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Résumé—Cet article propose une étude comparative de dif-
férentes techniques de super-résolution (SR) : la méthode fré-
quentielle, la reconstruction par interpolation, le filtrage de
Wiener, le Maximum A Posteriori (MAP), la reconstruction par
visages propres (eigenfaces) et la projection sur des ensembles
convexes (Projection Onto Convex Sets (POCS)). Plusieurs de ces
algorithmes ont été implémentés et expérimentés sur des images
en niveaux de gris : l’algorithme de reconstruction par estimation
MAP [10], l’algorithme des eigenfaces [11], la méthode de Wiener
[1] et la méthode POCS [18]. Les performances de ces algorithmes
sont comparés sur des protocoles de test standard.

Les méthodes POCS et MAP donnent des résultats similaires.
La SR en aveugle [9] ainsi que l’amélioration des algorithmes
pour qu’ils fonctionnent en temps réel constituent des thèmes de
recherche prometteurs ainsi que les méthodes hybrides POCS-
ML.

Mots clés—Super résolution, Interpolation, Méthode fréquen-
tielle, Wiener, MAP, Eigenfaces, POCS.

I. INTRODUCTION

LA super-résolution (SR) consiste en l’obtention d’une
image de haute-résolution (HR) à partir de plusieurs

images de basse-résolution (BR). L’image HR est de qualité
supérieure aux images d’origine. L’utilité de la reconstruction
par la SR n’est de nos jours plus à démontrer. Il existe, en
effet, de nombreuses applications civiles ou militaires dans
lesquelles il est fait usage de techniques de SR. En effet,
l’image SR offre des images de plus grande finesse que les
images d’entrée originales. La SR peut, donc, être utilisée
quand on dispose d’images BR ou en qualité dégradée afin
d’obtenir une image sur laquelle apparaîtront des détails qu’on
n’obtenait pas dans l’image originale. Les techniques de SR
dans un contexte lié à la vidéo de surveillance ont été utilisées
pour le projet ANR CSOSG2007 KIVAOU 1. Celles-ci nous
permettront d’obtenir des images de visage de meilleure qua-
lité que celles fournies par les caméras de surveillance. Dans
tous les cas, des séquences vidéo sont utilisées en entrée. Les
images successives de la séquence vidéo constituent la base
d’images utilisées pour effectuer la reconstruction par SR.

1. Ce projet vise à développer un démonstrateur comprenant des outils
innovants d’analyse vidéo dédiés à deux problématiques : 1) Outil mobile
(valise) d’identification et indexation biométrique faciale portable par analyse
temps réel vidéo et 2) Plate-forme d’analyse de vidéos multiples enregistrées
lors d’un évènement, utilisant la synchronisation de vidéos, l’extraction de
signatures pour les personnes, et la constitution de trajectoires. Le but est de
permettre ou de faciliter une analyse a posteriori des données enregistrées en
un lieu et pendant une même période à des fins d’investigations.

L’idée la plus intuitive pour effectuer une reconstruction
par SR est de superposer les différentes images BR zoomées
afin d’obtenir une image somme sur laquelle les détails sont
rehaussés du fait du supplément d’information qu’apporte
l’utilisation de plusieurs images. Il faut pour cela que l’objet
que l’on cherche à reconstruire n’ait subi que de faibles
variations de pose et d’illumination d’une image à l’autre et
qu’il n’y ait pas d’occlusion dans les différentes images de
la séquence. Les problèmes d’occlusion en SR constituent un
problème encore mal résolu.

Pour pouvoir effectuer une superposition des images (qui
représente l’idée principale d’une reconstruction par SR), il
faut, d’abord, passer par une étape de recalage des images
BR nécessaire pour que les différentes images de l’objet à
reconstruire soient superposables. Cette étape fondamentale à
toute SR est, d’abord, abordée avant d’exposer les différentes
techniques de reconstruction.

II. LE RECALAGE DES IMAGES

Les principales techniques existantes sont la corrélation de
phase [12], la méthode d’évaluation du déplacement par dé-
veloppement en série de Taylor [1] et la méthode de calcul du
flot optique (algorithme de Lucas Kanade) [3]. Il a été choisi
de développer une méthode de recalage par correspondance de
blocs (block matching), plus lente, mais dont la robustesse est
avérée quand on effectue un recalage d’images peu bruitées.

