Here, we
address the issue of AUC consistency of scoring rules obtained as medians over a profile of
consistent randomized scoring rules for the (probabilistic) Kendall τ distance. A randomized
scoring rule is a random element of the form ŝn(·, Z), depending on both the training sample
Dn = {(X1, Y1), . . . , (Xn, Yn)} and a random variable Z, taking values over a measurable
space Z, independent of Dn, which describes the randomization mechanism.

The AUC of a randomized scoring rule ŝn(·, Z) is given by:

AUC(ŝn(·, Z)) = P{ŝn(X,Z) < ŝn(X ′, Z) | (Y, Y ′) = (−1,+1)}

+
1

2
P{ŝn(X,Z) = ŝn(X ′, Z) | (Y, Y ′) = (−1,+1)},

where the conditional probabilities are taken over the joint probability of independent copies
(X,Y ) and (X,Y ′) and Z, given the training data Dn.

Definition 15 (AUC-Consistency) The randomized scoring rule ŝn is said to be AUC-
consistent (respectively, strongly AUC-consistent) when the convergence

AUC(ŝn(·, Z))→ AUC∗ as n→∞ ,

holds in probability (respectively, almost-surely).

Let B ≥ 1. Given Dn, one may draw B i.i.d. copies Z1, . . . , ZB of Z, yielding the
collection Σ̂B of scoring rules ŝn(·, Zj), 1 ≤ j ≤ B. Let S be a collection of scoring rules and

suppose that s̄B is a median scoring rule for the profile Σ̂B with respect to S in the sense
of Definition 14. The next result shows that AUC-consistency is preserved for a median
scoring rule of AUC-consistent randomized scoring rules.

Theorem 16 (Consistency and aggregation) Set B ≥ 1. Consider a class S of
scoring rules. Assume that:

• the assumptions on the distribution of (X,Y ) in Proposition 10 are fulfilled.

• the randomized scoring rule ŝn(·, Z) is AUC-consistent (respectively, strongly AUC-
consistent).

• for all n,B ≥ 1, and for any sample Dn, there exists a median scoring rule s̄B ∈ S
for the collection {ŝn(·, Zj), 1 ≤ j ≤ B} with respect to S.

• we have S∗ ∩ S 6= ∅.

Then, the aggregated scoring rule s̄B is AUC-consistent (respectively, strongly AUC-consistent).

We point out that the last assumption which states that the class S of candidate median
scoring rules contains at least one optimal scoring function can be removed at the cost of
an extra bias term in the rate bound. Consistency results are then derived by picking the
median scoring rule, for each n, in a class Sn such that there exists a sequence s̃n ∈ Sn
which fulfills AUC(s̃n) → AUC∗ as n → ∞. This remark covers the special case where

11
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ŝn(·, Z) is a piecewise constant scoring rule with a range of cardinality kn ↑ ∞ and the
median is taken over the set Sn of scoring functions with range of cardinality less than kBn .
The bias is then of order 1/k2B

n under mild smoothness conditions on ROC∗, as shown by
Proposition 7 in Clémençon and Vayatis (2009b).

From a practical perspective, median computation is based on empirical versions of the
probabilistic Kendall τ involved (see Eq. (3)). The following result shows the existence of
scoring rules that are asymptotically median with respect to dX , provided that the class
S over which the median is computed is not too complex. Here we formulate the result in
terms of a VC major class of functions of finite dimension (see Dudley (1999) for instance).
We first introduce the following notation, for any s ∈ S:

∆̂B,m(s) =
B∑
j=1

d̂X(s, sj) ,

where the estimate d̂X of dX is based on m ≥ 1 independent copies of X.

Theorem 17 (Empirical median computation) Fix B ≥ 1. Let ΣB = {s1, . . . , sB} be
a finite collection scoring rules and S a class of scoring rules which is a VC major class. We
consider the empirical median scoring rule s̃m = arg mins∈S ∆̂B,m(s). Then, as m → ∞,
we have

∆B(s̃m)→ min
s∈S

∆B(s) with probability one .

The empirical aggregated scoring rule we consider in the next result relies on two data
samples. The training sample Dn, completed by the randomization on Z, leads to a col-
lection of scoring rules which are instances of the randomized scoring rule. Then a sample
X′(m) = {X ′1, . . . , X ′m} is used to compute the empirical median. Combining the two pre-
ceding theorems, we finally obtain the consistency result for the aggregated scoring rule.

Corollary 18 Fix B ≥ 1 and S a VC major class of scoring rules. Consider a training
sample Dn of size n with i.i.d. copies of (X,Y ) and a sample X′(m) of size m with i.i.d.
copies of X. We consider the collection Σ̂B of randomized scoring rules ŝn(·, Zj) in S
built out of Dn and we introduce the empirical median of Σ̂B with respect to S obtained by
using the test set X′(m). We denote this fully empirical median scoring rule by ŝn,m. If the
assumptions of Theorem 16 are satisfied, then we have:

AUC(ŝn,m)
P−→ AUC∗ as n,m→∞ .

The results stated above can be extended to any median scoring rule based on a pseudo-
metric d on the set of preorders on S which is equivalent to dX , i.e. such that c1dX ≤ d ≤
c2dX , with 0 < c1 ≤ c2 < ∞. Moreover, other complexity assumptions about the class S
over which optimization is performed could be considered (see Clémençon et al. (2008)).
The present choice of VC major classes captures the complexity of scoring rules which will
be considered in the next section (see Proposition 6 in Clémençon et al. (2011)).

12



Ranking Forests

5. Ranking Forests

In this section, we introduce an implementation of the principles described in the previous
sections for the aggregation of scoring rules. Here we focus on specific piecewise constant
scoring rules based on ranking trees (Clémençon and Vayatis (2009c), Clémençon et al.
(2011)). We propose various schemes for randomizing the features of these trees. We
eventually describe the Ranking Forest algorithm which extends to bipartite ranking
the celebrated Random Forests algorithm (Breiman (1996), Amit and Geman (1997),
Breiman (2001)).

5.1 Tree-structured scoring rules

We consider piecewise constant scoring rules which can be represented in a left-right oriented
binary tree. We recall that, in the context of classification, decision trees are very useful as
they offer the possibility of interpretation for the selected classification rule. In presence of
classification data, one may entirely characterize a classification rule by means of a partition
P of the input space X and a training set Dn = {(Xi, Yi) : 1 ≤ i ≤ n} of i.i.d. copies of
the pair (X,Y ) through a majority voting scheme. Indeed, a new instance x ∈ X would
receive the label corresponding to the most frequent one among the data points Xi within
the cell C ∈ P such that x ∈ C. However, in bipartite ranking, the notion of local majority
vote makes no sense since the ranking problem is of global nature. As a matter of fact, the
issue is to rank the cells of the partition with respect to each other. It is assumed that ties
among the ordered cells can be observed in the subsequent analysis and the usual mid-rank
convention is adopted. We refer to the Appendix A for a rigorous definition of the notion
of ranking in the case of ties. We also point out that the term partial ranking is often used
in this context (see Diaconis (1989), Fagin et al. (2006)).

When restricting the search of candidates to the collection of piecewise constant scoring
rules, the learning problem boils down here to finding a partition P = {Ck}1≤k≤K of X ,
with 1 ≤ K < ∞, together with a ranking �P of the Ck’s (i.e. a preorder on P), so that
the ROC curve of the scoring rule given by

sP,�P (x) =

K∑
k=1

(K −R�P (Ck) + 1) · I{x ∈ Ck}

be as close as possible of ROC∗, where R�P (Ck) denotes the rank of Ck, 1 ≤ k ≤ K, among
all cells of P according to �P .

