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Abstract. The goal of this paper is threefold. It first describes a novel
way of measuring disagreement between rankings of a finite set X of n ≥
1 elements, that can be viewed as a (mass transportation) Kantorovich
metric, once the collection rankings of X is embedded in the set Kn of n×
n doubly-stochastic matrices. It also shows that such an embedding makes
it possible to define a natural notion of median, that can be interpreted
in a probabilistic fashion. In addition, from a computational perspective,
the convexification induced by this approach makes median computation
more tractable, in contrast to the standard metric-based method that
generally yields NP-hard optimization problems. As an illustration, this
novel methodology is applied to the issue of ranking aggregation, and is
shown to compete with state of the art techniques.

1 Introduction

Formulated more than two centuries ago in the context of emerging social sci-
ences and voting theories [Fis73], the problem of aggregating binary relations,
(pre-) orders in particular, has recently received much attention in the machine-
learning literature, see [HFCB08], [FKM+03] or [MPPB07] for instance. Various
modern applications sparked off the revival of interest in this issue, ranging from
e-commerce to information retrieval through spam-fighting and database mid-
dleware. Indeed, in a wide variety of information systems now, input or output
data take the form of an ordered list of items: search-engines, recommending
systems, etc. Numerous tasks such as the design of meta-search engines, collabo-
rative filtering, or combining results from multiple databases have motivated the
development of new results in this domain, dedicated to three topics essentially:
the extension of the notion of consensus among rankings [FKM+06], the de-
sign of efficient algorithmic procedures for computing such median rankings, see
[MM09] or [BFB09], and the building of probabilistic models on sets of rankings
[LL03].

The present paper addresses all these aspects of the consensus problem, from
an original angle. Its primary purpose is to show how the problem of measuring
disagreement between rankings can be cast in terms of discrete mass transporta-
tion problems, by embedding the set of permutations in a convenient convex set
of matrices. We prove that the continuum of metrics thus defined includes some



classical permutation metrics, such as the Hamming distance, the Spearman ρ
distance or the Spearman footrule distance. From the perspective of rank ag-
gregation, a novel (probabilistic) notion of median is next defined and related
computational issues are tackled, taking advantage of the convexification step.

The paper is organized as follows. Notations are set out in Section 2, where
most concepts involved in the subsequent analysis are introduced and an exam-
ple motivating the present approach is also discussed. A novel way of measuring
agreement between rankings is then proposed in Section 3, together with a def-
inition of a probabilistic version of the notion of median ranking in Section 4.
Results describing the computational complexity of the aggregation method pro-
posed are stated in Section 5, while an illustrative application is presented in
Section 6 Technical details are deferred to the Appendix.

2 Preliminary background

It is the purpose of this section to introduce the main concepts and definitions
that shall be used throughout the paper.

2.1 First Definitions and Notation

We start off by recalling some definitions and setting out the notations needed
in the subsequent analysis. Here and throughout, I{E} denotes the indicator
function of any event E .

Rankings and matrix spaces. Let n ≥ 1. We denote by Sn the symmetric
group of order n, i.e. the group of permutations of {1, . . . , n}, and by Mn(R)
the space of n × n matrices with real entries. Any permutation σ ∈ Sn can be
classically represented by the matrix

Mσ = (I{σ(i) = j})1≤i, j≤n ,

in Mn(R), whose entry Mσ
i,j indicates whether rank j is assigned to the object

indexed by i or not. The elements of the set Σn = {Mσ : σ ∈ Sn} are called
permutation matrices.

Medians. Given a collection Π = {σ1, . . . , σK} ⊂ Sn of permutations (one
commonly uses the term profile in social choice theory), the issue of summarizing
the orders defined by Π’s elements, by a ”consensual” (pre-) order, is called the
aggregation problem. The so-termed metric approach is the most popular method
for defining such a consensus. It assumes that a certain distance δ on the set Sn

is given. One calls a median ranking for the profile Π with respect to a subset
R ⊂ Sn any ranking σ∗ ∈ R such that:

K∑
k=1

d(σ∗, σk) = min
σ∈R

K∑
k=1

d(σ, σk). (1)



The study of metrics on rankings has a long history, for instance one may refer
to Chapter 11 in [DD09] for an excellent account of distances on permutations.
The following distances, originally introduced in the context of nonparametric
hypothesis testing, are among the most widely used.

