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ABSTRACT proposed to minimize exactly some specific energy func-

This paper copes with the approximate minimization oftions [4, 5, 3]: more precisely it corresponds to a sub-obdss
Markovian energy with pairwise interactions. We extengSubmodular functions. These approaches allow for a global
previous approaches that rely on graph-cuts and move magpt|m|zat|on_. _The idea is to map the_ original m|n|m|zat|on
ing techniques. For this purpose, a new move is introducetft® @ s-t minimum-cut (and by duality, a maximum-flow)
that permits us to perform better approximate optimization Problem.  This approach has been proposed in [6, 7] for
Some experiments show that very good local minima aré&Vnimizing Boolean energies and have been shown to be

obtained while keeping the memory usage low. very efficient in [6]. Extensions of this approach to the case
of linearly ordered labels have been proposed for instance

in [4, 8, 3]. However, the latter requires to build a huge grap
that corresponds to a prohibitive use of memory for prattica
applications. Thus, several approaches have been proposed
1. INTRODUCTION to perform approximate minimizations [2], such as iterated
conditional modes, belief propagation, move making algo-
Many vision problems can be formulated as an energy minrithms [9, 10], etc. that require much less memory. Note that
imization that arises from a Markov Random Field (MRF) these a|gorithms are essentia"y iterative.
formulation [1]. This Markovian approach has been provento  peveloping graph-based minimization algorithms that
be extremely successful for many vision applications ssch aprovide good approximate solutions while maintaining a low
stereo, image segmentation, image denoising, and others [#nemory requirement is thus a challenge for practical appli-
Optimizing these energies is generally a difficult problerd a cations. This is the aim of this paper. More precisely, we are
we propose an approximate optimization algorithm for a subinterested in optimization algorithms based on the conagpt
class of Markovian energies. partition move, originally proposed in [9], that allows nyan
Let us introduce more formally this approach. It is as-pixels to change their values in a single step. Contrary}o [9
sumed that images are defined on a lattice denotad Bfhe  that essentially limits the number of choices for each pisel
value of the imager at the sitep is referred to as;, and  two, we propose a move that allows pixels to take their values
takes value in a linearly ordered finite set of lab&lswith  in a much larger set. This bigger searching space yields to
L = {l1,lz,..,lx}. We endow the lattice with a neighbor- compute better local minima (in terms of the value of the
hood system and pairwise interactions are considered. TV\@]ergy) Experiments show that usua”y we are able to get the
sitesp andgq that are in interaction with each other are denotedylobal minimum of the energy with no need of high memory
by (p, ¢). The set of all considered pairwise interactions is resych as exact optimization does.
ferred to as€. A first order Markovian energy is therefore  The remainder of this paper is as follows. In section 2, we
defined as the following: briefly review move making algorithms available in the liter
ature and we present our partition move. Section 3 describes
an algorithm that compute the new partition move and we dis-
E(x) = Z Ep(wp) + Z Ep.q(ep —q) » (1) cuss?ts main propertigs. Finally so?ne experiments for enag
pev (p.a)€€ processing purposes are presented in section 4.
TermsE, encode the likelihood (i.e., measure the distance
of the reconstruction to the observed data) wltilg, corre- 2. APPROXIMATE OPTIMIZATION
spond to the prior we have on the interactions. In this paper,
we only consider priors that are a function of the difference_et us consider the family of move making algorithms [9].
of the labels (see [3] for instance for the general case). A move simply consists of a change of a current labeling.
Minimization of an arbitrary Markovian energy of the A move is called large if many pixels change their configu-
form of (1) is a difficult problem. Some approaches wererations simultaneously and it is said optimal if it yieldeth

Index Terms— Optimization methods, Graph-cut, Image
restoration.



largest possible decrease of the total energy among thé posket us now describe how an optimal multilabel move can be
ble changes allowed by the move. computed using a graph-based approach.

The most two well-known moves are theexpansion and
a3-swap as described in [6]. These two algorithms are base@raph construction. We present here a graph construction
on binary moves since each pixel is proposed to take valugich that its s-t minimum-cut yields an optimal multilabel
among two labels in each step of the minimization procesgnove. The graph proposed here is similar to the one described
In fact, in ana-expansion move, a pixel can keep its currentdy Ishikawa in [4] for performing global optimization in the
label or change it to the label. In anaB-swap move, a case of convex priors.
pixel that takes value ifi«r, 5} can exchange its label within S )
this same set. Both algorithms perform binary large optimal  Recall that our goal consists in finding the optimal expan-
moves until convergence to a local optimum. sion move with respect to a subs&t,. In other words, we

A binary move exploits a limited number of labels amongnee_d to compute a g!obal mi_nimizer where pixels either keep
those inZ. Thus, proposing more labels to a pixel in a singleth€ir own values or pick one in a subsetf
move, may Yield a better energy minimization result. Hence,
the idea is to use a large subset of lab&lsin £, wherem
denotes the cardinality of the chosen subset. We call such
move amultilabelmove.