We now describe such scoring rules in the case where the partition arises from a tree
structure. For such a partition, a ranking of the cells can be simply defined by equipping
the tree with a left-right orientation. In order to describe how a ranking tree can be built
so as to maximize AUC, further concepts are required. By master ranking tree TD, here
we mean a complete, left-right oriented, rooted binary tree with depth D ≥ 1. At depth
d = 0, the entire input space C0,0 = X forms its root. Every non terminal node (d, k),
with 0 ≤ d < D and 0 ≤ k < 2d, is in correspondence with a subset Cd,k ⊂ X , and has
two siblings, each one corresponding to a subcell obtained by splitting Cd,k: the left sibling
Cd+1,2k is related to the leaf (d+ 1, 2k), while the right sibling Cd+1,2k+1 = Cd,k \Cd+1,2k is
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related to the leaf (d+ 1, 2k + 1) in the tree structure. We point out that an asymmetry is
introduced at this point as the left sibling is assumed to have a lower rank (or higher score)
than the right sibling in the ranking of the partition’s cells. With this convention, it is easy
to use any subtree T ⊂ TD as a ranking rule. A ranking of the terminal cells naturally
results from the left-right orientation of the tree, the top of the list being represented by
the cell in the bottom left corner of the tree, and is related to the scoring rule defined by:
∀x ∈ X ,

sT (x) =
∑

(d,k): terminal node of T

(2D − 2D−dk) · I{x ∈ Cd,k} .

The score value sT (x) can be computed in a top-down manner, using the underlying ”heap”
structure. Starting from the initial value 2D at the root node, at each subsequent inner
node (d, k), 2D−(d+1) is substracted to the current value of the score if x moves down to the
right sibling (d+ 1, 2k+ 1), whereas one leaves the score unchanged if x moves down to the
left sibling. The procedure is depicted in Figure 2.

Figure 2: Ranking tree - the ranks can be read on the leaves of the tree from left (8 is the
highest rank/score) to right (1 corresponds to the smallest rank/score). In case
of a pruned tree (such as the one with leaves taken to be the shaded nodes), the
orientation is conserved.

5.2 Feature randomization in TreeRank

The concept of bagging (for bootstrap aggregating technique) was introduced in Breiman
(1996). The major novelty in the Random Forest method (Breiman (2001)) consisted in
randomizing the features used for recursively splitting the nodes of the classification/regression
trees involved in the committee-based prediction procedure. Our reference method for ag-
gregating tree-based scoring rules is the TreeRank procedure (we refer to the Appendix
and the papers Clémençon and Vayatis (2009c), Clémençon et al. (2011) for a full descrip-
tion). Beyond the specific structure of the master ranking tree, an additional ingredient
in the growing stage is the splitting criterion. It turns out that a natural choice is a
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data-dependent and cost-sensitive classification error functional and its optimization can
be performed with any binary classification method. This procedure for node splitting is
called LeafRank. We point out that LeafRank implements a classifier and when this
classifier is chosen to be a decision tree, this permits an additional randomization step. We
thus propose two possible feature randomization schemes FT for TreeRank and FL for
LeafRank.

FT : At each node (d, k) of the master ranking tree TD, draw at random a set of q0 ≤ q
indexes {i1, . . . , iq0} ⊂ {1, . . . , q}. Implement the LeafRank splitting procedure based
on the descriptor (X(i1), . . . , X(iq0 )) to split the cell Cd,k.

FL: For each node (d, k) of the master ranking tree TD, at each node of the cost-sensitive
classification tree describing the split of the cell Cd,k into two children, draw at random
a set of q1 ≤ q indexes {j1, . . . , jq1} ⊂ {1, . . . , q} and perform an axis-parallel cut using
the descriptor (X(j1), . . . , X(jq1 )).

We underline that, of course, the randomization strategy FT can be applied to the
TreeRank algorithm whatever the classification technique chosen for the splitting step.
In addition, when the latter is itself a tree-based method, these randomization procedures do
not exclude each other. At each node (d, k) of the ranking tree, one may first draw at random
a collection Fd,k of q0 features and then, when growing the cost-sensitive classification tree
describing Cd,k’s split, divide each node based on a sub-collection of q1 ≤ q0 features drawn
at random among Fd,k.

5.3 The Ranking Forest algorithm

Now that the rationale behind the Ranking Forest procedure has been given, we describe
its successive steps in detail. Based on a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)},
the algorithm is performed in three stages, as follows.

Remark 19 (On tuning parameters.) As mentioned in 3.3, aggregating ranking rules is
computationally expensive. The empirical results displayed in Section 6 suggest to aggregate
several dozens of randomized ranking trees of moderate, or even small, depth built from
bootstrap samples of size n∗ ≤ n.

Remark 20 (”Plug-in” bagging.) As pointed out in Clémençon and Vayatis (2009c)
(see Remark 6 therein), given an ordered partition (P,RP) of the feature space X , a ”plug-
in” estimate of the (optimal scoring) function S = Hη ◦η can be automatically deduced from
any ordered partition (or piecewise constant scoring rule equivalently) and the data Dn,
where Hη denotes the conditional cdf of η(X) given Y = −1. This scoring rule is somehow
canonical in the sense that, given Y = −1, H(X) is distributed as a uniform r.v. on [0, 1],
with H being the conditional distribution of X. Considering a partition P = {Ck}1≤k≤K
equipped with a ranking RP , the plug-in estimate is given by

ŜP,RP (x) =

K∑
k=1

α̂(Rk) · I{x ∈ Ck}, x ∈ X , (5)
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Ranking Forest

1. Parameters. B number of bootstrap replicates, n∗ bootstrap sample size,
TreeRank tuning parameters (depth D and presence/absence of pruning),
(FT , FL) feature randomization strategy, d pseudo-metric.

2. Bootstrap profile makeup.

(a) (Resampling step.) Build B independent bootstrap samples D∗1, . . . , D∗B,
by drawing with replacement n∗ ·B pairs among the original training sample
Dn.

(b) (Randomized TreeRank.) For b = 1, . . . , B, run TreeRank combined
with the feature randomization method (FT , FL) based on the sample D∗b ,
yielding the ranking tree T ∗b , related to the partition P∗b of the space X .

3. Aggregation. Compute the largest subpartition partition P∗ =
⋂B
b=1 P∗b . Let

�∗b be the ranking of the cells of P∗ induced by T ∗b , b = 1, . . . , B. Compute a
median ranking �∗ related to the bootstrap profile Π∗ = {�∗b : 1 ≤ b ≤ B} with
respect to the metric d on R(P∗):

�∗= arg min
�∈R(P∗)

dΠ∗(�),

as well as the scoring rule s�∗,P∗(x).

where Rk =
⋃
l: R(k)≤R(l)Cl. Notice that, as a scoring rule, ŜP,RP yields the same ranking

as sP,RP , provided that α̂(Ck) > 0 for all k = 1, . . . , K. Adapting the idea proposed
in subsection 6.1 of Breiman (1996) in the classification context, an alternative to the
rank aggregation approach proposed here naturally consists in computing the average of the
piecewise-constant scoring rules S̃∗T ∗b

thus defined by the bootstrap ranking trees and consider

the rankings induced by the latter. This method we call ”plug-in bagging” is however less
effective in many situations, due to the inaccuracy/variability of the probability estimates
involved.

