
A GRAPH-CUT BASED ALGORITHM FOR APPROXIMATE MRF OPTIMIZATI ON

Aymen Shabou, Florence Tupin

Institut TELECOM, TELECOM ParisTech
CNRS LTCI, France.
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ABSTRACT

This paper copes with the approximate minimization of
Markovian energy with pairwise interactions. We extend
previous approaches that rely on graph-cuts and move mak-
ing techniques. For this purpose, a new move is introduced
that permits us to perform better approximate optimizations.
Some experiments show that very good local minima are
obtained while keeping the memory usage low.

Index Terms— Optimization methods, Graph-cut, Image
restoration.

1. INTRODUCTION

Many vision problems can be formulated as an energy min-
imization that arises from a Markov Random Field (MRF)
formulation [1]. This Markovian approach has been proven to
be extremely successful for many vision applications such as
stereo, image segmentation, image denoising, and others [2].
Optimizing these energies is generally a difficult problem and
we propose an approximate optimization algorithm for a sub-
class of Markovian energies.

Let us introduce more formally this approach. It is as-
sumed that images are defined on a lattice denoted byV . The
value of the imagex at the sitep is referred to asxp and
takes value in a linearly ordered finite set of labelsL, with
L = {l1, l2, ..., lk}. We endow the lattice with a neighbor-
hood system and pairwise interactions are considered. Two
sitesp andq that are in interaction with each other are denoted
by (p, q). The set of all considered pairwise interactions is re-
ferred to asE . A first order Markovian energy is therefore
defined as the following:

E(x) =
∑

p∈V

Ep(xp) +
∑

(p,q)∈E

Ep,q(xp − xq) , (1)

TermsEp encode the likelihood (i.e., measure the distance
of the reconstruction to the observed data) whileEp,q corre-
spond to the prior we have on the interactions. In this paper,
we only consider priors that are a function of the difference
of the labels (see [3] for instance for the general case).

Minimization of an arbitrary Markovian energy of the
form of (1) is a difficult problem. Some approaches were

proposed to minimize exactly some specific energy func-
tions [4, 5, 3]: more precisely it corresponds to a sub-classof
submodular functions. These approaches allow for a global
optimization. The idea is to map the original minimization
into a s-t minimum-cut (and by duality, a maximum-flow)
problem. This approach has been proposed in [6, 7] for
minimizing Boolean energies and have been shown to be
very efficient in [6]. Extensions of this approach to the case
of linearly ordered labels have been proposed for instance
in [4, 8, 3]. However, the latter requires to build a huge graph
that corresponds to a prohibitive use of memory for practical
applications. Thus, several approaches have been proposed
to perform approximate minimizations [2], such as iterated
conditional modes, belief propagation, move making algo-
rithms [9, 10], etc. that require much less memory. Note that
these algorithms are essentially iterative.

Developing graph-based minimization algorithms that
provide good approximate solutions while maintaining a low
memory requirement is thus a challenge for practical appli-
cations. This is the aim of this paper. More precisely, we are
interested in optimization algorithms based on the conceptof
partition move, originally proposed in [9], that allows many
pixels to change their values in a single step. Contrary to [9]
that essentially limits the number of choices for each pixelto
two, we propose a move that allows pixels to take their values
in a much larger set. This bigger searching space yields to
compute better local minima (in terms of the value of the
energy). Experiments show that usually we are able to get the
global minimum of the energy with no need of high memory
such as exact optimization does.

The remainder of this paper is as follows. In section 2, we
briefly review move making algorithms available in the liter-
ature and we present our partition move. Section 3 describes
an algorithm that compute the new partition move and we dis-
cuss its main properties. Finally some experiments for image
processing purposes are presented in section 4.

2. APPROXIMATE OPTIMIZATION

Let us consider the family of move making algorithms [9].
A move simply consists of a change of a current labeling.
A move is called large if many pixels change their configu-
rations simultaneously and it is said optimal if it yields the



largest possible decrease of the total energy among the possi-
ble changes allowed by the move.

The most two well-known moves are theα-expansion and
αβ-swap as described in [6]. These two algorithms are based
on binary moves since each pixel is proposed to take values
among two labels in each step of the minimization process.
In fact, in anα-expansion move, a pixel can keep its current
label or change it to the labelα. In an αβ-swap move, a
pixel that takes value in{α, β} can exchange its label within
this same set. Both algorithms perform binary large optimal
moves until convergence to a local optimum.

A binary move exploits a limited number of labels among
those inL. Thus, proposing more labels to a pixel in a single
move, may yield a better energy minimization result. Hence,
the idea is to use a large subset of labelsLm in L, wherem
denotes the cardinality of the chosen subset. We call such a
move amultilabelmove.

