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a novel method for voice transformation. MixTrans is a mixture-structured bias voice transformation technique in the cepstral
domain, which allows a transformed audio signal to be estimated and reconstructed in the temporal domain. We also propose a
face transformation technique that allows a frontal face image of a client speaker to be animated. This technique employs principal
warps to deform defined MPEG-4 facial feature points based on determined facial animation parameters (FAPs). The robustness
of the IV system is evaluated under these attacks.
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1. Introduction

With the emergence of smart phones and third and
fourth generation mobile and communication devices, and
the appearance of a “first generation” type of mobile
PC/PDA/phones with biometric identity verification, there
has been recently a greater attention to secure commu-
nication and to guarantee the robustness of embedded
multimodal biometric systems. The robustness of such
systems promises the viability of newer technologies that
involve e-voice signatures, e-contracts that have legal values,
and secure and trusted data transfer regardless of the under-
lying communication protocol. Realizing such technologies
require reliable and error-free biometric identity verification
systems.

Biometric identity verification (IV) systems are starting
to appear on the market in various commercial applications.
However, these systems are still operating with a certain
measurable error rate that prevents them from being used in
a full automatic mode and still require human intervention
and further authentication. This is primarily due to the

variability of the biometric traits of humans over time
because of growth, aging, injury, appearance, physical state,
and so forth. Impostors attempting to be authenticated by
an IV system to gain access to privileged resources could
take advantage of the non-zero error rate of the system by
imitating, as closely as possible, the biometric features of a
genuine client.

The purpose of this paper is threefold. (1) It evalu-
ates the performance of IV systems by monitoring their
behavior under impostor attacks. Such attacks may include
the transformation of one, many, or all of the biometric
modalities, such as face or voice. This paper provides a
brief review of IV techniques and corresponding evaluations
and focuses on a statistical approach (GMM). (2) It also
introduces MixTrans, a novel mixture-structure bias voice
transformation technique in the cepstral domain, which
allows a transformed audio signal to be estimated and
reconstructed in the temporal domain. (3) It proposes a face
transformation technique that allows a 2D face image of
the client to be animated. This technique employs principal
warps to deform defined MPEG-4 facial feature points based
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on determined facial animation parameters (FAPs). The
BANCA database is used to test the effects of voice and face
transformation on the IV system.

The rest of the paper is organized as follows. Section 2
introduces the performance evaluation, protocols, and the
BANCA database. Section 3 is a discussion of audiovisual
identity verification techniques based on Gaussian Mixture
Models. Section 4 describes the imposture techniques used,
including MixTrans, a novel voice transformation technique,
and face transformation based on an MPEG-4 face anima-
tion with thin-plate spline warping. Section 5 discusses the
experimental results on the BANCA audiovisual database.
Section 6 wraps up with a conclusion.

2. Evaluation Protocols

Evaluation of audiovisual IV systems and the comparison
of their performances require the creation of a reproducible
evaluation framework. Several experimental databases have
been set up for this purpose. These databases consist of a
large collection of biometric samples in different scenarios
and quality conditions. Such databases include BANCA [1],
XM2VTS [2], BT-DAVID [3], BIOMET [4], and PDAtabase
[5].

2.1. The BANCA Database. In this work, audiovisual verifi-
cation experiments and imposture were primarily conducted
on the BANCA Database [1]. BANCA is designed for testing
multimodal identity verification systems. It consists of video
and speech data for 52 subjects (26 males, 26 females) in
four different European languages (English, French, Italian,
and Spanish). Each language set and gender was divided into
two independent groups of 13 subjects (denoted g1 and g2).
Each subject recorded a total of 12 sessions, for a total of
208 recordings. Each session contains two recordings: a true
client access and an informed impostor attack (the client
proclaims in his own words to be someone else). Each subject
was prompted to say 12 random number digits, his or her
name, address, and date of birth.

The 12 sessions are divided into three different scenarios.

(i) Scenario c (controlled). Uniform blue background
behind the subject with a quiet environment (no
background noise). The camera and microphone
used are of good quality (sessions 1–4).

(ii) Scenario d (degraded). Low quality camera and
microphone in an “adverse” environment (sessions
5–8).

(iii) Scenario a (adverse). Cafeteria-like atmosphere with
activities in the background (people walking or talk-
ing behind the subject). The camera and microphone
used are also of good quality (sessions 9–12).

BANCA has also a world model of 30 other subjects, 15
males and 15 females.

Figure 1 shows example images from the English
database for two subjects in all three scenarios.

The BANCA evaluation protocol defines seven distinct
training/test configurations, depending on the actual
conditions corresponding to training and testing. These
experimental configurations are Matched Controlled
(MC), Matched Degraded (MD), Matched Adverse (MA),
Unmatched Degraded (UD), Unmatched Adverse (UA),
Pooled Test (P), and Grand Test (G) (Table 1).

The results reported in this work reflect experiments on
the “Pooled test,” also known as the “P” protocol, which
is BANCA’s most “difficult” evaluation protocol: world and
client models are trained on session 1 only (controlled
environment), while tests are performed in all different
environments (Table 1).

2.2. Performance Evaluation. The evaluation of a biometric
system performance and its robustness to imposture is mea-
sured by the rate of errors it makes during the recognition
process. Typically, a recognition system is a “comparator”
that compares the biometric features of a user with a given
biometric reference and gives a “score of likelihood.” A
decision is then taken based on that score and an adjustable
defined acceptance “threshold.” Two types of error rates are
traditionally used.