Ranking stability. Let Θ = X × {−1,+1}. From the view developed in this paper, a
ranking algorithm is a function S that maps any data sample Dn ∈ Θn, n ≥ 1, to a scoring
rule ŝn. In the ranking context, we will say that a learning algorithm is ”stable” when the
preorder on X it outputs is not much affected by small changes in the training set. We
propose a natural way of measuring ranking (in)stability, through the computation of the
following quantity:

Instabn(S) = E
(
dX
(
ŝn, ŝ

′
n

))
, (6)
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where the expectation is taken over two independent training samples Dn and D′n, both
made of n i.i.d. copies of the pair (X,Y ), and ŝn = S(Dn), ŝ′n = S(D′n). We highlight the
fact that the bootstrap stage of Ranking Forest can be used for assessing the stability

of the base ranking algorithm. Indeed, set ŝ
(b)
n∗ = S(D∗b ) and ŝ

(b′)
n∗ = S(D∗b′) obtained from

two bootstrap samples. Then, the quantity:

̂Instabn(S) =
2

B(B − 1)

∑
1≤b<b′≤B

d̂X

(
ŝ

(b)
n∗ , ŝ

(b′)
n∗

)
,

can be possibly interpreted as a bootstrap estimate of (6).

We finally underline that the outputs of the Ranking Forest can also be used for mon-
itoring ranking performance, in an analogous fashion to Random Forest in the classifica-
tion/regression context (see subsection 3.1 in Breiman (2001) and the references therein).
An out-of-bag estimate of the AUC criterion can be obtained by considering, for all pairs
(X,Y ) and (X ′, Y ′) in the original training sample, those ranking trees that are built from
bootstrap samples containing neither of them, avoiding this way the use of a test data set.

6. Numerical experiments

The purpose of this section is to measure the impact of aggregation with resampling and
feature randomization on the performance of the TreeRank/LeafRank procedure.

Data sets. We have considered artificial data sets where class-conditional distributions of X
goven Y = ±1 are gaussian in dimensions 10 and 20. Three examples are considered here:

• RF 10 - class-conditional distributions have the same means (µ+ = µ− = 0) but
different covariance matrices (Σ+ = Id10 and Σ− = 1.023 · Id10); optimal AUC is
AUC∗ = 0.76;

• RF 20 - class-conditional distributions have different mean vectors (||µ+−µ−|| = 0.9)
and covariance matrices (Σ+ = Id20 and Σ− = 1.23 · Id20); optimal AUC is AUC∗ =
0.77;

• RF 10 sparse - class-conditional distributions have a 6-dimensional marginal distribu-
tion in common, and the regression function η(x) depends on four components of the
input vector X onlyoptimal AUC is AUC∗ = 0.89.

With these data sets, the series of experiments below capture the influence on ranking
performance of separability, dimension, and sparsity.

Sample sizes. In order to quantify the impact of bagging and random feature selection
on the accuracy/stability of the resulting ranking rule, the algorithm has been run under
various configurations for each data set on 30 independent training samples for each sample
size ranging from n = 250 to n = 3000. The test sample was taken of size 3000 in all
experiments.

Variants of TreeRank and parameters. In the intensive comparisons we have performed,
we have considered the following variants:
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• Plain TreeRank/LeafRank - in this version, all input dimensions are involved
in the splitting stage; the maximum depth of the master ranking tree is 10, and
the maximum depth of the ranking tree using orthogonal splits in the LeafRank
procedure is 8 for the use case RF 10 sparse and also 10 for the two others.

• Bagging Ranking Trees - the bagging version uses the plain TreeRank/LeafRank
as described above with bootstrap samples of size B = 20, B = 50, and B = 100.

• Ranking Forests - the forest version involves additional parameters for feature
randomization which can affect both the master ranking tree (FT for TreeRank)
and the splitting rule (FL for LeafRank); these parameters indicate the number of
dimensions randomly chosen along which the best split is chosen ; we have tried six
different sets of parameters (Cases 1 to 6) where FT takes values 3, 5, and 10 (or 20 for
the data set RF 20), and FL takes values 1, 3, and 5 (plus 10 for the data set RF 20);
bootstrap samples are chosen of size B = 1 (single tree with feature randomization),
B = 20, B = 50, and B = 100.

In the case of bagging and forests, aggregation is performed by taking the pointwise median
value of ranks for the collection of ranking trees which have been estimated on each bootstrap
sample. This choice allows for very fast evaluations of the aggregated scoring rule (see the
last paragraph of subsection 3.3 for a justification).

Performance. For each variant and each set of parameters and sample size, we performed
30 replications using independent training sets. These replications are used to derive per-
formance results on a same test set. Performance is measured through a collection of
indicators:

• AUC and σ̂2 - Average AUC and standar type error are computed based on the test
sample results over the 30 replications;

• ∆Env - this indicator quantifies the accuracy of the variant through the relative
improvement of the envelope on the ROC curve over the 30 replications compared
to the plain TreeRank/LeafRank (e.g. if ∆Env = −30% for Bagging it means
that the envelope of the ROC curve is 30% narrower than with TreeRank); the more
negative the better the performance accuracy;

• Instabτ - Instability measure, estimate of (6), which reproduces the quantity ̂Instabn(S)
using the Kendal τ as a distance; the smaller the quantity the more stable the method;

• DCG and AP - the Discounted Cumulative Gain and the Average Precision provide
measures which are sensitive to the top ranked instances; they can both be expressed
as conditional linear rank statistics (see Clémençon and Vayatis (2007) and Clémençon
and Vayatis (2009a)) with score-generating function given by 1/(ln(1 + x)) (DCG) or
1/x (AP);

• HR@u% - the Hit Ratio at u% is a relative count of positive instances among a
proportion u of best scored instances.
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Figure 3: Comparison of envelopes on ROC curves - Results obtained with Ranking
Forests with B = 50 (blue) and 100 (red). Left display shows results on the
data set RF 10 while the right display corresponds to the curves obtained on the
data set RF 10 sparse. Ranking Forests used correspond to Case 3, training
size is 2000, and optimal ROC curve is in thick red.

Figure 4: Comparison of envelopes on ROC curves - Results obtained with Bagging (red)
and Ranking Forests (blue) with B = 50. Left display shows results on the
data set RF 10 while the right display corresponds to the curves obtained on the
data set RF 10 sparse. Ranking Forests used correspond to Case 3, training
size is 2000, and optimal ROC curve is in thick red.

19
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RF 10 - AUC∗ = 0.756 - dependence on aggregation

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.628 (±0.013) - 0.013 1.574 0.59 66% 64%

Bagging - -
20 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%
50 0.686 (±0.008) −29% 0.009 1.745 0.64 78% 74%
100 0.689 (±0.009) −29% 0.009 1.819 0.65 78% 74%

1 0.508 (±0.027) +65% 0.016 1.563 0.50 49% 50%
Forest

5 5
20 0.550 (±0.026) +55% 0.015 2.059 0.53 57% 55%

Case No. 1
50 0.567 (±0.025) +46% 0.015 2.210 0.55 59% 57%
100 0.642 (±0.016) −7% 0.011 2.288 0.61 71% 67%

1 0.525 (±0.025) +68% 0.015 1.564 0.51 52% 52%
Forest

10 5
20 0.577 (±0.024) +22% 0.014 2.012 0.56 61% 59%

Case No. 2
50 0.615 (±0.020) +21% 0.013 2.187 0.58 67% 64%
100 0.585 (±0.025) +34% 0.014 2.357 0.56 62% 60%

1 0.512 (±0.024) +61% 0.016 1.564 0.50 49% 49%
Forest

5 3
20 0.546 (±0.024) +35% 0.015 2.047 0.53 56% 54%

Case No. 3
50 0.577 (±0.025) +35% 0.014 2.215 0.56 61% 59%
100 0.648 (±0.019) +23% 0.011 2.294 0.61 72% 68%