Le principe du recalage par block matching [2] d’une image
BR par rapport à une autre est de calculer la corrélation entre
des régions environnant un pixel sur chacune des images et de
choisir le pixel sur l’image à recaler pour lequel la corrélation
est maximale avec le pixel sur l’image de référence. Ces
pixels représentent le même point de l’objet. En calculant la
différence de position entre ces deux pixels et en décalant le
pixel à recaler de cette différence, on effectue un recalage de
l’image pour que les deux soient superposables. Supposant
que la résolution de l’image BR soit augmentée d’un facteur
m quand on passe en SR, il faut que la précision du recalage
soit de 1

m

ème des pixels BR pour que l’on puisse recaler
correctement les images ([5], [6], [4]). En effet, c’est à la
résolution de l’image HR que l’on va superposer les images.
Pour ce faire on zoome (interpolation à un plus grand facteur
d’échelle) les images BR et on effectue les recherches par
corrélation des régions sur les images zoomées (figure 1).
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FIGURE 1. On calcule la corrélation entre la région sur l’image (a) (petit
carré) et la région sur l’image (b) (2ème petit carré). La région sur l’image (b)
bouge sur toute l’image (b). Lorsque l’on a trouvé un maximum de corrélation
entre ces deux régions, on a trouvé de combien s’est déplacé le point central
de la région entre l’image (a) et l’image (b).

L’algorithme d’interpolation à un plus grand facteur
d’échelle sert à zoomer les images pour pouvoir effectuer le
recalage. Son principe est le suivant : soit une série 1D de
points ayant des valeurs non nulles qui constituent les points
connus de la fonction à interpoler (ceux d’une ligne de l’image
BR). A l’initialisation de l’algorithme, ces points sont espacés
entre eux par d’autres ayant une valeur nulle et où l’on cherche
la valeur de la fonction à interpoler. La valeur de chaque point
de valeur initiale nulle est mise à jour en calculant la somme de
celle-ci et de ses adjacents divisée par 3. Les points de valeurs
non nulles sont maintenus inchangés. Cette étape est réitérée
en maintenant inchangés les points qui, originellement, étaient
de valeurs non nulles. Les valeurs des autres (originellement
nulles) sont réévaluées en calculant la somme de la valeur de
ces points et des deux adjacents divisée par 3. L’algorithme
est réitéré une vingtaine de fois. La suite de points de valeurs
initiallement nulle tend vers une suite dont les valeurs sont
celles de l’interpolation linéaire des points de valeurs originelle
non nulles. Il est possible, ainsi, d’interpoler linéairement une
ligne de points espacés de façon non uniforme. Une fois que
sont interpolées toutes les lignes de l’image pour lesquels il
existe des valeurs non nulles à l’origine des itérations, il est fait
de même avec les colonnes. A la fin, une interpolation d’une
grille de points espacés de façon non uniforme est obtenue
(voir figures 2, 3, 4).

FIGURE 2. Image reconstruite à partir de points uniformément espacés.

FIGURE 3. Interpolation sur les lignes de l’image 2.

FIGURE 4. Interpolation sur les colonnes de l’image 3.

Pour calculer la corrélation entre deux régions situées autour
de deux pixels sur deux images BR zoomées (voir figure 1),
plusieurs critères ont été proposés. Citons le calcul du coeffi-
cient de corrélation et le calcul de la somme des différences
absolues [2].

corr =

∑

m,n

xm,nym,n

√∑

m,n

x2
m,n

∑

m,n

y2
m,n

(1)

sda =
∑

i

|xm,n − ym,n| (2)

xm,n et ym,n sont les valeurs des pixels sur l’image 1 et
l’image 2 en un point (m, n) du masque de corrélation.

Dans leur article [2], Borman et al. montrent que les deux
critères ne produisent pas des résultats très différents. Le
critère de la somme des différences absolues a été choisi. Il
a été décrit précédemment comment on pouvait apparier deux
pixels sur des images différentes en calculant la corrélation
des régions situées autour de ces pixels. Il faut, en effet,
trouver un pixel correspondant à chacun de la première image
BR zoomée ce qui ralentit considérablement l’algorithme. Des
régions (patch) de corrélation de taille 11∗11 entourant le pixel
central ont été choisies.