(i) False Acceptance Rate (FAR). The FAR is the fre-
quency that an impostor is accepted as a genuine
client. The FAR for a certain enrolled person n is
measured as

FAR(n)

= Number of successful haox attempts against a person n

Number of all haox attempts against a person n
,

(1)

and for a population of N persons, FAR =
(1/n)

∑N
n=1FAR(n).

(ii) False Rejection Rate (FRR). The FRR is the frequency
that a genuine client is rejected as an impostor:

FRR(n) = Number of rejected verification attempts a genuine person n

Number of all verification attempts a genuine person n
,

FRR = 1
N

N∑

n=1

FRR(n).

(2)
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Table 1: Summary of the 7 training/testing configurations of
BANCA.

Test Sessions
Train Sessions

1 5 9 1, 5, 9

Client 2–4
MC

Impostor 1–4

Client 6–8
UD MD

Impostor 5–8

Client 10–12
UA MA

Impostor 9–12

Client 2–4, 6–8, 10–12
P G

Impostor 1–12

To assess visually the performance of the authentication
system, several curves are used: the Receiver Operating
Characteristic (ROC) curve [6, 7], the Expected Performance
Curve (EPC) [8], and the Detection error trade-off (DET)
curve [9]. The ROC curve plots the sensitivity (fraction of
true positives) of the binary classifier system versus specificity
(fraction of false positives) as a function of the threshold.
The closer the curve to 1 is, the better the performance of
the system is.

While ROC curves use a biased measure of performance
(EER), the EPC introduced in [8] provides an unbiased
estimate of performance at various operating points.

The DET curve is a log-deviate scale graph of FRR versus
FAR as the threshold changes. The EER value is normally
reported on the DET curve: the closer EER to the origin
is, the better the performance of the system is. The results
reported in this work are in the form of DET curves.

3. Multimodal Identity Verification

3.1. Identification Versus Verification. Identity recognition
can be divided into two major areas: authentication and
Identification. Authentication, also referred to as verification,
attempts to verify a person’s identity based on a claim. On
the other hand, identification attempts to find the identity
of an unknown person in a set of a number of persons.
Verification can be though of as being a one-to-one match
where the person’s biometric traits are matched against
one template (or a template of a general “world model”)
whereas identification is a one-to-many match process where
biometric traits are matched against many templates.

Identity verification is normally the target of applications
that entail a secure access to a resource. It is managed
with the client’s knowledge and normally requires his/her
cooperation. As an example, a person’s access to a bank
account at an automatic teller machine (ATM) may be
asked to verify his fingerprint or look at a camera for
face verification or speak into a microphone for voice
authentication. Another example is the fingerprint readers
of most modern laptop computers that allow access to the
system only after fingerprint verification.

Person identification systems are more likely to operate
covertly without the knowledge of the client. This can be

used, for example, to identify speakers in a recorded group
conversation, or a criminal’s fingerprint or voice is cross
checked against a database of voices and fingerprints looking
for a match.

Recognition systems have typically two phases: enroll-
ment and test. During the enrollment phase, the client
deliberately registers on the system one or more biometric
traits. The system derives a number of features for these
traits to form a client print, template, or model. During the
test phase, whether identification or verification, the client is
biometrically matched against the model(s).

This paper is solely concerned with the identity verifica-
tion task. Thus, the two terms verification and recognition
referred to herein are used interchangeably to indicate
verification.

3.2. Biometric Modalities. Identity verification systems rely
on multiple biometric modalities to match clients. These
modalities include voice, facial geometry, fingerprint, sig-
nature, iris, retina, and hand geometry. Each one of these
modalities has been extensively researched in literature. This
paper focuses on the voice and the face modalities.

It has been established that multimodal identity verifica-
tion systems outperform verification systems that rely on a
single biometric modality [10, 11]. Such performance gain is
more apparent in noisy environments; identity verification
systems that rely solely on speech are affected greatly by
the microphone type, the level of background noise (street
noise, cafeteria atmosphere, . . .), and the physical state of
the speaker (sickness, mental state, . . .). Identity verification
systems based on the face modality is dependent on the
video camera quality, the face brightness, and the physical
appearance of the subject (hair style, beard, makeup, . . .).

3.2.1. Voice. Voice verification, also known as speaker
recognition, is a biometric modality that relies on features
influenced by both the structure of a person’s vocal tract and
the speech behavioral characteristics. The voice is a widely
acceptable modality for person verification and has been a
subject for research for decades. There are two forms of
speaker verification: text dependent (constrained mode), and
text independent (unconstrained mode). Speaker verifica-
tion is treated in Section 3.3.

3.2.2. Face. The face modality is a widely acceptable modality
for person recognition and has been extensively researched.
The face recognition process has matured into a science
of sophisticated mathematical representations and matching
processes. There are two predominant approaches to the face
recognition problem: holistic methods and feature-based
techniques. Face verification is described in Section 3.4.

3.3. Speaker Verification. The speech signal is an important
biometric modality used in the audiovisual verification
system. To process this signal a feature extraction module
calculates relevant feature vectors from the speech waveform.
On a signal window that is shifted at a regular rate a
feature vector is calculated. Generally, cepstral-based feature
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Figure 1: Screenshots from the BANCA database for two subjects in all three scenarios:Controlled (left), degraded (middle), and adverse
(right).

vectors are used. A stochastic model is then applied to
represent the feature vectors from a given speaker. To verify a
claimed identity, new utterance feature vectors are generally
matched against the claimed speaker model and against a
general model of speech that may be uttered by any speaker,
called the world model. The most likely model identifies
if the claimed speaker has uttered the signal or not. In
text independent speaker verification, the model should not
reflect a specific speech structure, that is, a specific sequence
of words. State-of-the art systems use Gaussian Mixture
Models (GMMs) as stochastic models in text-independent
mode. A tutorial on speaker verification is provided in [12].