1 0.512 (±0.023) +51% 0.015 1.570 0.50 47% 49%
Forest

3 3
20 0.537 (±0.026) +27% 0.015 2.067 0.52 54% 53%

Case No. 4
50 0.563 (±0.028) +42% 0.015 2.249 0.54 58% 57%
100 0.595 (±0.019) 0% 0.014 2.345 0.57 64% 61%

1 0.516 (±0.029) +95% 0.016 1.564 0.51 51% 51%
Forest

10 3
20 0.582 (±0.022) +32% 0.014 2.016 0.56 62% 59%

Case No. 5
50 0.616 (±0.022) +11% 0.013 2.161 0.59 67% 64%
100 0.579 (±0.023) +30% 0.014 2.423 0.56 61% 59%

1 0.517 (±0.028) +81% 0.016 1.567 0.51 51% 52%
Forest

3 1
20 0.545 (±0.026) +38% 0.015 2.075 0.53 56% 55%

Case No. 6
50 0.565 (±0.024) +28% 0.015 2.224 0.55 59% 57%
100 0.647 (±0.016) +3% 0.011 2.306 0.61 70% 67%

Table 1: Comparison of TreeRank/LeafRank and Bagging with Ranking Forests
- Impact of randomization (FT , FL) and resampling with aggregation (B) on the
data set RF 10 with training sample size n = 2000.

These indicators capture the most important properties as far as quality assessment for
scoring rules is concerned: average and local performance, stability of the rule, accuracy of
ROC performance.
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RF 20 - AUC∗ = 0.773 - dependence on aggregation

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.613 (±0.013) - 0.013 1.614 0.59 67% 64%

Bagging - -
20 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%
50 0.699 (±0.006) −43% 0.008 1.816 0.66 81% 76%

1 0.534 (±0.033) +120% 0.015 1.599 0.53 56% 56%
Forest

10 10
20 0.623 (±0.028) +78% 0.013 2.017 0.60 68% 65%

Case No. 1
50 0.667 (±0.021) +33% 0.011 2.017 0.63 73% 70%
100 0.726 (±0.011) −25% 0.007 2.160 0.67 80% 77%

1 0.551 (±0.033) +114% 0.015 1.599 0.54 58% 57%
Forest

20 10
20 0.673 (±0.019) +28% 0.011 1.989 0.64 73% 70%

Case No. 2
50 0.706 (±0.012) −15% 0.009 2.104 0.66 77% 74%
100 0.693 (±0.014) 0% 0.009 2.250 0.65 76% 73%

1 0.534 (±0.030) +100% 0.015 1.599 0.53 56% 55%
Forest

10 5
20 0.625 (±0.025) +64% 0.013 2.077 0.60 68% 65%

Case No. 3
50 0.675 (±0.013) −6% 0.011 2.179 0.64 75% 71%
100 0.726 (±0.009) −35% 0.007 2.171 0.67 80% 77%

1 0.516 (±0.038) +138% 0.016 1.599 0.52 53% 53%
Forest

5 5
20 0.585 (±0.030) +93% 0.014 2.050 0.57 63% 61%

Case No. 4
50 0.625 (±0.026) +50% 0.013 2.217 0.60 67% 65%
100 0.702 (±0.013) −16% 0.009 2.247 0.66 78% 74%

1 0.547 (±0.034) +123% 0.015 1.598 0.54 58% 56%
Forest

20 5
20 0.666 (±0.020) +25% 0.011 2.007 0.63 74% 70%

Case No. 5
50 0.705 (±0.011) −23% 0.009 2.128 0.66 78% 74%
100 0.658 (±0.021) +24% 0.011 2.329 0.62 71% 69%

1 0.510 (±0.040) +157% 0.016 1.597 0.51 52% 52%
Forest

5 1
20 0.574 (±0.035) +97% 0.015 2.120 0.56 61% 59%

Case No. 6
50 0.614 (±0.027) +64% 0.014 2.238 0.59 67% 64%
100 0.710 (±0.011) −19% 0.009 2.261 0.66 78% 75%

Table 2: Comparison of TreeRank/LeafRank and Bagging with Ranking Forests
- Impact of randomization (FT , FL) and resampling with aggregation (B) on the
data set RF 20 with training sample size n = 2000.
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RF 10 sparse - AUC∗ = 0.89 - dependence on aggregation B

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.826 (±0.007) - 0.007 1.622 0.70 84% 83%

Bagging - -
20 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%
50 0.867 (±0.003) −35% 0.004 1.650 0.74 89% 88%
100 0.868 (±0.003) −36% 0.004 1.708 0.74 89% 88%

1 0.630 (±0.071) +502% 0.014 1.632 0.58 66% 63%
Forest

5 5
20 0.814 (±0.018) +61% 0.008 1.977 0.71 86% 84%

Case No. 1
50 0.832 (±0.012) +22% 0.006 2.163 0.72 88% 85%
100 0.858 (±0.006) −30% 0.004 2.110 0.74 90% 88%

1 0.636 (±0.083) +588% 0.014 1.598 0.59 71% 66%
Forest

10 5
20 0.845 (±0.010) −12% 0.005 1.893 0.73 89% 86%

Case No. 2
50 0.863 (±0.005) −43% 0.004 1.918 0.74 90% 88%
100 0.869 (±0.003) −51% 0.003 1.956 0.74 91% 89%

1 0.622 (±0.071) +553% 0.014 1.607 0.57 64% 60%
Forest

5 3
20 0.809 (±0.010) +72% 0.008 2.060 0.71 86% 83%

Case No. 3
50 0.844 (±0.009) −15% 0.005 2.089 0.73 89% 87%
100 0.859 (±0.005) −38% 0.004 2.133 0.74 90% 88%

1 0.580 (±0.083) +672% 0.015 1.612 0.55 61% 59%
Forest

3 3
20 0.772 (±0.036) +195% 0.010 2.056 0.68 83% 79%

Case No. 4
50 0.829 (±0.015) +39% 0.007 2.211 0.72 88% 85%
100 0.849 (±0.008) −10% 0.005 2.253 0.73 90% 87%

1 0.661 (±0.069) +480% 0.014 1.602 0.60 69% 66%
Forest

10 3
20 0.840 (±0.010) −9% 0.006 1.926 0.73 88% 86%

Case No. 5
50 0.863 (±0.005) −41% 0.004 1.974 0.74 90% 88%
100 0.868 (±0.010) −54% 0.003 1.990 0.74 91% 89%

1 0.593 (±0.073) +566% 0.015 1.611 0.55 63% 60%
Forest

3 1
20 0.745 (±0.036) +228% 0.011 2.162 0.66 79% 76%

Case No. 6
50 0.807 (±0.026) +108% 0.008 2.252 0.70 86% 83%
100 0.835 (±0.010) −6% 0.006 2.318 0.72 88% 85%

Table 3: Comparison of TreeRank/LeafRank and Bagging with Ranking Forests
- Impact of randomization (FT , FL) and resampling with aggregation (B) on the
data set RF 10 sparse with training sample size n = 2000.

