
10ème Congrès Français d’Acoustique
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This paper presents a statistical model aiming at quantitatively evaluate the spectral similarity between
two sounds. The measurement of similarity is a central issue in the field of Music Information Retrieval as
several popular applications rely on comparisons between sound objects as for instance musical sequence
seeking in a big database or automatic transcription. To take musicological considerations into account,
the measure is intended to be invariant to pitch shifting and to amplitude scaling.
The main idea of the method is to compare a target spectrum to a reference spectrum using the reference
to drive a statistical model, the target being an outcome of the model. The likelihood of the target
spectrum is then derived in order to measure the similarity between both spectra. To be able to compare
sounds of unequal intensity and pitch, the reference spectrum is made tunable in term of transposition and
rescaling. Transposition and scaling parameters maximizing the likelihood are selected and the values are
kept to compute the similarity measure. Thanks to a joint model, the measure is then made symmetrical.
The measure is used to assess the similarity between two simple sounds (i.e. single isolated notes).
Experimental results illustrate the usefulness of the approach: Applications of the method to classification
and multipitch estimation are presented.

1 Introduction

Assessing the similarity between the spectra of two
sounds has been a concern in speech and music process-
ing, since it can be used in the context of pitch estima-
tion [11], prosody tracking [12] or, perhaps in a broader
sense, for automatic information retrieval and recogni-
tion. From these different fields, spectral distances, sim-
ilarity measures or so-called divergences have appeared,
relying on psychoacoustics properties or not, as for in-
stance the log-spectral distance, the Itakura-Saito di-
vergence [4] or the Kullback-Leibler divergence. These
similarity measures are found useful for minimizing the
distortion between an original signal and its coded ver-
sion [5, 16] or to reduce spectral discontinuities [10].
Most of these measures are derived from Linear Pre-
diction Coefficients [8] or AutoRegressive modeling of
the signal [9]. On the other hand, a spectral distance
or divergence is employed to define the cost function
in the algorithm of Non-Negative-Matrix factorization
(NMF, [7, 13]). Kullback-Leibler and Itakura Saito di-
vergence are common examples of such criteria [6], when
an application of the NMF to the spectrogram of an au-
dio excerpt is targeted.

In many cases, the spectral similarity measure is
designed to compare timbral characteristics of sounds.
From this standpoint, desirable properties are the scale
invariance (the spectra of sounds recorded at dissim-
ilar levels should be considered as close) and pitch
shift invariance (we want to compare sounds indepen-
dently from their fundamental frequency). To cope with

the scale invariance issue, modified versions of the log-
spectral distance and the Itakura-Saito divergence have
been proposed in [5]. The fact that a human listener
normally exposed to music is able to recognize an instru-
ment (or a kind of instrument) without absolute pitch
reference [3] leads to many works in the field of Music In-
formation Retrieval (MIR) to derive pitch-independent
features, like for instance Mel frequency cepstral coeffi-
cients [15]. It is also not uncommon to plot the data
spectrum or time-frequency representation along log-
frequency axes [11, 12, 14] where the transposition be-
comes a simple shift. In this paper, one important goal
is to define a measure which describes the similarity be-
tween two spectra up to a transposition, which allows in
particular the comparison between different notes pro-
duced by a single instrument.

The main idea in this paper for comparing a tar-
get spectrum B to a reference spectrum A, is to use a
scaled and transposed version of A to drive a statisti-
cal model for which B is an outcome. The likelihood
of B, maximized over the different versions of A can
then be used to measure the similarity S(A,B) between
both spectra. In the course of the method, best scal-
ing and transposition factors are estimated and can be
considered sometimes as an interesting by-product (for
instance in pitch estimation problems). Since the roles
of A and B in the definition above are not symmetri-
cal the obtained measure is not symmetrical either and
this leads to sometimes surprising results. An effort has
then been undertaken to make the model symmetrical.
A simple example of the behavior of our measure with



real audio spectra is presented and we introduce a simple
application of the estimation of the best transformation
parameters in multipitch estimation.

In the next section the statistical model is presented
and a first similarity measure is derived. In section 2.3 a
technique to obtain a symmetrical measure is described
and examples on real world audio signals are given in
section 3.

2 Statistical model

In this section, the model is described and subsequently
a similarity measure is derived.