3.3.1. Feature Extraction. The first part of the speaker
verification process is the speech signal analysis. Speech
is inherently a nonstationary signal. Consequently, speech
analysis is normally performed on short fragments of speech
where the signal is presumed stationary. To compensate for
the signal truncation, a weighting signal is applied on each
window.

Coding the truncated speech windows is achieved
through variable resolution spectral analysis [13]. The most
common technique employed is filter-bank analysis; it is a
conventional spectral analysis technique that represents the
signal spectrum with the log-energies using a filter-bank of
overlapping band-pass filters.

The next step is cepstral analysis. The cepstrum is
the inverse Fourier transform of the logarithm of the
Fourier transform of the signal. A determined number of
mel frequency cepstral coefficients (MFCCs) are used to
represent the spectral envelope of the speech signal. They
are derived from the filter-bank energies. To reduce the
effects of signals recorded in different conditions, Cepstral
mean subtraction and feature variance normalization is used.
First- and second-order derivatives of extracted features are

appended to the feature vectors to account for the dynamic
nature of speech.

3.3.2. Silence Detection. It is well known that the silence
part of the signal alters largely the performance of a speaker
verification system. Actually, silence does not carry any useful
information about the speaker, and its presence introduces
a bias in the score calculated, which deteriorates the system
performance. Therefore, most of the speaker recognition
systems remove the silence parts from the signal before start-
ing the recognition process. Several techniques have been
used successfully for silence removal. In our experiments, we
suppose that the energy in the signal is a random process that
follows a bi-Gaussian model, a first Gaussian modeling the
energy of the silence part and the other modeling the energy
of the speech part. Given an utterance and more specifically
the computed energy coefficients, the bi-Gaussian model
parameters are estimated using the EM algorithm. Then, the
signal is divided into speech parts and silence parts based
on a maximum likelihood criterion. Treatment of silence
detection can be found in [14, 15].

3.3.3. Speaker Classification and Modeling. Each speaker
possesses a unique vocal signature that provides him with
a distinct identity. The purpose of speaker classification is
to exploit such distinctions in order to verify the identity of
a speaker. Such classification is accomplished by modeling
speakers using a Gaussian Mixture Model (GMM).

Gaussian Mixture Models. A mixture of Gaussians is a
weighted sum of M Gaussian densities

P(xλ) =
∑

i=1:M

αi fi(x), (3)

where x is an MFCC vector, fi(x) is a Gaussian density
function, and αi is the corresponding weights. Each Gaussian
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is characterized by its mean μi and a covariance matrix
∑

i.
A speaker model λ is characterized by the set of parameters
(αi,μi,

∑
i)i=1:M .

For each client, two GMMs are used: the first corresponds
to the distribution of the training set of speech feature vectors
of that client, and the second represents the distribution of
the training vectors of a defined “world model.”

To formulate the classification concept, assume that a
speaker is presented along with an identity claim C. The

feature vectors V = {−→vi}Ni=1 are extracted. The average log
likelihood of the speaker having identity C is calculated as

L(X | λc) = 1
N

N∑

i=1

log p
(−→xi | λc

)
, (4)

where p(−→xi | λc) =
∑NG

j=1mjN (−→x ;−→μj ,
∑

j), λ = {mj
−→μj ,
∑

j}NG

j=1
,

and N (−→x ;−→μj ,
∑

j) = (1/(2π)D/2|∑ j|1/2)e(1/2)(−→x−−→μj )T
∑

j (
−→x−−→μj )

is a multivariate Gaussian function with mean −→μi and
diagonal covariance matrix

∑
, and D is the dimension of

the feature space, λc is the parameter set for person C, NG

is the number of Gaussians, mj = weight for Gaussian j, and
∑Nj

j=1mj = 1, mj ≥ 0 ∀ j.
With a world model of w persons, the average log

likelihood of a speaker being an impostor is found as

L(X | λw) = 1
N

NW∑

i=1

log p
(−→xi | λw

)
. (5)

An opinion on the claim is then found: O(X) = log L(X |
λc)− log L(X | λw).

As a final decision to whether the face belongs to the
claimed identity, and given a certain threshold t, the claim
is accepted when O(X) ≥ t and rejected when O(X) < t.

To estimate the GMM parameters λ of each speaker,
the world model is adapted using a Maximum a Posteriori
(MAP) adaptation [16]. The world model parameters are
estimated using the Expectation Maximization (EM) algo-
rithm [17].

GMM client training and testing is performed on the
speaker verification toolkit BECARS [18]. BECARS imple-
ments GMMs with several adaptation techniques, for exam-
ple, Bayesian adaptation, MAP, maximum likelihood linear
regression (MLLR), and the unified adaptation technique
defined in [19].

3.4. Face Verification. Face verification is a biometric person
recognition technique used to verify (confirm or deny) a
claimed identity based on a face image or a set of faces (or
a video sequence). The process of automatic face recognition
can be thought of as being comprised of four stages:

(i) face detection, localization and segmentation;

(ii) normalization;

(iii) facial Feature extraction and tracking;

(iv) classification (identification and/or verification).

These subtasks have been independently researched and
surveyed in literature and are briefed next.

3.4.1. Face Detection. Face detection is an essential part
of any face recognition technique. Given an image, face
detection algorithms try to answer the following questions.