Results and comments. Results are collected in a series of Tables 1, 2, 3, 4, 5, 6. We also
report enveloppes on ROC curves over the series of replications of the experiments with the
same parameters (see Figures 3 and 4). We study in particular the impact of mixed effects
of randomization with sample size (Tables 1, 2, 3) or aggregation (Tables 4, 5, 6). Our
main observations are the following:
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• The sample size of the training set has a moderate impact on performance of Ranking
Forest while it helps significantly single trees in the plain TreeRank;

• In the case of small sample sizes, Ranking Forest with little randomization (Cases
2 and 5) boost performance compared to the plain TreeRank;

• Increasing the amount of aggregation always improves performance and accuracy ex-
cept in some situations in the non-sparse data sets (little randomization FT = d, B
large);

• Bagging with B = 20 ranking trees already improves plain TreeRank dramatically;

• Randomization reveals its power in the sparse data set; when all input variables are
relevant, highly randomized strategies (Cases 4 and 6) may fail to capture good scoring
rules unless a large amount of ranking trees are aggregated (B above 50).

These empirical results aim at illustrating the effect of the combination of rank aggrega-
tion and random feature selection on ranking accuracy/stability. A complete and detailed
empirical analysis of the merits and limitations of Ranking Forest is beyond the scope
of this paper and it will be the object of future work.

7. Conclusion

The major contribution of the paper was to show how to apply the principles of the Ran-
dom Forest approach to the ranking/scoring task. Several ways of randomizing and
aggregating ranking trees, such as those produced by the TreeRank algorithm, have been
rigorously described. We proposed a specific notion of stability in the ranking setup and
provided some preliminary background theory for ranking rule aggregation. Encouraging
experimental results based on artificial data have also been obtained, demonstrating how
bagging combined with feature randomization may significantly enhance ranking accuracy
and stability both at the same time. Truth be told, theoretical explanations for the suc-
cess of Ranking Forest in these situations are left to be found. Results obtained by
Friedman and Hall (2007) or Grandvalet (2004) for the bagging approach in the classifica-
tion/regression context suggest possible lines of research in this regard. At the same time,
further experiments, based on real data sets in particular, will be carried out in a dedi-
cated article in order to determine precisely the situations in which Ranking Forest is
competitive compared to alternative ranking methods.

Appendix A - Axioms for ranking rules

Throughout this paper, we call a ranking of the elements of a set Z any total preorder on
Z, i.e. a binary relation � for which the following axioms are checked.

1. (Totality) For all (z1, z2) ∈ Z2, either z1 � z2 or else z2 � z1 holds.

2. (Transitivity) For all (z1, z2, z3): if z1 � z2 and z2 � z3, then z1 � z3.
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S. Clémençon, M. Depecker & N. Vayatis

When the assertions z1 � z2 and z2 � z1 hold both at the same time, we write z1 � z2

and z1 ≺ z2 when solely the first one is true. Assuming in addition that Z has finite
cardinality #Z <∞, the rank of any element z ∈ Z is given by

R�(z) =
∑
z′∈Z

{
I{z′ ≺ z}+

1

2
I{z′ � z}

}
,

when using the standard mid-rank convention Kendall (1945), i.e. by assigning to tied
elements the average of the ranks they cover.

Any scoring rule s : Z → R naturally defines a ranking �s on Z: ∀(z1, z2) ∈ Z2, z1 �s z2

iff s(z1) ≤ s(z2). Equipped with these notations, it is clear that �R� coincides with � for
any ranking � on a finite set Z.

Appendix B - Agreement between rankings

The most widely used approach to the rank aggregation issue relies on the concept of measure
of agreement between rankings which uses pseudo-metrics. Since the seminal contribution
of (Kemeny (1959)), numerous ways of measuring agreement have been proposed in the
literature. Here we review three popular choices, originally introduced in the context of
nonparametric statistical testing (see Fagin et al. (2003) for instance).

Let � and �′ be two rankings on a finite set Z = {z1, . . . , zK}. The notation R�(z)
is used for the rank of the element z according to the ranking �.

Kendall τ . Consider the quantity dτ (�,�′), obtained by summing up all the terms

Ui,j(�,�′) = I{(R�(zi)−R�(zj))(R�′(zi)−R�′(zj)) < 0}

+
1

2
I{R�(zi) = s�(zj), R�′(zi) 6= R�′(zj)}

+
1

2
I{R�′(zi) = R�′(zj), R�(zi) 6= R�(zj)}

over all pairs (zi, zj) such that 1 ≤ i < j ≤ K. It counts, among the K(K − 1) pairs of
Z’s elements, how many are ”discording”, assigning the weight 1/2 when two elements are
tied in one ranking but not in the other. The Kendall τ is obtained by renormalizing this
distance:

τ(�,�′) = 1− 4

K(K − 1)
dτ (�,�′). (7)

Large values of τ(�,�′) indicate agreement (or similarity) between � and �′: it ranges from
−1 (full disagreement) to 1 (full agreement). It is worth noticing that it can be computed
in O((K logK)/ log logK) time (see Bansal and Fernandez-Baca (2009)).

Spearman footrule. Another natural distance between rankings is defined by considering
the l1-metric between the corresponding rank vectors:

d1(�, �′) =

K∑
i=1

|R�(zi)−R�′(zi)|.
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The affine transformation given by

F (�,�′) = 1− 3

K2 − 1
d1(�, �′). (8)

is known as the Spearman footrule measure of agreement and takes its values in [−1,+1].

Spearman rank-order correlation. Considering instead the l2-metric

d2(�, �′) =
K∑
i=1

(R�(zi)−R�′(zi))2

leads to the Spearman ρ coefficient:

ρ(�, �′) = 1− 6

K(K2 − 1)
d2(�, �′). (9)

Remark 21 (Equivalence.) It should be noticed that these three measures of agreement
are equivalent in the sense that:

c1

(
1− ρ(�, �′)

)
≤ (1− F (�, �′))2 ≤ c2

(
1− ρ(�, �′)

)
,

c3

(
1− τ(�, �′)

)
≤ 1− F (�, �′) ≤ c4

(
1− τ(�, �′)

)
,

with c2 = K2/(2(K2 − 1)) = Kc1 and c4 = 3K/(2(K + 1)) = 2c3; see Theorem 13 in Fagin
et al. (2006).

We point out that many fashions of measuring agreement or distance between rankings
have been considered in the literature, see Mielke and Berry (2001). Well-known alternatives
to the measures recalled above are the Cayley/Kemeny distance (Kemeny (1959)) and
variants for top k-lists (Fagin et al. (2006)), in order to focus on the ”best instances” (see
Clémençon and Vayatis (2007)). Many other distances between rankings could naturally
be deduced through suitable extensions of word metrics on the symmetric groups on finite
sets (see Howie (2000) or Deza and Deza (2009)).

Appendix C - The TreeRank algorithm.

Here we briefly review the TreeRank method, on which the procedure we call Ranking
Forest crucially relies. One may refer to Clémençon and Vayatis (2009c) and Clémençon
et al. (2011) for further details as well as rigorous statistical foundations for the algorithm.
As for most tree-based techniques, a greedy top-down recursive partitioning stage based
on a training sample Dn = {(Xi, Yi) : 1 ≤ i ≤ n} is followed by a pruning procedure,
where children of a same parent node are recursively merged until an estimate of the AUC
performance criterion is maximized. A package for R statistical software (see http://www.r-
project.com) implementing TreeRank is available at http://treerank.sourceforge.net (see
Baskiotis et al. (2009)).
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C.1. Growing Stage

The goal is here to grow a master ranking tree of large depth D ≥ 1 with empirical AUC as
large as possible. In order to describe this first stage, we introduce the following quantities.
Let C ⊂ X , consider the empirical rate of negative (respectively, positive) instances lying in
the region C:

α̂(C) =
1

n

n∑
i=1

I{Xi ∈ C, Yi = −1} and β̂(C) =
1

n

n∑
i=1

I{Xi ∈ C, Yi = +1},

as well as n(C) = n(α̂(C) + β̂(C)) the number of data falling in C.
One starts from the trivial partition P0 = {X} at root node (0, 0) (we set C0,0 = X ) and

proceeds recursively as follows. A tree-structured scoring rule s(x) described by an oriented
tree, with outer leaves forming a partition P of the input space, is refined by splitting a cell
C ∈ P into two subcells: C′ denoting the left child and C′′ = C \ C′ the right one. Let s′(x)
be the scoring rule thus obtained. From the perspective of AUC maximization, one seeks
a subregion C′ maximizing the gain ∆

ÂUC
(C, C′) in terms of empirical AUC induced by the

split, which may be written as:

ÂUC(s′)− ÂUC(s) =
1

2
{α̂(C)β̂(C′)− β̂(C)α̂(C′)}.