2.1 Spectral model

Let S(f) be the Discrete Time Fourier Transform
(DTFT) of a sound snapshot, f denoting the normal-
ized frequency (f ∈] − 1

2
, 1

2
[). As it is commonly stated

(see for instance [1]), the values of the Fourier transform
are assumed to be independent complex random vari-
ables with circular Gaussian probability density func-
tion (pdf):

S(f) ∼ NC(0, σ2
f ) for f ∈] −

1

2
,
1

2
[ (1)

The independence assumption is only asymptotically
true, but is largely used when dealing for instance with
short time spectra.

The first important idea of this work is to form a
”data driven model” by expressing the preceding den-
sity with the help of a reference spectrum Sr(f). This
reference spectrum could be either a Fourier transform
computed from real data or a synthetic pattern, which
the target spectrum is intended to be compared with.
This reference data is included in the model as follows:

σf = AΦθ(Sr, f) (2)

where A is a scale parameter and Φθ(Sr, f) is a para-
metric functional applied to the reference spectrum Sr;
θ being a scalar or vector parameter of the functional.
Then σf = AΦθ(Sr, f) is obtained from a transforma-
tion Φθ of the whole spectrum Sr and the scaling by a
factor A. This leads to a ”data driven model” expressed
as:

S(f) ∼ NC(0, A2|Φθ(Sr, f)|2) for f ∈] −
1

2
,
1

2
[ (3)

Thus, we obtain the pdf of S:

p(S(f)) =
1

πA2|Φθ(Sr, f)|2
e
−

|S(f)|2

A2|Φθ(Sr,f)|2 for f ∈]−
1

2
,
1

2
[

(4)
Φθ can describe a broad range of possible spectral

modifications. The particular case of a simple transpo-
sition (an homothety on the frequency-axis of the spec-
trum) will be addressed in the next sections.

2.2 Asymmetric comparison of spectra

From the statistics of S, Log-Likelihood function (LL)
of S with respect to A and θ is derived. The LL is large

when the data fit with the model variance all along the
frequency axis.

Then, we derive the best parameter θ and the best
scale factor A by maximizing the likelihood of S accord-
ing to the parameters. The LL of S is equal to:

L(S|A2, θ) =

C −

∫ 1
2

−
1
2

{

log(A2|Φθ(Sr, f)|2) +
|S(f)|2

A2|Φθ(Sr, f)|2

}

df

(5)

where C is a constant independent of A and θ. For all
θ, the scale factor which maximizes the LL is given by:

A2(θ) =

∫ 1
2

−
1
2

|S(f)|2

|Φθ(Sr, f)|2
df (6)

Equation (6) is obtained by calculating the root of the
derivative of the LL with respect to A2.

By substituting A2(θ) in the expression of the LL
(5), we obtain a function LA2(θ). This function cannot
generally be analytically maximized. Thus we simply
use a griding strategy to find the best θ.

Particular case of the transposition: A particu-
lar case of transformation Φθ that will be considered in
the following is the pitch transposition. The transposed
version of the spectrum is obtained by stretching the fre-
quency axis. λ is the dilatation factor (here θ = {λ}).
Then, the transformation is:

Φλ(Sr, f) = Sr(λf) (7)

The transposition can be expressed in semitone:
12 log2(λ).

We can notice that for λ > 1, λf can exceed 1
2
,

thus equation (3) does not make sense since Sr(λf) is
not defined. This issue is addressed at the end of this
section.

Figure 1 shows the function LA2(λ) for S = Sr: we
can observe a strong peak for 12 log2(λ) = 0 semitones
i.e. when there is no transposition. Figure 2 shows this
function where S and Sr are two different notes played
by a piano (respectively a F#3 and a D#3): we can
observe a strong peak for 12 log2(λ) = −3 semitones
i.e. for a transposition of a minor third down. We can
also notice a secondary peak at 12 log2(λ) = 9 semitones
which corresponds to an octave above the primary peak.

While computing the function LA2(λ), a particular
care is required to calculate the transposed spectrum
S(λf). Actually when λ ≤ 1, the transposed spectrum
S(λf) can be calculated on the full frequency range (f ∈
]− 1

2
, 1

2
[), but when λ > 1, bins with frequencies f > 1

2λ

need to be extrapolated. Thus, to properly compute a
value of LA2(λ) that makes sense and can be compared
to the value computed from other spectra, we reduce the
frequency band according to the maximum value λmax

of the transposition factor λ. Then we compute the LL
for f ∈] − 1

2λmax
, 1

2λmax
[.

2.3 Measure of similarity

From the model presented in the previous section, we
can derive a measure of similarity between two spectra:



Figure 1: LA2(λ) as a function of 12 log2(λ) (pitch
transposition in semitones) where S = Sr is a recorded

piano note (D#3) played alone.