(i) Is there a face in the image?

(ii) If there is a face in the image, where is it located?

(iii) What are the size and the orientation of the face?

Face detection techniques are surveyed in [20, 21].
The face detection algorithm used in this work has

been introduced initially by Viola and Jones [22] and later
developed further by Lienhart and Maydt [23]. It is a
machine learning approach based on a boosted cascade
of simple and rotated haar-like features for visual object
detection.

3.4.2. Face Tracking in a Video Sequence. Face tracking
in a video sequence is a direct extension of still image
face detection techniques. However, the coherent use of
both spatial and temporal information of faces makes the
detection techniques more unique.

The technique used in this work employs the algorithm
developed by Lienhart on every frame in the video sequence.
However, three types of tracking errors are identified in a
talking face video.

(i) More than one face is detected, but only one actually
exists in a frame.

(ii) A wrong object is detected as a face.

(iii) No faces are detected.

Figure 2 shows an example detection from the BANCA
database [1], where two faces have been detected, one for the
actual talking-face subject, and a false alarm.

The correction of these errors is done through the
exploitation of spatial and temporal information in the video
sequence as the face detection algorithm is run on every
subsequent frame. The correction algorithm is summarized
as follows.

(a) More than one face area detected. The intersections of
these areas with the area of the face of the previous
frame are calculated. The area that corresponds to the
largest calculated intersection is assigned as the face
of the current frame. If the video frame in question is
the first one in the video sequence, then the decision
to select the proper face for that frame is delayed until
a single face is detected at a later frame and verified
with a series of subsequent face detections.

(b) No faces detected. The face area of the previous frame
is assigned as the face of the current frame. If the
video frame in question is the first one in the video
sequence, then the decision is delayed as explained in
part (a).

(c) A wrong object detected as a face. The intersection area
with the previous frame face area is calculated. If this
intersection ratio to the area of the previous face is
less than a certain threshold, for example, 80%, the
previous face is assigned as the face of the current
frame.
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3.4.3. Face Normalization. Normalizing face images is a
required preprocessing step that aims at reducing the
variability of different aspects in the face image such
as contrast and illumination, scale, translation, rotation,
and face masking. Many works in literature [24–26] have
normalized face images with respect to translation, scale, and
in-plane rotation, while others [27, 28] have also included
masking and affine warping to properly align the faces.
Craw and Cameron in [28] have used manually annotated
points around shapes to warp the images to the mean shape,
leading to shape-free representation of images useful in PCA
classification.

The preprocessing stage in this work includes four steps.

(i) Scaling the face image to a predetermined size (w f ,
h f ).

(ii) Cropping the face image to an inner-face, thus
disregarding any background visual data.

(iii) Disregarding color information by converting the
face image to grayscale.

(iv) Histogram equalization of the face image to compen-
sate for illumination changes.

Figure 3 shows an example of the four steps.

3.4.4. Feature Extraction. The facial feature extraction tech-
nique used in this work uses DCT-mod2 proposed by Sander-
son and Paliwal in [29]. This technique is used in this work
for its simplicity and performance in terms of computational
speed and robustness to illumination changes.

A face image is divided into overlapping N × N blocks.
Each block is decomposed in terms of orthogonal 2D DCT
basis functions and is represented by an ordered vector of
DCT coefficients:

[
c(b,a)

0 c(b,a)
1 · · · c(b,a)

M−1

]T
, (6)

where (b, a) represent the location of the block, and M is
the number of the most significant retained coefficients. To
minimize the effects of illumination changes, horizontal and
vertical delta coefficients for blocks at (b, a) are defined as
first-order orthogonal polynomial coefficients, as described
in [29].

The first three coefficients c0, c1, and c2 are replaced in (6)
by their corresponding deltas to form a feature vector of size
M + 3 for a block at (b, a):

[
Δhc0Δ

vc0Δ
hc1Δ

vc1Δ
hc2Δ

vc2c3c4 · · · cM−1

]T
. (7)

3.4.5. Face Classification. Face verification can be seen as
a two-class classification problem. The first class is the
case when a given face corresponds to the claimed identity
(client), and the second is the case when a face belongs to an
impostor. In a similar way to speaker verification, a GMM is
used to model the distribution of face feature vectors for each
person.

3.5. Fusion. It has been shown that biometric verification
systems that combine different modalities outperform single
modality systems [30]. A final decision on the claimed
identity of a person relies on both the speech-based and the
face-based verification systems. To combine both modalities,
a fusion scheme is needed.

Various fusion techniques have been proposed and
investigated in literature. Ben-Yacoub et al. [10] evaluated
different binary classification approaches for data fusion,
namely, Support Vector Machine (SVM), minimum cost
Bayesian classifier, Fisher’s linear discriminant analysis, C4.5
decision classifier, and multilayer perceptron (MLP) classi-
fier. The use of these techniques is motivated by the fact
that biometric verification is merely a binary classification
problem. An overview of fusion techniques for audio-visual
identity verification is provided in [31].

Other fusion techniques used include the weighted sum
rule and the weighted product rule. It has been shown that
the sum rule and support vector machines are superior when
compared to other fusion schemes [10, 32, 33].