Therefore, taking the rate of positive instances within the cell C, p̂(C) = α̂(C) · n/n(C)
namely, as cost for the type I error (i.e. predicting label +1 when Y = −1) and 1 − p̂(C)
as cost for the type II error, the quantity 1 − ∆

ÂUC
(C, C′) may be viewed as the cost-

sensitive empirical misclassification error of the classifier C(X) = 2 · I{X ∈ C′} − 1 on C
up to a multiplicative factor, 4p̂(C)(1 − p̂(C)) precisely. Hence, once the local cost p̂(C) is
computed, any binary classification method can be straightforwardly adapted in order to
perform the splitting step. Here, splits are obtained using empirical-cost sensitive versions
of the standard CART algorithm with axis-parallel splits, this one-step procedure for AUC
maximization being called LeafRank in Clémençon et al. (2011). As depicted by Figure 5,
the growing stage appears as a recursive implementation of a cost-sensitive CART procedure
with a cost updated at each node of the ranking tree, equal to the local rate of positive
instances within the node to split, see Section 3 of Clémençon et al. (2011).

C.2. Pruning Stage

The way the master ranking tree TD obtained at the end of the growing stage is pruned is
entirely similar to the one described in Breiman et al. (1984), the sole difference lying in
the fact that here, for any λ > 0, one seeks a subtree T ⊂ TD that maximizes the penalized
empirical AUC

ÂUC(sT )− λ · |T |,

where |T | denotes the number of terminal leaves of T , the constant being next picked using
N -fold cross validation.

The fact that alternative complexity-based penalization procedures, inspired from re-
cent nonparametric model selection methods and leading to the concept of structural AUC
maximization, can be successfully used for pruning ranking trees has also been pointed up
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in subsection 4.2 of Clémençon et al. (2011). However, the resampling-based technique
previously mentioned is preferred to such pruning schemes in practice, insofar as it does
not require, in contrast, to specify any tuning constant. Following in the footsteps of Arlot
(2009) in the classification setup, estimation of the ideal penalty through bootstrap methods
could arise as the answer to this issue. This question is beyond the scope of the present
paper but will soon be tackled.

C.3. Some Practical Considerations

Like other types of decision trees, ranking trees (based on perpendicular splits) have a
number of crucial advantages. Concerning interpretability first, it should be noticed that
they produce ranking rules that can be easily visualized through the binary tree graphic,
see Figure 5, the rank/score of an instance x ∈ X being obtained through checking of a
nested combination of simple rules of the form ”X(k) ≥ t” or ”X(k) < t”. In addition,
ranking trees can adapt straightforwardly to situations where some data are missing and/or
some predictor variables are categorical and some monitoring tools helping to evaluate the
relative importance of each predictor variable X(k) or to depict the partial dependence of
the prediction rule on a subset of input variables are readily available. These facets are
described in section 5 of Clémençon et al. (2011). From a computational perspective now,
we also underline that the tree structure makes the computation of consensus rankings much
more tractable, we refer to Appendix 7 for further details.

Ranking tree output by TreeRank

Node split output by LeafRank

Figure 5: The TreeRank algorithm as a recursive implementation of cost-
sensitive CART.
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Appendix D - On computing the largest subpartition

We now briefly explain how to make crucial use of the fact that the partitions of X we
consider here are tree-structured to compute the largest subpartition they induce. Let

P1 = {C(1)
k }1≤k≤K1 and P2 = {C(2)

k }1≤k≤K2 be two partitions of X , related to (ranking)
trees T1 and T2 respectively. For any k ∈ {1, . . . ,K1}, the collection of subsets of the form

C(1)
k ∩ C

(2)
l , 1 ≤ l ≤ K2, can be obtained by extending the T1 tree structure the following

way. At the T1’s terminal leave defining the cell C(1)
k , add a subtree corresponding to T2

with root C(1)
k : the terminal nodes of the resulting subtree, starting at the global root X ,

correspond to the desired collection of subsets (notice that some of these can be empty),
see Figure 6 below. Of course, this scheme can be iterated in order to recover all the cells
of the subpartition induced by B > 2 tree-structured partitions. For obvious reasons of
computational nature, one should start with the most complex tree and bind progressively
less and less complex trees as one goes along.

Figure 6: Characterizing the largest subpartition induced by tree-structured
partitions.

Appendix E - Proofs

Proof of Proposition 9

Recall that τX(s1, s2) = 1− 2dX(s1, s2), where dX(s1, s2) is given by:

P{(s1(X)− s1(X ′)) · (s2(X)− s2(X ′)) < 0}+
1

2
P{s1(X) = s1(x′), s2(X) 6= s2(X ′)}

+
1

2
P{s1(X) 6= s1(x′), s2(X) = s2(X ′)}.

Observe first that, for all s, AUC(s) may be written as:

P{(s(X)− s(X ′)) · (Y − Y ′) > 0}/(2p(1− p)) + P{s(X) = s(X ′), Y 6= Y ′}/(4p(1− p)).
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Notice also that, using Jensen’s inequality, one easily obtain that 2p(1 − p)|AUC(s1) −
AUC(s2)| is bounded by the expectation of the random variable

I{(s1(X)− s1(X ′)) · (s2(X)− s2(X ′)) > 0}+
1

2
I{s1(X) = s1(X ′)} · I{s2(X) 6= s2(X ′)}+

1

2
I{s1(X) 6= s1(X ′)} · I{s2(X) = s2(X ′)},

which is equal to dX(s1, s2) = (1− τX(s1, s2))/2.

Proof of Proposition 10

Recall first that, for all s ∈ S, the AUC deficit 2p(1− p){AUC∗ −AUC(s)} may be written
as

E
[
|η(X)− η(X ′)| · I{(X,X ′) ∈ Γs}

]
+ P{s(X) = s(X ′), (Y, Y ′) = (−1,+1)},

with
Γs = {(x, x′) ∈ X 2 : (s(x)− s(x′)) · (η(x)− η(x′)) < 0},

refer to Example 1 in Clémençon et al. (2008) for instance. Now, Hölder inequality combined
with noise condition (1) shows that P{(X,X ′) ∈ Γs} is bounded by(

E
[
|η(X)− η(X ′)| · I{(X,X ′) ∈ Γs}

])a/(1+a) × c1/(1+a).

Therefore, we have for all s∗ ∈ S∗:

dX(4s,4s∗) = P{(X,X ′) ∈ Γs}+
1

2
P{s(X) = s(X ′)}.

Notice that p(1− p)P{s(X) = s(X ′) | (Y, Y ′) = (−1,+1)} can be rewritten as

E[I{s(X) = s(X ′)}·η(X ′)(1−η(X))] =
1

2
E[I{s(X) = s(X ′)}·(η(X ′)+η(X)−2η(X)η(X ′))],

which term can be easily shown to be larger than 1
2E[I{s(X) = s(X ′)} · |η(X ′) − η(X)|].