Using this new move, we propose an approximate opti
mization algorithm that is iterative and deterministic.céin
be seen as an intermediate algorithm between binary mo
algorithms and exact optimization ones.

It is worth noticing that several different kinds of moves

For each iteration, we consider the current labellirand

tge proposed expansion sét,. For each pixelp, we as-
sociate its possible sets of labdls, (p) defined as follows
Ly(p) = Ly U{x,}. We can then apply the graph con-
struction of Ishikawa [4] by replacing the sétby the set
\ém(p) for each pixel. The graph is layer-based. It is defined
as follows: there is a node associated to eadbr any la-

bel in £,,(p). Concerning the edges, they are defined in the
e way as in [4]. More precisely, three families of edges

can be considered, such as expansion, swap and jump (see z%ncreated. First, the set of data edges that corresponds to

for detailed presentat_lons of such moves in thelr blnarpnfpr encode the data fidelity terms. Capacities on these edges are
and also [10]). In this paper, we only consider expansion-

. . . defined using the likelihood energy function. Second, a set
based moves. We define af),-expansion move as a multil- . . .
. . . of constraints edges that guarantees a pixiel be assigned
abel move that proposes to each pixel either to keep |tsrt1:Urreto a unique element ifs,, (p). Capacities on these edges are
label or to change it by a label in the subggt. We refer to q m (D). ~ap g

this kind of moves as Large and Multilabel Partition MoveseF to _|nf|n|ty. Fmally, a set of edges that encodes t_he regu-
(LMPM). larization. An analysis similar to the one conducted in [4, 3

permits to define capacities on these edges and to show that
the convexity of the regularization ternis, ,(-) is a suffi-
3. LMPM OPTIMIZATION cient and necessary condition to have non-negative cégmcit
The latter means that an optimal solution can be computed in
We first present the LMPM algorithm before describing apolynomial time by computing a maximum-flow on the graph.
graph construction whose minimum-cut defines an optimafigure 1 depicts an example of our graph construction.
multilabel move. Some properties of our algorithm are given
LMPM algorithm. Our algorithm is a generalized form of LMPM properties . The first property presents the advantage
binary move algorithms (see [6]). This algorithm is itevati  of making a multilabel move with larger label set. In fact,

For each iteratiorfi), a set of label') of cardinalitym is ~ lets’s start with an initial labeling. Itis clear that if we make

considered. Giver'? and a current labellin , the optimal asame multilabel move (an expansion move for instance) but
" 9 P with different label set<,,, and L,,, such that’,, C L,.,

(4) _ ;
Lo expansion move that produces _the Iarge_st decrease of tﬂ?en the energy of resulted labelings is minimal for the move
total energy is computed. Once this move is computed, w

: . . . With the largest label set. This could be seen immediately
get another labelling and we iterate until convergence i@ . . .
since the set of optima reached by the move with less labels
move can produce a decrease of the energy.

- . is included in the set of the other move optima.
Note that we have not specified the Iabelséi for each

iterationi . One desirable property is the following: Forany  Note that if the above inclusions hold at every step, then
current iterate, there is alWﬂyS a consecutive finite sarfes multilabel |arge move guaranties a better energy minimum
label sets that spans the original label SefThis assumption  than the one obtained with binary moves. We have also veri-
guaranties that all labels can be reached through theidesat  fied experimentally that the global optimum is reached when
of the algorithm. one is using large label sets. This is a crucial point wheihdea

We shall see in the experiments section different ChOiceﬁ‘ng with high dimension images, where convergence to global
for defining the label set&!). The main characteristic is that optima, using an exact optimization algorithm, is a highlgos
they can be generated randomly or chosen deterministicalljnemory approach.
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Fig. 1. Graph construction for an optimal multilabel move.
On the left, a part of the grapfi,, defined on three pixels.
A cut is depicted and arcs are in the cut are dotted wherea
continuous ones are not. A part of the graph is highlighted
on the right. We distinguish the three arc families: dataesdg
(vertical edges oriented to the top), constraint edgesi¢ats
edges oriented to the buttom) and penalty edges connecti
all label nodes of two 4-connexity neighboring pixels.

rﬁg. 2. Restoration results based ap,-expansion optimiza-
tion algorithm with different sizes of label sé&t,,.(a) Orig-
inal image, (b) Noisy image7(0% of pixels are corrupted
4. EXPERIMENTS by the r_10ise) and restorgtions with (@)expan_sign, (d)mg—
expansion, (ejz2-expansion and (f) exact optimization algo-