III. LA MÉTHODE PAR FUSION

La méthode la plus intuitive pour effectuer une recons-
truction par SR est de faire simplement la fusion (somme)
des images zoomées recalées et de diviser la valeur des
pixels par le nombre d’images utilisées. Une image floue est
généralement obtenue. Il est possible d’améliorer la qualité de
cette image en utilisant la méthode du filtrage de Wiener [1].

IV. LE FILTRAGE DE WIENER

Soit X(m, n) une matrice qui représente l’image floue
obtenue par fusion. On note X̂(wm, wn) sa transformée de
Fourier. La formule de Wiener (3) définit le filtre optimum
qui permet de retrouver une image la plus nette possible.

X̂optimum =
H∗

|H|2 + Sn
SI

X̂ (3)

H(wm, wn) est la fonction de transfert du filtre qui permet
de passer de l’image nette à l’image floue obtenue par fusion
(celui-ci est inconnu), Sn et SI sont la densité spectrale
de puissance (DSP) du bruit ajouté et de l’image originale
respectivement. Lors de nos expérimentations, H a été estimé
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comme étant un filtre passe bas de transmission uniforme dans
la bande passante (voir figure 2). Toutes les possibilités de
filtres telle que la largeur de la bande passante soit encore
comprise entre [−N, N ], où [−N, N ] est l’intervalle de points
de la transformée de Fourier discrète (TFD) de l’image (donc
le nombre de points de l’image), ont été testées. On définit
le rapport Sn

SI
comme deux demi gaussiennes dont la largeur

dépend du nombre de points N et dont les centres se situent
en 0 et en N (Alam et al., dans leur article, utilisent un
ratio « densité spectrale du bruit sur densité spectrale du
signal constant » [1]). La meilleure image de la série d’images
obtenue à partir des différents filtres H a été gardée comme
définitive.

V. LA MÉTHODE FRÉQUENTIELLE

La méthode fréquentielle [14] repose sur :
1) l’utilisation de la formule de Poisson (Théorème de

l’aliasing) :

F e(m, n) =
L−1∑

p=−L

L−1∑

q=−L

F c

(
2πm

MTx
+ pwx,

2πn

MTy
+ qwy

)

(4)
(Où M est la longueur de la TFD, Tx est la période
d’échantillonnage suivant x, F e est la transformée de
Fourier (TF) d’une image BR, F c est la transformée de
Fourier continue (TFC) de l’image originale HR, m et
n sont entiers variant de −M

2 à M
2 ).

2) la relation entre la TF d’une image et celle de la même
image décalée :

F d (u, v) = F c (u, v) e2iπ(δxu+δyv) (5)

Du fait de 2), la méthode fréquentielle ne fonctionne que sur
une série d’images qui ont subi des translations l’une par
rapport à l’autre alors que les autres méthodes fonctionnent
également pour des transformations plus complexes entre
les images si l’algorithme de recalage permet de retrouver
le mouvement entre deux images dû à cette transformation
complexe. Les théorèmes 1 et 2 permettent de relier la valeur
en certains points de la TFC de l’image à toutes les TF
numériques des images BR dont on dispose au départ. Le
nombre de points de TFC est supérieur à celui de la TFD. Le
système d’équation obtenu reliant les TF est mal conditionné.
Il faut, donc, le régulariser. La forme de la régularisation est
la suivante : Soit I la TF de l’image HR recherchée. Les
points de I doivent vérifier le système d’équation et en même
temps vérifier que la norme de I moins A (une approximation
de la solution) est minimale. L’approximation de la solution
est obtenue en faisant la TF d’une des images BR zoomée
et correctement recalée. Le système peut être résolu par une
méthode de descente du gradient ou par le calcul du pseudo
inverse.