Using the same argument as above, we obtain that P{s(X) = s(X ′)} is bounded by(
E
[
|η(X)− η(X ′)| · I{s(X) = s(X ′)}

])a/(1+a) × c1/(1+a).

Combined withe the bound previously established, this leads to the desired result.

Proof of Theorem 16

By virtue of Proposition 9, we have:

AUC∗ −AUC(s̄B) ≤ dX(s∗, s̄B)

2p(1− p)
,

for any s∗ ∈ S∗. Using now triangular inequality applied to the distance dX between
preorders on X , one gets

dX(s∗, s̄B) ≤ dX(s∗, ŝn(., Zj)) + dX(ŝn(., Zj), s̄B),
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for all j ∈ {1, . . . , B}. Averaging then over j and using the fact that, if one chooses s∗ in
S,

B∑
j=1

dX(ŝn(., Zj), s̄B) ≤
B∑
j=1

dX(ŝn(., Zj), s
∗),

one obtains that

dX(s∗, s̄B) ≤ 2

B

B∑
j=1

dX(ŝn(., Zj), s
∗).

The desired result finally follows from Proposition 10 combined with the consistency as-
sumption of the randomized scoring rule.

Remark 22 Observe that, in the case where S is allowed to depend on n and one only
assumes the existence of s̃∗n ∈ Sn such that AUC(s̃∗n)→ AUC∗ as n→∞ (relaxing thus the
assumption S ∩ S∗ 6= ∅), the argument above leads to

AUC∗ −AUC(s̄B) ≤ 1

2p(1− p)

 2

B

B∑
j=1

dX(̂sn(.,Zj), s
∗) + dX(s̃∗n, s

∗)

 .

which shows that AUC consistency of the median still holds true.

Proof of Theorem 17

Observe that we have:

∆B(s̃m)−min
s∈S

∆B(s) ≤ 2 · sup
s∈S
|∆̂B,m(s)−∆B(s)|

≤ 2

B∑
j=1

sup
s∈S
|d̂X(s, sj)− dX(s, sj)|.

Now, it results from the strong Law of Large Numbers for U -processes stated in Corollary
5.2.3 in de la Pena and Giné (1999) that sups∈S |d̂X(s, sj)− dX(s, sj)| → 0 as N →∞, for
all j = 1, . . . , B. The convergence rate OP(m−1/2) follows from the Central Limit Theorem
for U -processes given in Theorem 5.3.7 in de la Pena and Giné (1999).

Proof of Corollary 18

Reproducing the argument of Theorem 16, one gets:

dX(s∗, ŝn,m) ≤ 1

B

B∑
j=1

dX(ŝn(., Zj), s
∗) +

1

B

B∑
j=1

dX(ŝn(., Zj), ŝn,m).

As in Theorem 17’s proof, we also have:

1

B

B∑
j=1

{dX(ŝn(., Zj), ŝn,m) − dX(ŝn(., Zj), s̄B)} ≤ 2 · sup
(s,s′)∈S2

|d̂X(s, s′) − dX(s, s′)|.

Using again Corollary 5.2.3 in de la Pena and Giné (1999), we obtain that the term on the
right hand side of the bound above vanishes as m→∞. Now the desired result immediately
follows from Theorem 16.
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V. de la Pena and E. Giné. Decoupling: from Dependence to Independence. Springer, 1999.

M.M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

P. Diaconis. A generalization of spectral analysis with application to ranked data. The
Annals of Statistics, 17(3):949–979, 1989.

R.M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, 1999.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the Web.
In Proceedings of the 10th International WWW conference, pages 613–622, 2001.

J.P. Egan. Signal Detection Theory and ROC Analysis. Academic Press, 1975.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and aggregating
rankings with ties. In Proceedings of the 12-th WWW conference, pages 366–375, 2003.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial rankings.
SIAM J. Discrete Mathematics, 20(3):628–648, 2006.

P. Fishburn. The Theory of Social Choice. University Press, Princeton, 1973.

M.A. Fligner and J.S. Verducci (Eds.). Probability Models and Statistical Analyses for
Ranking Data. Springer, 1993.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research, 4:933–969, 2003.

J. Friedman and P. Hall. On bagging and non-linear estimation. Journal of statistical
planning and inference, 137(3):669–683, 2007.

Y. Grandvalet. Bagging Equalizes Influence. Machine Learning, 55:251–270, 2004.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall/CRC, 1990.

J.M. Hilbe. Logistic Regression Models. Chapman and Hall/CRC, 2009.

32



Ranking Forests

J. Howie. Hyperbolic groups. In Groups and Applications, edited by V. Metaftsis, Ekdoseis
Ziti, Thessaloniki, pages 137–160, 2000.

O. Hudry. Computation of median orders: complexity results. Annales du LAMSADE: Vol.
3. Proceedings of the workshop on computer science and decision theory, DIMACS, 163:
179–214, 2004.

O. Hudry. NP-hardness results for the aggregation of linear orders into median orders. Ann.
Oper. Res., 163:63–88, 2008.
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RF 10 - AUC∗ = 0.76 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.573 (±0.024) - 0.014 1.673 0.54 60% 58%
500 0.576 (±0.018) - 0.014 1.607 0.54 59% 58%

TreeRank - - 1000 0.595 (±0.018) - 0.014 1.583 0.56 62% 60%
2000 0.628 (±0.013) - 0.013 1.574 0.59 66% 64%
3000 0.632 (±0.011) - 0.013 1.560 0.59 66% 65%

250 0.546 (±0.023) −16% 0.015 2.034 0.53 56% 54%
500 0.544 (±0.028) +40% 0.015 2.032 0.53 56% 55%

Case No. 1 5 5 1000 0.547 (±0.026) +10% 0.015 2.009 0.53 57% 55%
2000 0.550 (±0.026) +55% 0.015 2.059 0.53 57% 55%
3000 0.549 (±0.019) +33% 0.015 2.034 0.53 55% 55%

250 0.571 (±0.025) +11% 0.015 1.990 0.55 60% 58%
500 0.571 (±0.030) +34% 0.015 1.984 0.55 60% 59%

Case No. 2 10 5 1000 0.578 (±0.028) +41% 0.014 1.999 0.56 60% 59%
2000 0.577 (±0.024) +22% 0.014 2.012 0.56 61% 59%
3000 0.585 (±0.028) +76% 0.014 1.998 0.56 62% 60%

250 0.546 (±0.031) +7% 0.015 2.049 0.53 56% 55%
500 0.556 (±0.029) +40% 0.015 1.993 0.54 58% 57%

Case No. 3 5 3 1000 0.563 (±0.023) +8% 0.015 2.024 0.54 58% 57%
2000 0.546 (±0.024) +35% 0.015 2.047 0.53 56% 54%
3000 0.549 (±0.019) +30% 0.015 2.026 0.53 56% 55%

250 0.546 (±0.023) +15% 0.015 2.090 0.53 55% 55%
500 0.536 (±0.028) +36% 0.015 2.071 0.52 54% 53%

Case No. 4 3 3 1000 0.540 (±0.027) +15% 0.015 2.075 0.53 55% 54%
2000 0.537 (±0.026) +27% 0.015 2.067 0.52 54% 53%
3000 0.536 (±0.022) +55% 0.015 2.063 0.52 54% 54%

250 0.588 (±0.027) +5% 0.014 1.984 0.56 62% 60%
500 0.570 (±0.030) +65% 0.015 1.970 0.55 59% 58%

Case No. 5 10 3 1000 0.587 (±0.023) +16% 0.014 1.971 0.56 63% 60%
2000 0.582 (±0.022) +32% 0.014 2.016 0.56 62% 59%
3000 0.587 (±0.026) +83% 0.014 1.991 0.57 63% 60%