• The Kendall τ distance. Counting the number of ”discording pairs”, it is
given by: ∀(σ1, σ2) ∈ S2

n,

dτ (σ1, σ2) =
∑

1≤i<j≤n

I{(σ1(i)− σ2(i)) · (σ1(j)− σ2(j)) < 0}.

• The Spearman ρ distance. It corresponds to the l2-metric: ∀(σ1, σ2) ∈
S2
n,

d2(σ1, σ2) =

(
n∑
i=1

(σ1(i)− σ2(i))2
)1/2

.

• The Spearman footrule distance. This is actually the l1-distance be-
tween rank vectors: ∀(σ1, σ2) ∈ S2

n,

d1(σ1, σ2) =
n∑
i=1

|σ1(i)− σ2(i)| .

• The Hamming distance. This is the l0-distance between rank vectors:
∀(σ1, σ2) ∈ S2

n,

d0(σ1, σ2) =
n∑
i=1

I{σ1(i) 6= σ2(i)} .

Many other distances could be considered, such as the Cayley/Kemeny dis-
tance [Kem59], or so-termed word metrics more generally [How00]. The major
barrier to practical implementation of this approach lies in the fact that it gener-
ally leads to NP-hard problems, see [Hud08] or [Wak98]. Notice in addition that
uniqueness of the median is not guaranteed in general. One may easily check for
instance that, considering the Kendall τ distance, any permutation σ ∈ Sn is a
median with respect to the set Sn (see also the example given below).

Remark 1. (The ordinal approach) Metric-based techniques are by no means
the sole approach to rank aggregation. The so-termed “ordinal approach” in-
cludes a wide variety of techniques for combining rankings or, more generally,
binary relations. They return to the famous “Arrow’s voting paradox” and con-
sist of a series of duels (i.e. pairwise comparisons) as in Condorcet’s methods
or successive tournaments as in the celebrated proportional voting Hare system.
Special attentions has recently been paid to such techniques in the context of
preference learning (“Ranking by Pairwise Comparison” methods); see [HFCB08]
for instance.



2.2 A simple example

The following example shows that, beyond the computational difficulties above
mentioned, the metric-based approach may have important drawbacks. Let us
regard the problem of aggregating/summarizing the permutations described by
the rank vectors (1, 2, 3) and (3, 2, 1) in S3 for instance. Considering Kendall
τ medians with respect to S3 is clearly not informative, any permutation ex-
cept those two permutations being a median. Looking at the hexagon in Fig. 1,
providing a natural representation of S3 (adjacent vertices are at Kendall τ
distance one from each other), one inevitably longs to define the median in the
middle of the line segment connecting the opposite vertices. In other terms, the
major drawback of the aforementioned metric-based approach does not lie in the
metric considered itself, but rather in the fact that the search for a ”barycenter”
is restricted to the ”curve-shaped” set Sn. The view developed subsequently
provides a rigorous meaning to a definition of a median in the interior of the
hexagon. We are going to incorporate some uncertainty/fuzziness to the notion
of median ranks by enlarging/convexifying the original ensemble Sn, and next
define well adapted metrics on the larger space thus obtained.

(1, 2, 3)

(1, 3 , 2) (3, 1, 2)

(3, 2, 1)

(2, 1, 3) (2, 3, 1)

Fig. 1. Representation of the symmetric group S3 as a regular hexagon.

2.3 Convexification/randomization

For clarity, we first recall the following definition.

Definition 1. (Double stochasticity) A matrix A = (ai,j) ∈ Mn(R) with
nonnegative entries is said to be doubly stochastic if and only if

∀i ∈ {1, . . . , n},
∑
j=1

ai,j =
∑
j=1

aj,i = 1.