VI. LA MÉTHODE MAP

Dans la méthode MAP ([15], [13], [7]), on construit un
estimateur MAP de l’image solution à partir des images BR

et d’une fonction de régularisation. La fonction de coût à
minimiser est la suivante :

J (X) =
∑

i

‖MiX − Yi‖l
l + λF (X) (6)

I représente la norme l de l’expression. On note {S} le
système Yi = MiX . Dans l’équation 6, le premier terme de
fidélité aux données contraint la solution à vérifier le système
au sens du maximum de vraisemblance. Le deuxième terme,
F (X), de régularisation permet de régulariser le système S
généralement mal conditionné. En effet, si N est le nombre
de pixels de l’image BR, on dispose de N équations et
N × fact× fact inconnues ( où fact est le facteur de SR).
Plusieurs normes ont été proposées dans la littérature pour
l’attache aux données et la régularisation. Nous avons implé-
menté la norme L1 pour la régularisation et la norme L2 pour
l’attache aux données. Plusieurs formes de régularisation ont
été proposées dans la littérature : la régularisation de Tikhonov
et la minimisation du laplacien ou du gradient de l’image. La
minimisation du gradient de l’image a été retenue. Le système
{Y = MiX}i représente l’effet du système optique qui fait
passer une image HR X à une image BR Y (les images
sont vectorisées, i est l’indice de sommation sur le nombre
d’images BR). Les paramètres de ce système et donc de la
matrice Mi sont, en général, inconnus. Il faut, donc, les estimer
empiriquement. La matrice Mi se compose de 3 sous matrices,
M = DWiB [15]. B est en général une matrice de floutage de
l’image originale par un noyau gaussien dont la largeur dépend
de la caméra utilisée. Wi est la matrice qui associe un point
de l’image HR à un autre de l’image HR recalée (Warping).
Son effet est le contraire de l’opération de recalage détaillée
plus haut. D est la matrice de décimation. Elle transforme un
point de l’image HR en un autre de l’image BR ou un noyau de
points de l’image HR en un point de l’image BR. La première
solution a été choisie car, dans le calcul du gradient que l’on
va voir par la suite, l’opération de transposition de D dans la
deuxième solution transforme un point BR en un noyau HR
dont tous les points ont la même valeur (on a, donc, un effet
de pixellisation très important). Les paramètres de W sont
estimés par recalage. B est choisi empiriquement. D dépend
du facteur de la SR que l’on souhaite avoir.

Note 1: Les équations s’écrivent formellement avec des
images vectorisées mais, dans l’implémentation, nous avons
préféré interpréter les opérations matricielles comme des opé-
rations sur les images non vectorisées car la notation sparse
est très pratique, ce qui évite pour D, B, W d’avoir à écrire
des matrices gigantesques dont une grande partie est remplie
par des zéros.
Lorsque les paramètres des matrices ont été choisis, on peut
minimiser le critère de l’équation (6), en général, par une
méthode de descente du gradient ce qui a été l’approche dans
cet article. L’expression du gradient de la fonction coût est :

δJ

δX
=

∑

i

2BT WT
i DT (DWiBX − Yi) + λ

δ
∑

m,n

‖gradX‖1

δX
(7)
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Lorsque l’on prend une norme L2 pour la fidélité aux
données et que l’on régularise en imposant le gradient de
l’image soit le plus petit possible. j est l’indice de sommation
sur les pixels de l’image.

Lorsque l’on prend une norme L1 pour la fidélité aux
données, l’expression du gradient est :

δJ
δX =

∑

i

BT WT
i DT signe (DWiBX − Yi) + λ

δ
∑

m,n

‖gradX‖1

δX
(8)

Un algorithme de type itératif a ensuite été utilisé pour
estimer l’image HR.

Xn+1 = Xn − ρ
δJ

δX
(9)

Suivant la norme choisie, le terme de fidélité aux données
effectue, à chaque itération de l’algorithme, soit la moyenne
(norme L2), soit la médiane des différentes images BR recalées
et décimées (norme L1). Le terme de régularisation choisi (la
norme du gradient de l’image doit être minimale) se traduit par
le calcul de la différence de valeurs entre les pixels avoisinant
le pixel calculé (éq. 10).

La fonction signe retourne −1 ou 1 si le signe de la diffé-
rence de deux valeurs est négatif ou positif respectivement.