Figure 2: LA2(λ) as a function of 12 log2(λ) (pitch
transposition in semitones) where S is a F#3 piano

note and Sr is a D#3 recorded piano note.

the value of the maximum of LL gives a good idea of
the similarity between the spectrum S and the reference
spectrum Sr up to a transposition. However this value
needs to be normalized in order to enable comparison
between values of the measure for various spectra. Thus
we add a term to the LL in equation (5) in order that
its value for S = Sr, A2 = 1 and λ = 1 is equal to zero.

Our measure is defined as:

µ(S||Sr) = max
λ

∫

−d(|S(f)|2, A2(λ)|Sr(λf)|2)df (8)

where d(x, y) is defined by:

d(x, y) =
x

y
− log

x

y
− 1 (9)

Values taken by the measure µ are negative or zero.
The more the spectra are different (according to µ), the
more the value of the measure is negative. The null value
occurs only if S can be derived from Sr by a scaling
and a transposition. This never happens with spectra
computed from real audio data.

We can notice that the function to maximize in
(8) is the Itakura-Saito divergence between |S(f)|2 and
A2(λ)|Sr(λf)|2.

Figure 3: LA2(λ) as a function of 12 log2(λ) (pitch
transposition in semitones) - dashed red plot: for

S = S1 (spectrum of 100ms frame of a piano A#2) and
Sr = S2 (spectrum of 100ms frame of a piano C#2). -

plain blue plot: for S = S2 and Sr = S1.

2.4 Asymmetric comparison issue

In the model presented in section 2.2, there is a clear
asymmetry: first, the role played by S and the role
played by Sr in the definition of the model are asym-
metric, which results in the asymmetry of d in equation
(9), second, the way LL is computed from the data (see
2.2) clearly shows an asymmetry. This asymmetry can
lead to different estimations for the best transposition
and scaling parameters. An example of such a difference
is shown in figure 3: the dashed red plot LA2(λ) has a
significant maximum for 12 log2(λ) ≈ −9 (transposition
of a major sixth), but the plain blue plot, for which the
spectra were inverted in the computation of LA2(λ), has
no significant maximum at 12 log2(λ) ≈ 9. Thus, LA2(λ)
does not exhibit a clear maximum in the second case.
This undesirable effect results from the fact that, since
we reduce the frequency band while computing LA2(λ)
(see last paragraph of section 2.2), at the location of the
expected maximum, we do not compute LA2(λ) from
the same spectra when S = S1 and Sr = S2 as we do
when S = S2 and Sr = S1.

This asymmetry is then an objectionable character-
istic of the designed measure. Notably when spectra S
and Sr are both harmonic, we expect that the location
of the maximum of LA2(λ) corresponds to the actual
difference of pitch between S and Sr so that the value
of the measure is meaningful.

2.5 Symmetric comparison of spectra

As shown in section 2.4, the main drawback of the
method of comparison presented in 2.2 is that there is
no symmetry: the function LA2(λ) obtained while es-
timating S = S1 with Sr = S2 can differ a lot from
the function obtained while estimating S = S2 with
Sr = S1. To overcome this drawback, we propose a
symmetrized version of the model. We symmetrize the
previous model by simultaneously considering that S1

is an observation of a random variable parameterized
by the scaled and transposed spectrum S2 and S2 is an
observation of a random variable parameterized by the



scaled and transposed spectrum S1. Thus, we jointly
assume:











S1(f) ∼ NC
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0, A2 |S2(λf)|2
)
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)

(10)

We still suppose the values of the DTFT indepen-
dent of one another and moreover that S1 and S2 are
independent of each other. Then, we can calculate the
joint LL of S1 and S2:

Ls

((

S1(f)
S2(f)

)

|A, λ

)

=

C ′ −

∫
{

log |S1(
f

λ
)|2 + log |S2(λf)|2

+
|S1(f)|2

A2|S2(λf)|2
+

A2|S2(f)|2

|S1(
f
λ
)|2

}

df (11)

By calculating the roots of the partial derivative of
Ls with respect to A2, we obtain the best scale factor
for each λ:

A2(λ) =

√

√

√

√

√

√

√

∫

|S1(f)|2

|S2(λf)|2
df

∫

|S2(f)|2

|S1(f/λ)|2
df

(12)

As in section 2.2, we obtain a function Ls
A2(λ) of

λ. As in section 2.3, we can derive a similarity measure
(which will be symmetric) from this function, by nor-
malizing it and selecting its maximum. Thus we obtain
the new measure:

µs(S1, S2) = max
λ

∫

{

d(|S1(f)|2, A2(λ)|S2(λf)|2)

+d(|S2(f)|2, A−2(λ)|S1(
f

λ
)|2)

}

df (13)

where d(x, y) is defined by (9).