250 0.546 (±0.028) +8% 0.015 2.085 0.53 56% 55%
500 0.543 (±0.024) +11% 0.015 2.077 0.53 55% 54%

Case No. 6 3 1 1000 0.549 (±0.026) +13% 0.015 2.066 0.53 56% 55%
2000 0.545 (±0.026) +38% 0.015 2.075 0.53 56% 55%
3000 0.546 (±0.026) +71% 0.015 2.065 0.53 56% 55%

Table 4: Comparison of TreeRank/LeafRank and Bagging with Ranking Forests
- Impact of randomization (FT , FL) and resampling with sample size (n) on the
data set RF 10 for B = 20.
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RF 20 - AUC∗ = 0.77 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.561 (±0.019) - 0.014 1.742 0.55 57% 58%
500 0.579 (±0.018) - 0.014 1.666 0.56 60% 59%

TreeRank - - 1000 0.593 (±0.014) - 0.014 1.626 0.57 63% 62%
2000 0.613 (±0.013) - 0.013 1.614 0.59 67% 65%
3000 0.621 (±0.013) - 0.013 1.597 0.59 67% 65%

250 0.612 (±0.026) +25% 0.014 2.019 0.59 67% 64%
500 0.630 (±0.029) +41% 0.013 2.018 0.61 69% 66%

Case No. 1 10 10 1000 0.628 (±0.025) +44% 0.013 2.024 0.60 68% 66%
2000 0.623 (±0.028) +78% 0.013 2.017 0.60 68% 65%
3000 0.636 (±0.029) +54% 0.012 2.012 0.61 67% 65%

250 0.646 (±0.027) +27% 0.012 1.964 0.62 71% 68%
500 0.660 (±0.018) +6% 0.012 1.945 0.63 72% 69%

Case No. 2 20 10 1000 0.666 (±0.019) +23% 0.011 1.984 0.63 73% 70%
2000 0.673 (±0.019) +28% 0.011 1.989 0.64 73% 70%
3000 0.665 (±0.017) +17% 0.011 1.997 0.63 73% 70%

250 0.610 (±0.030) +69% 0.014 2.039 0.59 66% 63%
500 0.617 (±0.033) +56% 0.013 2.027 0.59 66% 64%

Case No. 3 10 5 1000 0.621 (±0.024) +44% 0.013 2.035 0.60 67% 65%
2000 0.625 (±0.025) +64% 0.013 2.077 0.60 68% 65%
3000 0.631 (±0.025) +55% 0.013 2.039 0.61 69% 66%

250 0.568 (±0.036) +82% 0.015 2.088 0.56 61% 59%
500 0.579 (±0.018) +47% 0.014 2.064 0.58 63% 61%

Case No. 4 5 5 1000 0.585 (±0.041) +155% 0.014 2.060 0.57 63% 61%
2000 0.585 (±0.030) +93% 0.014 2.050 0.57 63% 61%
3000 0.585 (±0.030) +88% 0.014 2.052 0.57 63% 61%

250 0.631 (±0.018) −4% 0.013 1.962 0.61 69% 67%
500 0.658 (±0.021) +4% 0.012 1.941 0.62 72% 69%

Case No. 5 20 5 1000 0.659 (±0.022) +25% 0.012 1.988 0.63 72% 69%
2000 0.666 (±0.020) +25% 0.011 2.007 0.63 74% 70%
3000 0.670 (±0.021) +46% 0.011 1.978 0.63 73% 70%

250 0.561 (±0.033) +57% 0.015 2.099 0.55 59% 57%
500 0.570 (±0.028) +32% 0.015 2.061 0.56 61% 59%

Case No. 6 5 1 1000 0.571 (±0.031) +119% 0.015 2.066 0.56 60% 59%
2000 0.574 (±0.035) +97% 0.015 2.120 0.56 61% 59%
3000 0.570 (±0.032) +88% 0.015 2.053 0.56 61% 60%

Table 5: Comparison of TreeRank/LeafRank and Bagging with Ranking Forests
- Impact of randomization (FT , FL) and resampling with sample size (n) on the
data set RF 10 for B = 20.
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RF 10 sparse - AUC∗ = 0.89 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.749 (±0.022) - 0.010 1.739 0.63 74% 74%
500 0.771 (±0.015) - 0.008 1.662 0.65 76% 76%

TreeRank - - 1000 0.806 (±0.009) - 0.008 1.637 0.68 80% 80%
2000 0.827 (±0.007) - 0.007 1.622 0.70 84% 83%
3000 0.836 (±0.006) - 0.007 1.602 0.70 85% 84%

250 0.808 (±0.020) −28% 0.008 2.010 0.71 87% 36%
500 0.814 (±0.024) +32% 0.008 1.958 0.71 86% 83%

Case No. 1 5 5 1000 0.862 (±0.005) −49% 0.004 1.701 0.74 89% 88%
2000 0.814 (±0.018) +61% 0.008 1.977 0.71 86% 84%
3000 0.870 (±0.005) −19% 0.004 1.670 0.74 90% 88%

250 0.835 (±0.012) −57% 0.006 1.869 0.72 89% 86%
500 0.841 (±0.011) −36% 0.006 1.839 0.73 89% 86%

Case No. 2 10 5 1000 0.845 (±0.009) −30% 0.006 1.853 0.73 90% 86%
2000 0.845 (±0.010) −12% 0.005 1.893 0.73 89% 86%
3000 0.848 (±0.011) +12% 0.006 1.851 0.73 89% 86%

250 0.795 (±0.027) −13% 0.009 2.014 0.70 86% 82%
500 0.810 (±0.023) +17% 0.008 1.984 0.71 86% 83%

Case No. 3 5 3 1000 0.811 (±0.020) +40% 0.008 1.966 0.71 86% 83%
2000 0.809 (±0.020) +72% 0.008 2.060 0.71 86% 83%
3000 0.809 (±0.023) +110% 0.008 1.979 0.70 86% 83%

250 0.764 (±0.042) +27% 0.010 2.114 0.68 82% 78%
500 0.773 (±0.038) +115% 0.010 2.068 0.68 83% 79%

Case No. 4 3 3 1000 0.780 (±0.031) +105% 0.009 2.063 0.69 83% 80%
2000 0.772 (±0.036) +195% 0.010 2.056 0.68 83% 79%
3000 0.783 (±0.036) +280% 0.009 2.044 0.69 83% 80%

250 0.828 (±0.016) −48% 0.007 1.931 0.72 87% 85%
500 0.836 (±0.014) −21% 0.006 1.883 0.72 88% 86%

Case No. 5 10 3 1000 0.841 (±0.012) −9% 0.006 1.876 0.73 89% 86%
2000 0.840 (±0.010) +9% 0.006 1.926 0.73 88% 86%
3000 0.843 (±0.008) +5% 0.006 1.893 0.73 89% 86%

250 0.724 (±0.049) +32% 0.012 2.149 0.65 77% 74%
500 0.757 (±0.035) +76% 0.011 2.085 0.67 81% 78%

Case No. 6 3 1 1000 0.742 (±0.045) +198% 0.011 2.096 0.66 79% 76%
2000 0.745 (±0.036) +228% 0.011 2.162 0.66 79% 76%
3000 0.728 (±0.049) +350% 0.012 2.079 0.65 78% 75%

Table 6: Comparison of TreeRank/LeafRank and Bagging with Ranking Forests
- Impact of randomization (FT , FL) and resampling with sample size (n) on the
data set RF 10 sparse for B = 20.
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