(
δ‖gradX‖1

δX

)

m,n

=

signe (xm,n − xm−1,n) + signe (xm,n − xm+1,n)

+signe (xm,n, − xm,,n−1) + signe (xm,n − xm,,n+1)
(10)

x est la valeur du pixel (m, n). On lui ajoute 1 s’il a une
valeur inférieure à ses voisins. Dans le cas contraire, on lui
retranche 1. Pour une image plate, on ajoute et on retranche 0
au pixel calculé ce qui correspond bien au critère recherché.
Les opérateurs de différenciation classique ont, initialement,
été employés pour le calcul du gradient de l’image (ce qui
aboutit à l’équation 10). Ceux-ci sont inopérants pour les
lignes à 45o dans l’image. Il a, donc, été choisi d’utiliser un
masque 3 ∗ 3 qui est le suivant :




−1 −1 −1
−1 8 −1
−1 −1 −1





Pour les 8 pixels du bord, on prend le signe de la valeur
du pixel central moins celle du pixel du bord et on ajoute les
8 signes obtenus pour calculer le gradient par rapport à X
du gradient de l’image. Dans l’expression précédente, on ne
sommait que 4 signes.

Farsiu et al., dans leur article, utilisent une version un peu
différente de cet opérateur (Bilateral Total Variation Regulari-
sation). L’expression qu’ils utilisent est donnée dans [10].

VII. LA MÉTHODE POCS

Le principal intérêt de la méthode POCS est la simplicité
avec laquelle il est possible d’introduire des informations a
priori hétérogènes sur la solution désirée. Il suffit de définir
un ensemble convexe qui les incorpore. Si ces ensembles sont
bien choisis, la détermination de l’opérateur de projection
peut être très simple et conduire à des algorithmes faciles à
implanter.

On se place dans l’espace vectoriel RM∗N qui représente
l’espace de toutes les solutions possibles. Chaque propriété
connue de l’image inconnue f ∈ RM∗N restreint celle-ci à un
sous-ensemble {Ci}i=1,2,...,m de cet espace. Ces ensembles
représentent les caractéristiques souhaitées de la solution.
L’ensemble des solutions possibles est donc l’intersection des
ensembles Ci. La méthode de projection sur des ensembles
consiste à projecter un point de l’espace RM∗N sur chacun
des ensembles Ci, et à répéter l’opération jusqu’à l’obtention
d’un point appartenant à l’intersection de tous les ensembles.
La convergence est assurée si les ensembles Ci sont fermés et
convexes, et bien sûr, si l’intersection est non vide.

Soit C un ensemble de l’espace vectoriel. Pour tout f , la
projection Pf de f sur C est l’élément de C le plus proche de
f . Lorsque C est fermé et convexe, Pf existe et est unique.
L’opérateur de projection ainsi défini est, en général, non
linéaire.

Cette méthode a été utilisée par Stark et Oskoui [19] pour
la reconstruction d’images HR à partir d’images obtenues par
translations et rotations d’un détecteur. Le système optique
projette une image X (u, v) sur un ensemble de L1 ∗ L2

capteurs rectangulaires de réponse impulsionnelle σi (u, v). La
sortie du ième capteur est donnée par :

yi =
∫ ∞

−∞

∫ ∞

−∞
X (u, v) .σi (u, v) .du.dv, i ∈ {1, 2, ..., L1L2}

(11)
L’ensemble des yi nous donne naturellement une image de

L1∗L2 pixels. Pour obtenir une image de meilleure résolution,
on commence par discrétiser cette intégration sur une grille de
reconstruction fine de taille de M ∗N . Nous obtenons :

yi =
M∑

m=1

N∑

n=1

X (m, n) .σi (m, n) (12)

On cherche à déterminer X (m, n), la luminance du pixel
HR. Si on suppose que le capteur a une réponse unitaire et
uniforme sur toute sa surface, on a :

σi (m, n) =






0 si le pixel HR centré sur (m, n) est totalement
en dehors de la surface du capteur i

1 si le pixel HR centré sur (m, n) est totalement
compris dans la surface du capteur i

qi (0 < qi < 1) si le pixel HR centré sur (m, n) est
partiellement compris dans la surface du capteur i
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qi est la fonction de la surface du pixel en (m, n) contenue
dans la surface du capteur i.