The weighted sum rule fusion technique is used in this
study. The sum rule computes the audiovisual score s by
weight averaging: s = wsss+wf s f , wherews andwf are speech
and face score weights computed so as to optimize the equal
error rate (EER) on the training set. The speech and face
scores must be in the same range (e.g., μ = 0, σ = 1) for
the fusion to be meaningful. This is achieved by normalizing
the scores as follows:

snorm(s) = ss − μs
σs

, snorm( f ) =
s f − μ f
σ f

. (8)

4. Audiovisual Imposture

Audiovisual imposture is the deliberate modification of both
speech and face of a person so as to make him sound
and look like someone else. The goal of such an effort is
to analyze the robustness of biometric identity verification
systems to forgery attacks. An attempt is made to increase
the acceptance rate of an impostor. Transformations of both
modalities are treated separately below.

4.1. Speaker Transformation. Speaker transformation, also
referred to as voice transformation, voice conversion, or
speaker forgery, is the process of altering an utterance from
a speaker (impostor) to make it sound as if it was articulated
by a target speaker (client). Such transformation can be
effectively used to replace the client’s voice in a video to
impersonate that client and break an identity verification
system.

Speaker transformation techniques might involve modi-
fications of different aspects of the speech signal that carries
the speaker’s identity such as the formant spectra, that is,
the coarse spectral structure associated with the different
phones in the speech signal [34], the excitation function,
that is, the “fine” spectral detail [35], the prosodic features,
that is, aspects of the speech that occur over timescales
larger than individual phonemes, and the mannerisms such
as particular word choice or preferred phrases, or all kinds



EURASIP Journal on Advances in Signal Processing 7

Face 2
(false alarm)

Face 1

Figure 2: Face detection and tracking.

of other high-level behavioral characteristics. The formant
structure and the vocal tract are represented by the overall
spectral envelope shape of the signal, and thus they are major
features to be considered in voice transformation [36].

Several voice transformation techniques have been pro-
posed in literature. These techniques can be classified as
text-dependent methods and text independent methods. In
text-dependent methods, training procedures are based on
parallel corpora, that is, training data have the source and the
target speakers uttering the same text. Such methods include
vector quantization [37, 38], linear transformation [36, 39],
formant transformation [40], probabilistic transformation
[41], vocal tract length normalization (VTLN) [42], and
prosodic transformation [38]. In text-independent voice
conversion techniques, the system trains on source and target
speakers uttering different text. Techniques include text-
independent VTLN [42], maximum likelihood constrained
adaptation [43], and client memory indexation [44, 45].

The analysis part of a voice conversion algorithm focuses
on the extraction of the speaker’s identity. Next, a trans-
formation function is estimated. At last, a synthesis step
is achieved to replace the source speaker characteristics by
those of the target speaker.

Consider a sequence of spectral vectors uttered by the
source speaker (impostor) Xs = [x1, x2, . . . , xn], and a
sequence pronounced by the target speaker comprising the
same words Yt = [y1, y2, . . . , yn]. Voice conversion is based
on the estimation of a conversion function F that minimizes
the mean square error εmse = E�‖y −F (x)‖2�, where E is
the expectation.

Two steps are useful to build a conversion system:
training and conversion. In the training phase, speech
samples from the source and the target speakers are analyzed
to extract the main features. These features are then time
aligned, and a conversion function is estimated to map the
source and the target characteristics (Figure 4).

The aim of the conversion is to apply the estimated
transformation rule to an original speech pronounced by
the source speaker. The new utterance sounds like the same
speech pronounced by the target speaker, that is, pronounced
by replacing the source characteristics by those of the target
voice. The last step is the resynthesis of the signal to
reconstruct the source speech voice (Figure 5).

Voice conversion can be effectively used by an impostor
to impersonate a target person and hide his identity in an
attempt to increase the acceptance rate of the impostor by
the identity verification system.

In this paper, MixTrans, a new mixture-structured bias
voice transformation, is proposed and is described next.

4.1.1. MixTrans. A linear time-invariant transformation in
the temporal domain is equivalent to a bias in the cepstral
domain. However, speaker transformation may not be seen
as a simple linear time-invariant transformation. It is more
accurate to consider the speaker transformation as several
linear time-invariant filters, each of them operating in a part
of the acoustical space. This leads to the following form for
the transformation:

Tθ(X) =
∑

k

∏

k

(X + bk) =
∑

k

∏

k

X +
∑

k

∏

k

bk = X +
∑

k

∏

k

bk,

(9)

where bk represents the kth bias, and
∏

k is the probability
of being in the kth part of the acoustical space given the
observation vector X.

∏
k is calculated using a universal

GMM modeling the acoustic space.
Once the transformation is defined, its parameters have

to be estimated. We suppose that speech samples are available
for both the source and the target speakers but do not
correspond to the same text. Let λ be the stochastic model
for a target client. λ is a GMM of the client. Let X represent
the sequence of observation vectors for an impostor (a source
client). Our aim is to define a transformation Tθ(X) that
makes the source client vector resemble the target client.
In other words, we would like to have the source vectors
be best represented by the target client model λ through
the application of the transformation Tθ(X). In this context
the Maximum likelihood criterion is used to estimate the
transformation parameters:

θ̂ = argmax
θ

L(Tθ(X) | λ). (10)

Since λ is a GMM, Tθ(X) is a transform of the source
vectors X, and Tθ(X) depends on another model λw, then
L(Tθ(X) | λ) in (10) can be written as

L(Tθ(X | λ)

=
T∏

t=1

L(Tθ(Xt) | λ)

=
T∏

t=1

M∑

m=1

1

(2π)D/2
∣
∣∑

m

∣
∣1/2 e

−(1/2)(Tθ(Xt)−μm)T
∑−1
m (Tθ(Xt)−μm)

=
T∏

t=1

M∑

m=1

1

(2π)D/2
∣
∣∑

m

∣
∣1/2

× e−(1/2)(Xt+
∑K
k=1

∏
ktbk−μm)

T∑−1
m (Xt+

∑K
k=1

∏
ktbk−μm)).