The set Kn of such doubly stochastic matrices is a convex subset of Mn(R).

Permutation matrices are special cases of doubly stochastic matrices. For clarity,
let us recall the following celebrated result (see, for instance, [HJ85, p.539]).



Theorem 1 (Birkhoff–Von Neumann). The set Kn is the convex hull of the
set of permutation matrices Σn:

Kn = conv (Σn) .

In addition, Σn corresponds to the set of Kn’s extremal points.

Identifying Sn with Σn, its embedding in Kn is a natural way of ”convexifying”
the rank aggregation problem. From the ranking perspective, the entry ai,j of
a doubly stochastic matrix A can be interpreted as a marginal probability that
rank j be assigned to the object No. i. Two standard ways of randomly generating
a ranking from such a matrix are reviewed in subsections 4.1 and 4.2.

3 Kantorovich distances

We now introduce a general framework for measuring dissimilarity between rank-
ings, following in the footsteps of the so-termed mass transportation approach
to defining metrics between probability measures [Rac91].

3.1 Definitions and properties

We suppose now that we are given a certain (nonnegative) cost function, that is
to say a mapping c : {1, . . . , n}2 × {1, . . . , n}2 → R+ ∪ {+∞}, c((i, j), (k, l))
representing the cost of moving one mass unit from (i, j) to (k, l). The technical
conditions listed below shall be required in the subsequent analysis.

(i) (Diagonal terms) For all (i, j) in {1, . . . , n}2,

c ((i, j), (i, j)) = 0.

(ii) (Symmetry) For all (i, j), (k, l) in {1, . . . , n}2,

c ((i, j), (k, l)) = c ((k, l), (i, j)) .

(iii) (Triangular inequality) The cost function c on {1, . . . , n}2 fulfills the
condition: for all (i, j), (k, l) and (s, t) in {1, . . . , n}2,

c((i, j), (k, l)) ≤ c((i, j), (s, t)) + c((s, t), (k, l)).

(iv) (Non diagonal terms) For all (i, j) 6= (k, l) in {1, . . . , n}2,

c ((i, j), (k, l)) > 0.

Remark 2. Condition (iii) guarantees that the cost function c satisfies the (stronger
in appearance) reduction property, meaning that

c((i, j), (k, l)) = inf
h≥1

ch((i, j), (k, l)),



where, denoting by Pm((i, j), (k, l)) the set of all paths of length m, {(um, vm) :
m = 0, . . . , }, connecting (i, j) to (k, l), i.e. such that (u0, v0) = (i, j) and
(uh+1, vh+1) = (k, l), we set: ∀h ≥ 1,

ch((i, j), (k, l)) = inf

{
h+1∑
m=1

c((um−1, vm−1)(um, vm)) : (u, v) ∈ Pm((i, j), (k, l))

}
.

Roughly, reduction amounts to state that no mass movement should be cheaper
whenever performed in several steps rather than in one step.

Equipped with the notion of (symmetric and reduced) cost function, we may
now define the concept of Kantorovich pseudo-metric on Kn.

Proposition 1. (Mass transportation distance) Let c be a cost function
on {1, . . . , n}2 fulfilling conditions (i) − (iii), A = (ai,j) and A′ = (a′i,j)
two elements of K2

n. If one defines the Kantorovich optimal transportation cost
related to cost function c and real value p ≥ 1 by:

dc,p(A,A′) = min
Φ∈M(A,A′)

µ1/p
c,p (Φ), (2)

with
µc,p(Φ) =

∑
(i,j)∈{1, ..., n}2

(k,l)∈{1, ..., n}2

c ((i, j), (k, l))p Φ ((k, l), (i, j)) ,

and where the set M(A,A′) denotes the collection of mappings (”transportation
plans”) Φ : {1, . . . , n}2×{1, . . . , n}2 → [0, 1] such that: ∀(i, j) ∈ {1, . . . , n}2,∑
(k,l)∈{1, ..., n}2

Φ((i, j), (k, l)) = ai,j and
∑

(k,l)∈{1, ..., n}2
Φ((k, l), (i, j)) = a′i,j . (3)

Then dc,p is a pseudo-metric on Kn: it satisfies the separability, symmetry and
triangular inequality properties, but might fail to be always finite.