The efficiency of the proposed approach in term of both op!ithms.

timum quality and memory saving is illustrated for two im-

age processing problems, image restoration and phase un- . . )

wrapping. For both problems, highly noisy data are considgMultilabel expansion move with label sets of sizer 32, we
ered with specific likelihood energy functions. Results aré’Ptain better results than theexpansion based optimization
compared to those obtained using binary partition mawe ( aIgonthm. It is also important tp n_ote the convergence to a
expansion) and exact optimization algorithms. local optlmu_m of the energy, w_h|ch is very.close to the global
Image restoration. Image used in this experiment is a natu-°N€: only with32 labels. This is a rea_l g_am_of memory use
ral image corrupted by an impulsive noise. This kind of noisd® reach results as good as global optimization providezsin

is known to be highly destructive. In fact, if a pixel is naisy the graph used with the proposed approachtimes smaller

we lost information that it carries, as we see in figure 2(b)f[h"’m the graph required by an exact optimization algorithm.

And, we consider a discrete total variation (DTV) prior en-  Considering time running, we note that time needed to
ergy [8] for the MRF with neighborhood system, the grid of compute an optimal move depends on the size of required
4-nearest neighbors. The set of all labels is the finite set draph and the number of iterations to converge. For instance
integers = {1..256} (gray levels of pixels). In this ex- times (in seconds) spent by algorithms in this experiment ar
periment, we apply a random perumutation on the label sé5, 622, 937 and 230 to reach results obtained respectively
L = {li,...,I}. Then, the iterative energy minimization al- in 2(c), 2(d), 2(e) and 2(f). For exact minimization, the al-
gorithm (,,,-expansion) is performed. As noted in the sec-gorithm takes less time than ours since only one iteration is
tion describing the LMPM algorithm, the sét,, consists of ~executed. Compared, for example, to thg-expansion, the
firstly selecting the firstn values of the sef obtained after latter tookl6 iterations.
the permutation, and we order labels inside the set. Then, wehase unwrapping.In this section, we illustrate the need of
select the nextn values, and so on. Once all the values havesuch approaches in case of radar image processing, more pre-
been visited, we start the process again until convergehce aqisely, for generating digital elevation models (DEM) oftha
minimization algorithm. surface. In this application, data used are images of erterf
Results are presented in figure 2. As we see, by using ametric phases, were radiometric information is given i th



principal interval [«, 7]. This data is called wrapped phase.
In order to restore the relation between interferometriaggh
and ground height, necessary to generate the DEM, we nee
to unwrap the phase (i.e. to know the phase in its absolut
values). The unwrapping operation is not an easy task. W
clearly see, for instance, if the absolute value of phaderdif
ence between neighboring pixels is greater thathe phase
unwrapping operation becomes an ill-posed problem. In this
case, one possible approach to solve the ill-posed proldem i
the multichannel phase unwrapping (MCPU) [11] technique
by exploiting the availability of different and independen
terferograms referred to the same scene. In order to combin
these different available channels, a statistical appreath -
Maximum a Posteriori (MAP) estimation is used. The MAP
MCPU problem can thus be seen as an energy minimization
problem. We can choose, for thepriori, the DTV model.

We simulate height profile data with two frequencies
(5GHz and9GHZz) for interferogram generation and we add
interferometric noise with a coherencepf= 0.7. For each
working frequency, we generatddazimuth looks leading to
a total of8 independent interferograms. The set of all labels
is the finite set of integer€ = {1..128}. Similarly to the
previous experiment, label sefs, are selected in the same
way, however, no permutation is performed on the original
label set’.

Fig.

(e)

®

3. MCPU results based on,,-expansion optimization

In figure 3, phase unwrapping results with expansioralgorithm with different sizes of label set,,. (a) Origi-
move based optimization algorithm made with differentsize nal profile, (b)5GHz noisy interferogram and phase unwrap-
of label sets are presented. Results prove the contributiguing results with (ch-expansion, (djxs-expansion, (ejx3o-
of our algorithm to better minimizing the energy function. expansion and (f) exact optimization algorithms.

We note also in this experiment that the global optimum is

; ; th
reached while using thi/4** of memory needed by an exact [3] J. Darbon, “Global optimization for first order Markovimdom

minimization algorithm §2 labels instead of28 labels).

[4]
5. CONCLUSION

In this work, a new kind of move is proposed that leads to bet-[5]
ter minimizing a pairwise Markovian energy than binary targ
moves do, while consumming much less memory needed by
exact minimization. Convincing experimental results are [6]
provided showing as the real need of such approaches in
specific image processing problems. Further works will be
made in this direction to more improving energy optima [v
based on stochastic search combined with these deteriminist

optimization algorithms. [8]
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