Une seule acquisition d’image nous donne un système sous-
déterminé de L1 ∗ L2 équations. On obtient des équations
supplémentaires en réalisant de nouvelles acquisitions après
rotation et translation des capteurs. On sait que pour un capteur
rectangulaire de dimension a ∗ b, translaté par un vecteur
(uj , vj) et soumis à une rotation d’angle θj :

σi (m, n) = rect
[

(u−uj) cos θj+(v−vj) sin θj

a

]

∗ rect
[

(v−vj) cos θj+(u−uj) sin θj

b

] (13)

En ordonnant de manière lexicographique X (m, n) et
σi (m, n) pour obtenir les vecteurs colonnes X et σT

i , l’équa-
tion (12) s’écrit : yi = σT

i X .
Pour chacune des M images, on ordonne de manière

lexicographique les pixels yi pour obtenir le vecteur yk. Pour
la kème image, le modèle est de la forme : yk = HkX .
Cependant, considérer les rotations et les translations du dé-
tecteur est moins général que de considérer les transformations
géométriques de l’image. En effet, on ne peut prendre en
compte ni les effets de perspective, ni les objets mobiles.

On considère maintenant les ensembles Ci tels que :

Ci =
{
X; σT

i X = yi

}
, 1 ≤ i ≤ L1L2 (14)

L’ensemble Ci est l’ensemble de toutes les images SR pour
lesquelles la réponse du ième détecteur est la valeur observée
yi. On définit autant d’ensembles Ci qu’il y a de pixels
dans la séquence d’images observée. On peut montrer que
les ensembles Ci sont fermés et convexes, et que le projeté g
d’un vecteur h sur Ci est donné par :

g =






h si σT
i X = yi

h + yi−σT
i X

σT
i σi

σi sinon
(15)

Pour obtenir une image SR, la méthode de projection sur
des ensembles convexes consiste à projeter itérativement sur
chacun des ensembles Ci une image estimée initiale jusqu’à
convergence. La solution n’est, généralement, pas unique et
dépend de l’initialisation. Notons que si l’on utilise que les en-
sembles Ci, qui sont des contraintes d’attache aux données, on
a équivalence avec la technique de reconstruction algébrique
utilisée en tomographie. Il est toutefois possible d’utiliser
également des contraintes qui représentent une connaissance
a priori sur la solution.

L’une des plus simples est la contrainte d’amplitude qui
donne un ensemble CA défini par :

CA = {X (u, v) ; α ≤ X (u, v) ≤ β} (16)

Dans le cas d’images codées sur 8 bits, on peut imposer par
exemple α = 0 et β = 255.

Une autre contrainte possible est la contrainte d’énergie :

CE =
{

X; ‖X‖2 ≤ E
}

(17)

où E est l’énergie maximale permise pour l’image recons-
truite.

Cette méthode a été reprise et modifiée par Tekalp, Özkan
et Sezan pour prendre en compte le bruit blanc additif dans
le cas de séquences d’images soumises à un mouvement de
translation uniforme [20]. Les ensembles Ci deviennent alors :

Ci = {X; |ri| < δi} (18)

où ri est le ième élément du résiduel r = Y − HX
qui correspond au bruit d’observation. δi représente donc la
confiance que nous avons dans les observations. Sa valeur
dépend des statistiques du bruit. Dans ce cas, le projeté g
d’un vecteur h sur Ci est donné par :

g =






h + ri+δi

HT
i Hi

Hi si ri /∈ [−δi, δi]

h si ri ∈ [−δi, δi]
(19)

Patti, Sezan et Tekalp ont ensuite étendu cette méthode pour
prendre en compte dans le modèle le flou de bouger entre les
images de la séquence [17], puis une grille d’échantillonnage
arbitraire [18].