Obviously, dc,p being a pseudo-metric on Kn, it is a pseudo-metric on Sn

(identified as Σn) as well, we set in this case dc,p(Mσ1 ,Mσ2) = dc,p(σ1, σ2), with
a slight abuse of notation. Before showing several important examples of such
pseudo-metrics, a few remarks are in order.

Remark 3. (Normalization) For the sake of simplicity, this definition above
uses a slightly different convention than in the classical mass transportation set-
ting (see, for instance, [RR98,Vil09]). Indeed A and A′ do not define probability
measures on {1, . . . , n}2, their mass with respect to the counting measure being
equal to n (it would simply suffice to divide the latter by n for leading back to
the usual setup).



Remark 4. (Monge vs. Kantorovich) When the search for transportation
plans with minimum cost is restricted to plans Φ taking their values in {0, 1} (one
does not try to divide the mass described by the entries of the initial matrix to
transport it, assigning new locations to the original entries being sufficient in this
situation), the problem is said of Monge’s type. We point out that, even when
both the initial and final distributions of mass are described by permutation
matrices Mσ1 and Mσ2 , OTP’s for the Kantorovich problem are not Monge
transportation plans in general. Indeed, consider for instance the simple case
where n = 2 and the cost is constant, equal to some fixed scalar γ > 0, except
on the diagonal {(i, j) = (k, l)} where it is 0 (as required by condition (i)).
It is easy to see that the optimal transportation cost between ι = (1 2) and
τ = (2 1) is 21/pγ (identifying Σn with Sn). Additionally, observe that every
transportation plan achieves this cost and only two of them are of Monge type.

Remark 5. (On uniqueness) It should be pointed up that optimal transporta-
tion plans are not necessarily unique (refer for instance to the example mentioned
in the preceding remark).

Remark 6. (Ranking Stability) In the same way as Wasserstein-Kantorovich
probability metrics turned to be quite adapted to the study of stability of
stochastic models such as queuing systems (see [Rac91]), the optimal proper-
ties of distances dc,p(., .) make them very useful for investigating the stability of
ranking algorithms/models in a proper way. By a ranking algorithm, we mean
here a mapping σ : D 7→ σD that assigns a permutation σD ∈ Sn to any train-
ing data sample DN of size N ≥ 1, allowing for ranking n objects, indexed by
i = 1, . . . , n. The nature of the sample may vary depending on the application
considered (collaborative filtering or nonparametric scoring for instance), it can
be made of preferences, rankings, binary data, etc. (see [CV09] and the refer-
ences therein for instance). The definition below does not require to specify the
nature of the training data however. Given a cost function c on {1, . . . , n}2, we
define the instability measure as:

InstabN (σ) = EDN ,D′N

[
dc,p(σDN

, σD′N )
]
,

where D′N denotes an independent copy of the sample and EDN ,D′N [.] denotes the
expectation taken with respect to (D,D′). We mention incidentally that such an
instability measure can be estimated through a standard resampling scheme. By
drawing data with replacement among the original sample, one may get B ≥ 1
bootstrap replicates D∗(1), . . . , D∗(B) of the sample DN . A bootstrap estimate
of InstabN (σ) is then given by:

̂InstabN (σ) =
2

B(B − 1)

∑
1≤b<b′≤B

dc,p(σD∗(b) , σD∗(b′)).

3.2 Examples

As proof of relevance of the approach embraced in this paper, we now show
that some widely used metrics for measuring disagreement between rankings on



{1, . . . , n}, can be viewed as restrictions to Σn of a Kantorovich distance (for
an adequate choice of the cost function). A few important examples are listed
below.