(11)
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(a) (b) (c) (d)

Figure 3: Preprocessing face images. (a) Detected face. (b) Cropped face (inner face). (c) Grayscale face. (d) Histogram-equalized face.
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Finding {bk} such that (11) is maximized is
found through the use of the EM algorithm. In the
expectation “E” step, the probability αmt of component
m is calculated. Then, at the maximization “M” step, the
log-likelihood is optimized dimension by dimension for a
GMM with a diagonal covariance matrix:

ll =
T∑

t=1

M∑

m=1

αmt

⎡

⎢
⎣log

1
σm
√

2π
− 1

2

(
Xt +

∑K
k=1

∏
ktbk − μm

)2

σ2
m

⎤

⎥
⎦.

(12)

Maximizing

∂ll

∂bl
= 0 =⇒ −

T∑

t=1

M∑

m=1

αmt

(
Xt +

∑K
k=1

∏
ktbk − μm

)∏
lt

σ2
m

= 0,

for l = 1 · · ·K ,
(13)

then,

T∑

t=1

M∑

m=1

αmtPlt
σ2
m

(
Xt − μm

) = −
T∑

t=1

M∑

m=1

K∑

k=1

αmt
∏

kt

∏
ltbk

σ2
m

,

for l = 1 · · ·K ,

T∑

t=1

M∑

m=1

αmt
∏

lt

σ2
m

(
Xt − μm

) = −
K∑

k=1

bk
M∑

m=1

T∑

t=1

αmt
∏

lt

∏
kt

σ2
m

,

for l = 1 · · ·K ,
(14)

and finally, in matrix notation,

−
(
∑

m

∑

t

αmt
∏

lt

∏
kt

σ2
m

)

(bk) =
(
∑

m

∑

t

αmt
∏

lt

(
Xt − μm

)

σ2
m

)

.

(15)

This matrix equation is solved at every iteration of the EM
algorithm.

4.1.2. Speech Signal Reconstruction. It is known that the
cepstral domain is appropriate for classification due to the
physical significance of the Euclidean distance in this space
[13]. However, the extraction of cepstral coefficients from
the temporal signal is a nonlinear process, and the inversion
of this process is not uniquely defined. Therefore, a solution
has to be found in order to take the advantage of the
good characteristics of the cepstral space while applying the
transformation in the temporal domain.

Several techniques have been proposed to overcome this
problem. In [46], harmonic plus noise analysis has been used
for this purpose. Instead of trying to find a transformation
allowing the passage from the cepstral domain to the
temporal domain, a different strategy is adopted. Suppose
that an intermediate space exists where transformation
could be directly transposed to the temporal domain.
Figure 6 shows the process where the temporal signal goes
through a two-step feature extraction process leading to
the cepstral coefficients that may be easily transformed
into target speaker-like cepstral coefficients by applying the
transformation function Tθ(X) as discussed previously.

The transformation trained on the cepstral domain
cannot be directly projected to the temporal domain since
the feature extraction module (F2 ◦ F1) is highly nonlinear.
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Figure 6: Steps from signal to transformed cepstral coefficients.
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Figure 7: Steps from signal to transformed cepstral coefficients when transformation is applied in a signal-equivalent space.

However, a speaker transformation determined in the B
space may be directly projected in the signal space, for
example, B space may be the spectral domain. But, for
physical significance it is better to train the transformation
in the cepstral domain. Therefore, we suppose that another
transformation T ′

θ (X) exists in the B space leading to
the same transformation in the cepstral domain satisfying
thereby the two objectives: transformation of the signal and
distance measurement in the cepstral domain. This is shown
in Figure 7.

This being defined, the remaining issue is how to estimate
the parameters θ of the transformation T ′

θ (X) in order to
get the same transformation result as in the cepstral domain.
This is detailed next.

4.1.3. Estimating Signal Transformation Equivalent to a
Calculated Cepstral Transformation. The transformation in
the cepstral domain is presumably determined; the idea is to
establish a transformation in the B space leading to cepstral
coefficients similar to the one resulting from the cepstral
transformation.

Let Ĉ
(t)

represent the cepstral vector obtained after the
application of the transformation in the B domain, and let
C(t) represent the cepstral vector obtained when applying
the transformation in the cepstral domain. The difference
defines an error vector:

e = C(t) − Ĉ(t)
. (16)

The quadratic error can be written as

E = |e|2 = eTe. (17)

Starting from a set of parameters for T ′
θ , the gradient

algorithm may be applied in order to minimize the quadratic
error E. For every iteration of the algorithm the parameter θ
is updated using

θ(i+1) = θ(i) − μ∂E
∂θ

, (18)

where μ is the gradient step.
The gradient of the error with respect to parameter θ is

given by

∂E

∂θ
= −2eT

∂Ĉ
(t)

∂θ
. (19)

Finally, the derivative of the estimated transformed cepstral
coefficient with respect to θ can be obtained using a gradient
descent

∂Ĉ
(t)

∂θ
= ∂Ĉ

(t)T

∂B(t)

∂B(t)

∂θ
. (20)

In order to illustrate this principle, let us consider the case
of MFCC analysis leading to the cepstral coefficients. In this
case, F1 is just the Fast Fourier Transform (FFT) followed
by the power spectral calculation (the phase being kept
constant). F2 is the filterbank integration in the logarithm
scale followed by the inverse DCT transform. We can write

Ĉ(t)
l =

K∑

k=1

log

⎛

⎝
N∑

i=1

a(k)
i B(k)

i

⎞

⎠ cos

(

2πl
fk
F

)

,

B(t)
i = Bi · θi,

(21)

where {ai} are the filter-bank coefficients, fk the central
frequencies of the filter-bank, and θi is the transfer function
at frequency bin i of the transformation T ′

θ (X).
Using (21), it is straightforward to compute the deriva-

tives in (20):

∂Ĉ(t)
i

∂B(t)
j

=
K∑

k=1

a(k)
j

∑N
i=1a

(k)B(t)
i

i

cos

(

2πl
fk
F

)

,

∂B(t)
i

∂θj
= Bjδi j .