Jusqu’ici, le modèle de discrétisation de l’image continue
a toujours été considéré comme étant d’ordre 0, c’est-à-dire
que l’image continue est supposée constante sur la surface
du pixel HR. Patti et Altunbasak ont introduit explicitement
une interpolation d’ordre plus élevé dans le modèle [16]. Ils
ajoutent également une méthode de régularisation adaptative
afin d’éviter les phénomènes de rebond souvent observés près
des contours. Pour cela, ils estiment la direction des contours
et pondèrent la fonction de flou le long du contour par une
fonction proportionnelle au gradient d’intensité.

Eren, Sezan et Tekalp ont introduit une carte de validité
permettant de ne pas prendre en compte les régions avec une
mauvaise estimation de mouvement. Pour cela, ils ont utilisé
une segmentation manuelle et un module de suivi [8]. Un
modèle de mouvement différent peut être calculé pour chaque
objet afin d’assurer une meilleure reconstruction.

VIII. LA MÉTHODE DES EIGENFACES

Dans la méthode des eigenfaces [11], on utilise, également,
la matrice M (mentionnée dans la section V). Le principe
est d’effectuer un apprentissage sur une base d’images HR,
de calculer les vecteurs propres de l’ACP appliquée à cette
base d’images HR (eigenfaces) et de calculer les vecteurs
propres obtenus par ACP sur la version BR de cette même
base et de faire correspondre la projection sur l’espace ACP
HR recherchée aux projections ACP sur l’espace de toutes
les images BR après application de la matrice M à l’image
HR (on utilise l’ACP sur les pixels de l’image). Les vecteurs
propres de la matrice sont calculés :

C =
∑

j

IjI
T
j (20)

Où Ij est la j ème image de la base d’images HR. On fait
de même pour les versions Ij′ BR des images Ij . On garde
les vecteurs propres associés au plus grandes valeurs propres
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(on garde autant de vecteurs propres qu’il y a d’images dans
la base). On a alors :

X = φa (21)

Où X est l’image HR et a est un vecteur de coefficients
de projection (features). φ est la matrice des vecteurs propres
colonnes.

La projection d’une image sur la base de vecteurs propres
se traduit, pour les images HR, par la multiplication suivante
(projection de X sur la base de vecteurs propres) :

aj = φT
j X (22)

avec :

a = [a1 a2...aL]T et φ = 'φ1 φ2...φL(

Pour les images BR Ij′ , on note ψ la matrice de vecteurs
propres .

âj = ψT
j Yi (23)

L’image HR vectorisée est reliée à l’image BR vectorisée
par :

Yj = MjX (24)

Les projections sont, donc, reliées par :

ψâj = Mjφa (25)

(ici â désigne le vecteur feature pour la j ème image BR. Il
y a un vecteur « feature » pour chaque image BR).

En multipliant la dernière équation par ψT et en utilisant le
fait que ψT ψ est égale à l’identité, on obtient :

âj = ψT Mjφa (26)

Cette équation relie la projection sur l’espace BR de l’image
Yi et la projection sur l’espace HR de l’image X . Le vecteur
âj est obtenu par simple projection de l’image BR connue.
On estime a en résolvant le critère :

argmina

{∥∥ψT Miφa− âj

∥∥
2
}

(27)

La minimisation de ce critère est résolue par une méthode
de descente du gradient comme dans le cas de la méthode
MAP. Après plusieurs itérations de l’algorithme, on obtient
une estimation de a. On obtient, ensuite, X en faisant la
projection inverse à la projection de l’image sur l’espace HR
c’est-à-dire :

X = φa (28)

Dans cet article, une base d’images de 90 eigenfaces a été
utilisée.