1. Hamming distance. It corresponds to the cost function

cH ((i, j), (k, l)) =


0 if i = k, j = l

1 if i = k, j 6= l

+∞ otherwise
,

with p = 1 in the sense that: ∀(σ1, σ2) ∈ S2
n, δH(σ1, σ2) = dcH,1(σ1, σ2).

2. Spearman footrule distance. It corresponds to the cost function

c ((i, j), (k, l)) =

{
|j − l| if i = k

+∞ otherwise
,

with p = 1.
3. Spearman ρ metric. It corresponds to the same cost function as above,

except that p = 2 here.

The assertions above are easy to prove, M(Mσ1 ,Mσ2) containing, in each
case, a single element only.

Beyond the fact they can be seen as extensions of numerous permutation
distances, the major advantage of the collection of Kantorovich pseudo-metrics
lies in the considerable flexibility it provides for measuring disagreement between
rankings. By choosing the cost properly, one may attach much more importance
to the top ranks than to the others for instance, which makes sense in various
rank aggregation tasks.

However, we suspect that not every classical distance on permutations can be
recovered as a Kantorovich distance. Let us first introduce the following notions.

Definition 2. A function f defined on K2
n is said ’right-invariant’ (respectively,

’left-invariant’), when: ∀σ ∈ Sn, ∀A ∈ Kn,

f(A · σ,A′ · σ) = f(A,A′) (respectively, f(σ ·A, σ ·A′) = f(A,A′))

where A · σ = (Ai,σ(j)) (respectively, σ · A = (Aσ(i),j)). The function f is said
bi-invariant when it is right-invariant and left-invariant both at the same time.

Equipped with these definitions, we state the following result, relating invari-
ance properties of a cost function to those of the related pseudo-metric. Owing
to space limitations, the proof is omitted and left to the reader.

Proposition 2. Let c be a cost function fulfilling conditions (i) − (iv) and n
denote a large enough integer. The pseudo-metric dc is bi-invariant if and only
if the function c is bi-invariant when Sn acts on {1, . . . , n}2 on the right by
(i, j) · σ = (i, σ(j)) (respectively, on the left by σ · (i, j) = (σ(i), j)).



Corollary 1. There exists a nonnegative integer n0, such that for all n ≥ n0,
the Cayley distance between two permutations in Sn (defined as the minimum
number of transpositions to be composed with one of them to turn it into the
other) is not the restriction to Σn of any Kantorovich distance on Kn.

4 From medians in Kn to median rankings

Now the concept of Kantorovich metric between rankings has been introduced,
our main goal is to use it in order to define and compute medians, summarizing
a profile of rankings, in Kn first, and in Sn next.

Definition 3. Let n ≥ 1 and let A1, . . . , AN be N ≥ 1 elements of Kn. Any
matrix A∗ ∈ Kn such that

N∑
m=1

dc,p(A∗, Am) = inf
A∈Kn

N∑
m=1

dc,p(A,Am) (4)

is called a median matrix for the profile {A1, . . . , AN}.

Remark 7. (On existence) We point out that medians, in the sense of Defini-
tion 3, always exist. Indeed, for any (A1, . . . , AN ) ∈ KNn , N ≥ 1, the mapping
A ∈ Mn(R) 7→

∑N
m=1 dc(A,Am) is continuous, the infimum over the compact

set Kn being thus achieved. In contrast, regarding uniqueness, we underline that
in general several medians may exist.

By means of this definition, given a profile (Am)1≤m≤N in Sn, we end up
with a summary median matrix A∗ in Kn, which, in general, does not lie in
Σn. This is the convexification step. When trying to summarize the statistical
properties of the profile, all the useful information is encoded in this ’central
matrix’. However, when willing to perform certain specific tasks related to rank
aggregation, it is desirable to recover a ranking, not a matrix in Kn. We review
below two popular approaches for building a ’median ranking’ based on a median
matrix.