(22)

Equations (19), (20), and (22) allow the implementation
of this algorithm in the case of MFCC.

Once T ′
θ (X) completely defined, the transformed signal

may be determined by applying an inverse FFT to B(t) and
using the original phase to recompose the signal window. In
order to consider the overlapping between adjacent windows,
the Overlap and Add (OLA) algorithm is used [47].

4.1.4. Initializing the Gradient Algorithm. The previous
approach is computationally expensive. Actually, for each
signal window, that is, from 10 milliseconds to 16 mil-
liseconds, a gradient algorithm is to be applied. In order
to alleviate this high computational algorithm, a solution
consists in finding a good initialization of the gradient
algorithm. This may be obtained by using an initial value for
the transformation T ′

θ (X), the transformation obtained for
the previous signal window.
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Figure 8: Signal-level transformation parameters tuned with a gradient descent algorithm.
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4.2. Face Animation. To complete the scenario of audiovisual
imposture, speaker transformation is coupled with face
transformation. It is meant to produce synthetically an
“animated” face of a target person, given a still photo of
his face and some animation parameters defined by a source
video sequence. Figure 10 depicts the concept.

The face animation technique used in this paper is
MPEG-4 compliant, which uses a very simple thin-plane
spline warping function defined by a set of reference points
on the target image, driven by a set of corresponding points
on the source image face. This technique is described next.

4.2.1. MPEG-4 2D Face Animation. MPEG-4 is an object-
based multimedia compression standard, which defines a
standard for face animation [48]. It specifies 84 feature points
(Figure 11) that are used as references for Facial Animation
Parameters (FAPs). 68 FAPs allow the representation of facial
expressions and actions such as head motion and mouth and

eye movements. Two FAP groups are defined, visemes (FAP
group 1) and expressions (FAP group 2). Visemes (FAP1)
are visually associated with phonemes of speech; expressions
(FAP2) are joy, sadness, anger, fear, disgust, and surprise.

An MPEG-4 compliant system decodes an FAP stream
and animates a face model that has all feature points properly
determined. In this paper, the animation of the feature points
is accomplished using a simple thin-plate spline warping
technique and is briefly described next.

4.2.2. Thin-Plate Spline Warping. The thin-plate spline
(TPS), initially introduced by Duchon [49], is a geometric
mathematical formulation that can be applied to the problem
of 2D coordinate transformation. The name thin-plate spline
indicates a physical analogy to bending a thin sheet of metal
in the vertical z direction, thus displacing x and y coordinates
on the horizontal plane.

Given a set of data points {wi, i = 1, 2, . . . ,K} in a 2D
plane—for our case, MPEG-4 facial feature points—a radial
basis function is defined as a spatial mapping that maps a
location x in space to a new location f (x) = ∑K

i=1ciφ(‖x −
wi‖), where {ci} is a set of mapping coefficients, and the
kernel function φ(r) = r2 ln r is the thin-plate spline [50].
The mapping function f (x) is fit between corresponding sets
of points {xi} and {yi} by minimizing the “bending energy”
I, defined as the sum of squares of the second derivatives:

I
[
f
(
x, y

)]=
∫∫

R2

⎡

⎣

(
∂2 f

∂x2

)2

+2

(
∂2 f

∂xy

)2

+

(
∂2 f

∂y2

)2
⎤

⎦dx dy.

(23)
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Figure 11: MPEG-4 feature points.

(a) Original sample video frame ( BANCA
client number 9055)

(b) Annotated face

Figure 12: Feature point annotation on the BANCA database.

5. Effects of Imposture on Verification—
Experimental Results

To test the robustness of IV systems, a state-of-the-art
baseline audio-visual IV system is built. This system follows
the BANCA “P” protocol and is based on a classical GMM
approach for both speech and face modalities. It is com-
pletely independent from the voice and face transformations
described above.

5.1. Verification Experiments

5.1.1. Speaker Verification. For speech, feature extraction
and silence detection is first performed, as described in
Sections 3.3.1 and 3.3.2. Then GMM speaker classification is
performed with 256 Gaussians. The world model of BANCA
is adapted using MAP adaptation, and its parameters esti-
mated using the EM algorithm, as discussed in Section 3.3.3

above. The world model is used as a Universal Background
Model (UBM) for training to amplify the variability between
different speakers. In fact, to improve the performance of the
IV system, we use a larger UBM by combining BANCA world
model and g2 when training and testing is performed on g1
and vice versa. This is possible because g1 and g2 of BANCA
are totally independent. Client models are then adapted from
the UBM using speech features from the enrollment set
of BANCA. To verify a claimed identity of a test speaker,
his/her features are extracted and compared to both the
UBM and the GMM of the client. The average log likelihood
is calculated, and an acceptance or a rejection decision is
taken as described in Section 3.3.3. A total of 234 true client
tests and 312 impostor tests (per group) were performed in
compliance with BANCA’s “P” protocol. Figure 14(a) shows
the DET curves for speaker verification on g1 and g2, with an
EER of 4.38% and 4.22%, respectively.
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(a) Neutral face (b) Joy expression (c) Sad expression (d) Right eye wink (e) Left eye wink

Figure 13: Selected frames from an animated face with various expressions.