Using this new move, we propose an approximate opti-
mization algorithm that is iterative and deterministic. Itcan
be seen as an intermediate algorithm between binary move
algorithms and exact optimization ones.

It is worth noticing that several different kinds of moves
can be considered, such as expansion, swap and jump (see [9]
for detailed presentations of such moves in their binary form
and also [10]). In this paper, we only consider expansion-
based moves. We define anαm-expansion move as a multil-
abel move that proposes to each pixel either to keep its current
label or to change it by a label in the subsetLm. We refer to
this kind of moves as Large and Multilabel Partition Move
(LMPM).

3. LMPM OPTIMIZATION

We first present the LMPM algorithm before describing a
graph construction whose minimum-cut defines an optimal
multilabel move. Some properties of our algorithm are given.
LMPM algorithm. Our algorithm is a generalized form of
binary move algorithms (see [6]). This algorithm is iterative.
For each iteration(i), a set of labelsL(i)

m of cardinalitym is

considered. GivenL(i)
m and a current labelling, the optimal

L
(i)
m -expansion move that produces the largest decrease of the

total energy is computed. Once this move is computed, we
get another labelling and we iterate until convergence, i.e., no
move can produce a decrease of the energy.

Note that we have not specified the label setL
(i)
m for each

iterationi . One desirable property is the following: For any
current iterate, there is always a consecutive finite seriesof
label sets that spans the original label setL. This assumption
guaranties that all labels can be reached through the iterations
of the algorithm.

We shall see in the experiments section different choices
for defining the label setsL(i)

m . The main characteristic is that
they can be generated randomly or chosen deterministically.

Let us now describe how an optimal multilabel move can be
computed using a graph-based approach.

Graph construction. We present here a graph construction
such that its s-t minimum-cut yields an optimal multilabel
move. The graph proposed here is similar to the one described
by Ishikawa in [4] for performing global optimization in the
case of convex priors.

Recall that our goal consists in finding the optimal expan-
sion move with respect to a subsetLm. In other words, we
need to compute a global minimizer where pixels either keep
their own values or pick one in a subset ofL.

For each iteration, we consider the current labellingx and
the proposed expansion setLm. For each pixelp, we as-
sociate its possible sets of labelsLm(p) defined as follows
Lm(p) = Lm ∪ {xp}. We can then apply the graph con-
struction of Ishikawa [4] by replacing the setL by the set
Lm(p) for each pixel. The graph is layer-based. It is defined
as follows: there is a node associated to eachp for any la-
bel inLm(p). Concerning the edges, they are defined in the
same way as in [4]. More precisely, three families of edges
are created. First, the set of data edges that corresponds to
encode the data fidelity terms. Capacities on these edges are
defined using the likelihood energy function. Second, a set
of constraints edges that guarantees a pixelp to be assigned
to a unique element inLm(p). Capacities on these edges are
set to infinity. Finally, a set of edges that encodes the regu-
larization. An analysis similar to the one conducted in [4, 3]
permits to define capacities on these edges and to show that
the convexity of the regularization termsEp,q(·) is a suffi-
cient and necessary condition to have non-negative capacities.
The latter means that an optimal solution can be computed in
polynomial time by computing a maximum-flow on the graph.
Figure 1 depicts an example of our graph construction.

LMPM properties . The first property presents the advantage
of making a multilabel move with larger label set. In fact,
lets’s start with an initial labelingx. It is clear that if we make
a same multilabel move (an expansion move for instance) but
with different label setsLm andLm′ such thatLm ⊂ Lm′ ,
then the energy of resulted labelings is minimal for the move
with the largest label set. This could be seen immediately
since the set of optima reached by the move with less labels
is included in the set of the other move optima.

Note that if the above inclusions hold at every step, then
multilabel large move guaranties a better energy minimum
than the one obtained with binary moves. We have also veri-
fied experimentally that the global optimum is reached when
one is using large label sets. This is a crucial point when deal-
ing with high dimension images, where convergence to global
optima, using an exact optimization algorithm, is a high costly
memory approach.



Fig. 1. Graph construction for an optimal multilabel move.
On the left, a part of the graphGm defined on three pixels.
A cut is depicted and arcs are in the cut are dotted whereas
continuous ones are not. A part of the graph is highlighted
on the right. We distinguish the three arc families: data edges
(vertical edges oriented to the top), constraint edges (verticals
edges oriented to the buttom) and penalty edges connecting
all label nodes of two 4-connexity neighboring pixels.