3 Preliminary experiments

In this section, we introduce two preliminary experi-
ments: the first one is a simple experiment of sound
classification and the second one provides a good repre-
sentation for multipitch estimation. These two examples
are quite simple, meant for illustrating and do not have
the ambition to compete with state-of-the-art methods.

3.1 Comparison of spectra with µs

In this section, an example of comparison of spectra ob-
tained with the symmetric measure presented in section
2.5 is outlined.

The symmetric measure µs defined in 2.5 is used
to compare spectra of single notes played by different
instruments. Results are gathered in a similarity matrix
(see figure 4). The inputs of the matrix are made of
five classes (which more or less correspond each to an

instrument) of five elements (which are 1s long spectra
of different notes). Notes played are located within the
range F3/F4 for each instrument. Classes respectively
gather spectra of:

1. single notes of an oboe

2. single notes of a trumpet

3. single notes of a piano played forte

4. single notes of a piano played piano

5. Gaussian white noise

Spectra are computed from real recorded sounds of
single notes (except for white noise which is synthe-
sized).

In figure 4, black corresponds to high values of the
measure (values near 0), and white corresponds to low
values (strongly negative values). We can see that ac-
cording to the measure µs, spectra of different notes
played by the same instrument are very similar. We can
also notice that spectra of piano notes played at different
dynamics (piano and forte) are quite similar.

To visualize more clearly, a simple Multidimensional
Scaling (see [17]) in 2 dimensions was computed from the
similarity matrix (using the mdscale function of Mat-
lab). Results are shown in figure 5: spectra of each
instrument seem to be accurately grouped together.
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Figure 4: Similarity matrix computed with the
measure µs.

3.2 Multipitch estimation with Log-

Likelihoodogram

In this section, the model presented in section 2 is used
for pitch estimation. This approach is based on a rel-
ative estimation of pitch in relation to a reference har-
monic spectrum. The Short Time Fourier Transform
(STFT) is computed from the signal to analyze. Thus
we obtain for each frame a short term spectrum. The
function Ls

A2(λ) (see 2.5) is then computed between the
short term spectrum corresponding to each frame and a
reference harmonic spectrum. Then, the location of sig-
nificant local maxima of Ls

A2(λ) should give the relative
pitches of the frame (relative to the pitch of the reference
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Figure 5: Multidimensional Scaling of spectra
computed from the similarity matrix in figure 4 .

spectrum). We call Log-Likelihoodogram the represen-
tation of the function Ls

A2(λ) for each frame (which is a
time/relative pitch representation).

Figure 6 shows a loglikelihoodogram computed from
the STFT of a short synthetic piano extract with frames
of 100ms and overlap of 75%. The x-axis corresponds
to the number of the frame, and the y-axis corresponds
to the transposition (in semitones) between the spec-
trum computed from the current frame and the refer-
ence spectrum. The reference harmonic spectrum was
taken within the extract as the first note of the extract is
played alone. We can clearly see significant local max-
ima (in black) at the right time/pitch position (white
rectangles). However there are some other significant
local maxima located in places where no notes were
played: most of them correspond to fifths or octaves
of effectively played notes.

This simple system is not very robust but is quite
promising, and interesting since in opposition to most of
the state of the art multipitch estimation systems (which
are based on absolute pitch estimation), this one is based
on relative pitch estimation. This is an approach more
similar to the musician analyzing technique since most
of the musicians do not have the absolute pitch.

4 Conclusion

In this paper we proposed a new way of comparing spec-
tra based on a statistical model with preliminary ap-
plications. This method can be particularly useful to
compare harmonic spectra of different pitches and dif-
ferent global amplitudes, since it allows a scaling and a
transposition. We saw that the measure seems relevant
to compare single note spectra of various instruments
and that the computation of the log-likelihood can give
a good representation for pitch estimation.

Future improvements can include a better modeling
of the transposition than a simple dilation of the fre-
quency axis. Moreover the statistical model of spectra
is quite simple and could be improved to better fit har-
monic spectra (it could include sinusoidal modeling).

Figure 6: Log-Likelihoodogram obtained from a short
piano extract. The reference short term spectrum was

taken from the first note of the extract (which is
played alone).
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