5.1.2. Face Verification Experiments. Face verification is
based on extracting facial features from a video sequence
as described in Section 3.4. First, the face tracking module
extracts faces in all frames and retains only 5 of them for
training and/or testing. The 5 frames selected are equally
distributed across the video sequence so as to have a good
sample of faces. These faces are then resized to 48× 64, gray-
scaled, cropped to 36 × 40, and then histogram-equalized.
Then DCT feature extraction follows. Neighboring blocks
of 8 × 8 with an overlap of 50% is used. M, the number
of retained coefficients, is fixed at 15 [29]. In a similar
way to speaker verification, GMMs are used to model the
distribution of face feature vectors for each person.

For the same BANCA “P” protocol, and a total of 234
true clients and 312 impostor tests (per group per frame—
5 frames per video) the DET curves for face verification are
shown in Figure 14(b) with an EER of 23.5% and 22.2% for
g1 and g2, respectively.

5.1.3. Score Fusion. Figure 14(c) shows an improvement of
the verification by score fusion of both modalities, with
an EER of 4.22% for g1 and 3.47% for g2. The optimized
weights ws and wf are integers 8 and 3, respectively, as
described in Section 3.5.

5.2. Transformation Experiments. BANCA defines in its pro-
tocols imposture attempts during which a speaker proclaims
in his/her own voice and face to be someone else. This “zero-
effort” imposture is unrealistic, and any text-independent
verification system should be able to detect easily the forgery
by contrasting the impostor model against the claimed
identity model. To make the verification more difficult,
transformation of both voice and face is performed.

5.2.1. Voice Conversion Experiments. BANCA has total of 312
impostor attacks per group in which the speaker claims in his
own words to be someone else. These attempts are replaced
by the transformed voices as described in Section 4.1. For
each attempt, MFCC analysis is performed, and transfor-
mation coefficients are calculated in the cepstral domain
using the EM algorithm. Then the signal transformation
parameters are estimated using a gradient descent algorithm.
The transformed voice signal is then reconstructed with an

inverse FFT and OLA as described in Section 4.1.3. The
pitch of the transformed voice had to be adjusted to match
better the target speaker’ pitch. Verification experiments
are repeated with the transformed voices. The result is an
increase of the EER from 4.38% to 10.6% on g1 and from
4.22% to 12.1% on g2 (Figure 14(a)).

5.2.2. Face Conversion Experiments. Given a still picture of
the face of a target person, the MPEG-4 facial feature points
are first manually annotated as shown in Figure 12. A total
of 61 feature points out of 83 specified by MPEG-4 are
annotated, the majority of which belong to the eyes and the
mouth regions. Others have less impact on FAPs or do not
affect them at all.

The FAPs used in the experiments correspond to a
subset of 33 out of the 68 FAPs defined by MPEG-4.
Facial actions related to head movement, tongue, nose,
ears, and jaws are not used. The FAPs used corre-
spond to mouth, eye, and eyebrow movements, for exam-
ple, horizontal displacement of right outer lip corner
(stretch r cornerlip o), vertical displacement of top
right eyelid (close t r eyelid), and vertical displacement
of left outer eyebrow (raise l o eyebrow). Figure 13
shows animated frames simulating the noted expressions.

A synthesized video sequence is generated by deforming
a face from its neutral state according to determined FAP
values at a rate of 25 frames per second. For the experiments
presented in this work, these FAPs are selected so as to
produce a realistic talking head that is not necessarily
synchronized with the associated transformed speech. The
only association with speech is the duration of the video
sequence, which corresponds to the total time of speech. The
detection and the measure of the level of audiovisual speech
synchrony is not treated in this work but has been reported
in [51–53] to improve the verification performance.

BANCA has total of 312 impostor attacks per group
in which the speaker claims in his own words and facial
expressions to be someone else. These are replaced by
the synthetically animated videos with the transformed
speech. The experiments have shown a deterioration of
the performance from an EER from (23.5%, 22.2%) on
(g1, g2) to (37.6%, 33.0%) (Figure 14(b)) for face, and
from (4.22%, 3.47%) to (11.0%, 16.1%) for the audio-visual
system (Figure 14(c)).
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Figure 14: Audiovisual verification and imposture results on BANCA.

6. Conclusion

This paper provides a review of biometric identity ver-
ification techniques and describes their evaluation and
robustness to imposture. It proposes MixTrans, a mixture-
structured bias voice transformation technique in the cep-
stral domain, which allows a transformed audio signal to be
estimated and reconstructed in the temporal domain. It also
couples the audio conversion with an MPEG-4 compliant

face animation system that warps facial feature points using
a simple thin-plate spline. The proposed audiovisual forgery
is completely independent from the baseline audiovisual IV
system and can be used to attack any other audiovisual
IV system. The Results drawn from the experiments show
that state-of-the-art verification systems are vulnerable to
forgery, with an EER average increase from 3.8% to 13.5%.
This increase clearly shows that such attacks represent a
serious challenge and a security threat to audio-visual IV
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systems. The results show that state-of-the-art IV systems are
vulnerable to forgery attacks, which indicate more impostor
acceptance, and, for the same threshold, more genuine client
denial. This should drive more research towards more robust
IV systems.
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