IX. RÉSULTATS

Pour obtenir nos résultats, des films vidéo AVI disponibles
sur le site de P. Milanfar ont été utilisés. Des images provenant
de la base de données MBGC ont également été utilisées.
Le protocole expérimental est le suivant : Pour les figures
5 à 9 on effectue une SR d’un facteur 4 avec 16 images
BR en entrée. Deux versions de la méthode MAP ont été
implémentées. La première compare l’image HR avec une
version recalée sur la grille HR des images BR. La seconde
compare l’image HR décimée (donc une image BR) avec les
images BR originales. La méthode 2 donne des contours plus
nets que la méthode 1. On compare ainsi les images obtenues
avec la méthode MAP et la POCS à l’image obtenue par
simple interpolation d’une image BR. La POCS et la MAP
2ème version donnent les meilleurs résultats visuellement.
Pour la figure (5), les images BR proviennent du site de P.
Milanfar. La SR avec la méthode MAP permet d’augmenter
la qualité de l’image et ne produit pas d’artefacts comme ceux
produits par l’interpolation simple d’une image BR. Pour la
figure (6), les images BR proviennent, de même, du site de
P. Milanfar. L’image avant application du filtre de Wiener est
floue alors que celle après l’application du filtre de Wiener est
de qualité supérieure à l’image BR. Le critère de qualité est
ici la lisibilité du texte après reconstruction SR. Les images
de la figure (7) proviennent de la base de données FRGC :
Une image a été exclue de l’ensemble d’apprentissage, décalée
aléatoirement, décimée avant d’être reconstruite. Dans cette
catégorie d’images, on dispose de la vérité terrain (on possède
l’image HR originale que l’on décompose et on essaye de la
reconstruire (voir figure 7 - (c)). Les images de la figure (8)
proviennent de la base de données MBGC. Les images (9 -
(a)) et (9 - (b)) montrent respectivement un fragment d’une
mire de télévision BR et la reconstruction SR pour laquelle
nous avons utilisé la deuxième méthode MAP. La mire a été
filmée par nous même avec une webcam et est disponible à
www.tsi.enst.fr/~crieding.

X. CONCLUSION

Nous avons, dans cet article, présenté plusieurs techniques
de SR. Les algorithmes POCS et MAP donnent des résul-
tats similaires pour les images que nous avons testées. La
SR en aveugle (blind SR) constitue un thème de recherche
prometteur puisqu’il permet d’effectuer une reconstruction par
SR sans connaître les caractéristiques du système optique
et de sous échantillonnage avec lequel les images ont été
acquises. Dans notre cas, nous avons estimé empiriquement
les caractéristiques du système optique. Notons que la rapidité
de calcul représente un point clé de la reconstruction SR.
La méthode par fusion et interpolation suivie d’un filtrage de
Wiener constitue, peut être, la solution à une implémentation
en temps réel des algorithmes de SR. Enfin, nous devons
mentionner le problème de la reconstruction couleur. Celle-ci
est plus difficile que la reconstruction en niveaux de gris car
les différentes composantes de la couleur de l’image ne suivent
pas le critère de Bayer (les décalages entre une image et une
autre ne sont pas les mêmes pour les différentes composantes
de couleur) (ce problème a été traité dans [9]).
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FIGURE 5. (a) : Une des images BR originales, (b) : Image obtenue avec la méthode MAP 1ère version (décimation = 2, nombre d’images = 16), (c) : Image
obtenue avec la méthode MAP 2ème version (décimation = 2, nombre d’images = 16), (d) : Image obtenue par interpolation d’une image BR (décimation
= 2, nombre d’images = 16), (e) : Image obtenue avec la méthode POCS (décimation = 2, nombre d’images = 16) et (f) : Image obtenue avec la méthode
POCS (décimation = 4, nombre d’images = 16) (Source : Site de P. Milanfar).

FIGURE 6. (a) : Une des images BR originales, (b) : Image obtenue par fusion + interpolation sans application du filtre de Wiener (décimation = 4, nombre
d’images = 16) et (c) : Image après application du filtre de Wiener (décimation = 4, nombre d’images = 16) (Source : Site de P. Milanfar).

FIGURE 7. (a) : Une des images BR originales, (b) : Image HR reconstruite par la méthode des eigenfaces (décimation = 2, nombre d’images = 16) et (c) :
L’image HR originale (Source : Base de données FRVT).
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FIGURE 8. (a) et (c) : Deux images BR originales, (b) et (d) : Deux images HR obtenues par la méthode MAP 2ème version (décimation = 2, nombre
d’images = 16) (Source : Base de données MBGC).

FIGURE 9. Exemple d’une mire télé. (a) Une des images BR originales et (b) : Une image HR obtenue par la méthode MAP 2ème version (décimation =
2, nombre d’images = 16) (Source : La mire a été filmée par nous mêmes et est disponible à www.tsi.enst.fr/~crieding).
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