4. EXPERIMENTS

The efficiency of the proposed approach in term of both op-
timum quality and memory saving is illustrated for two im-
age processing problems, image restoration and phase un-
wrapping. For both problems, highly noisy data are consid-
ered with specific likelihood energy functions. Results are
compared to those obtained using binary partition move (α-
expansion) and exact optimization algorithms.
Image restoration. Image used in this experiment is a natu-
ral image corrupted by an impulsive noise. This kind of noise
is known to be highly destructive. In fact, if a pixel is noisy,
we lost information that it carries, as we see in figure 2(b).
And, we consider a discrete total variation (DTV) prior en-
ergy [8] for the MRF with neighborhood system, the grid of
4-nearest neighbors. The set of all labels is the finite set of
integersL = {1..256} (gray levels of pixels). In this ex-
periment, we apply a random perumutation on the label set
L = {l1, ..., lk}. Then, the iterative energy minimization al-
gorithm (αm-expansion) is performed. As noted in the sec-
tion describing the LMPM algorithm, the setLm consists of
firstly selecting the firstm values of the setL obtained after
the permutation, and we order labels inside the set. Then, we
select the nextm values, and so on. Once all the values have
been visited, we start the process again until convergence of
minimization algorithm.

Results are presented in figure 2. As we see, by using a

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Restoration results based onαm-expansion optimiza-
tion algorithm with different sizes of label setLm.(a) Orig-
inal image, (b) Noisy image (70% of pixels are corrupted
by the noise) and restorations with (c)α-expansion, (d)α8-
expansion, (e)α32-expansion and (f) exact optimization algo-
rithms.

multilabel expansion move with label sets of size8 or 32, we
obtain better results than theα-expansion based optimization
algorithm. It is also important to note the convergence to a
local optimum of the energy, which is very close to the global
one, only with32 labels. This is a real gain of memory use
to reach results as good as global optimization provides since
the graph used with the proposed approach is4 times smaller
than the graph required by an exact optimization algorithm.

Considering time running, we note that time needed to
compute an optimal move depends on the size of required
graph and the number of iterations to converge. For instance,
times (in seconds) spent by algorithms in this experiment are
95, 622, 937 and 230 to reach results obtained respectively
in 2(c), 2(d), 2(e) and 2(f). For exact minimization, the al-
gorithm takes less time than ours since only one iteration is
executed. Compared, for example, to theα32-expansion, the
latter took16 iterations.

Phase unwrapping.In this section, we illustrate the need of
such approaches in case of radar image processing, more pre-
cisely, for generating digital elevation models (DEM) of earth
surface. In this application, data used are images of interfer-
ometric phases, were radiometric information is given in the



principal interval [-π, π]. This data is called wrapped phase.
In order to restore the relation between interferometric phase
and ground height, necessary to generate the DEM, we need
to unwrap the phase (i.e. to know the phase in its absolute
values). The unwrapping operation is not an easy task. We
clearly see, for instance, if the absolute value of phase differ-
ence between neighboring pixels is greater thanπ, the phase
unwrapping operation becomes an ill-posed problem. In this
case, one possible approach to solve the ill-posed problem is
the multichannel phase unwrapping (MCPU) [11] technique
by exploiting the availability of different and independent in-
terferograms referred to the same scene. In order to combine
these different available channels, a statistical approach with
Maximum a Posteriori (MAP) estimation is used. The MAP
MCPU problem can thus be seen as an energy minimization
problem. We can choose, for thea priori, the DTV model.

We simulate height profile data with two frequencies
(5GHz and9GHz) for interferogram generation and we add
interferometric noise with a coherence ofγ = 0.7. For each
working frequency, we generated4 azimuth looks leading to
a total of8 independent interferograms. The set of all labels
is the finite set of integersL = {1..128}. Similarly to the
previous experiment, label setsLm are selected in the same
way, however, no permutation is performed on the original
label setL.

In figure 3, phase unwrapping results with expansion
move based optimization algorithm made with different sizes
of label sets are presented. Results prove the contribution
of our algorithm to better minimizing the energy function.
We note also in this experiment that the global optimum is
reached while using the1/4th of memory needed by an exact
minimization algorithm (32 labels instead of128 labels).

5. CONCLUSION

In this work, a new kind of move is proposed that leads to bet-
ter minimizing a pairwise Markovian energy than binary large
moves do, while consumming much less memory needed by
exact minimization. Convincing experimental results are
provided showing as the real need of such approaches in
specific image processing problems. Further works will be
made in this direction to more improving energy optima
based on stochastic search combined with these deterministic
optimization algorithms.
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