4.1 The Mallows model

Let A∗ = (a∗i,j) ∈ Kn be fixed. A flexible approach is to generate a ranking σ,
of which permutation matrix Mσ is ’close to A∗’ (in the sense of a Kantorovich
pseudo-metric dc,p), consists in drawing at random an element from Sn so that
the smaller the distance dc,p(A∗,Mσ), the larger the probability of occurence.
This is exactly the purpose of the celebrated Mallows model [Mal57,Dia89], that
consists, in our context, to consider the distribution given by: ∀σ ∈ Sn,

P {σ} =
1
Z

exp (−θdc,p(Mσ, A∗)) ,



where Z is a normalization constant and θ is a positive parameter. When 1/θ is
small compared to the distance dc,p(A∗, Σn) only the nearest profiles are given
a chance to be drawn, when it is large more distant profile are likely to appear.
The main drawback of this model lies in its huge computational complexity, in
O(n!) namely.

When 1/θ tends to 0, the Mallows model degenerates towards the uniform
distribution on the set {σ ∈ Sn : dc,p(A∗,Mσ) = dc,p(A∗, Σn)}, where we set
dc,p(A∗, Σn) = minM∈Σn dc,p(A

∗,M) by definition.

4.2 Variants of the Luce model

Probabilistic approach. A more lightweight approach consists in reinterpret-
ing the median matrix entries as scores and relying then on an adaptation of
the Luce model, see [Luc59,Pla75]. More precisely, we start off with choosing
randomly the object i1 ranked first, by drawing according to the distribution on
{1, . . . , n} defined by the column (a∗i,1)1≤i≤n of A∗, then we generate the ob-
ject ranked second among the remaining ones {1, . . . , n}\{i1} according to the
distribution (a∗i,1 + a∗i,2)/(2− a∗i1,1) for i 6= i1, and so on and so forth. Formally,
the distribution of the ranking σ drawn from this model can be written as,

P
{
σ−1(1, . . . , n) = (i1, . . . , in)

}
=

n∏
k=1

fk(ik; ik−1, . . . , i1),

for all permutation (i1, . . . , in) of (1, . . . , n), where

fk(ik; ik−1, . . . , i1) =

∑k
j=1 a

∗
ik,j∑

i 6∈{i1,...,ik−1}
∑k
j=1 a

∗
i,j

.

Of course, in a dual fashion, we could draw at random the rank assigned to
the object 1, according to the distribution (a∗1,j)1≤j≤n, etc.

Greedy approach. A greedy version of the approach described above can also
be considered. Precisely, it consists in using the model

P
{
σ−1(1, . . . , n) = (i1, . . . , in)

}
=

n∏
k=1

gk(ik; ik−1, . . . , i1)

where

gk(ik; ik−1, . . . , i1) =
I
{∑k

j=1 a
∗
ik,j

= maxi 6∈{i1,...,ik−1}
∑k
j=1 a

∗
i,j

}
∑
i′ 6∈{i1,...,ik−1} I

{∑k
j=1 a

∗
i′,j = maxi 6∈{i1,...,ik−1}

∑k
j=1 a

∗
i,j

}

The computational cost of both procedures is linear in the size of A∗ (i.e.
O(n2)), insofar as the sums si,k =

∑k
j=1 ai,j are precomputed.



5 Computational aspects

It is the purpose of this section to investigate the computional complexity of the
key ingredients of the methodology proposed precedingly: distances and medians.

5.1 Computing Kantorovich distances in Kn

To compute dc,p with no other assumptions on the cost c than (i), (ii), (iii)
and (iv), we make use of linear programming via an interior-point method
[BGLS03], which solves the minimization problem (2) in weak polynomial time.
If c only takes integer values, then the Edmonds-Karp algorithm is known to
solve the problem in O(n2(m + n2 log n)) time, m denoting the number of en-
tries ((i, j), (k, l)) where the cost is finite (there are at most n4 such entries),
see [KV00]. However, for some specific choices of c, the computational cost may
reduce to O(n), as it is the case for the Hamming and Spearman distances re-
stricted to Σn, as already seen in Section 3.

5.2 Computing median matrices

In absence of any further assumptions on c (except conditions (i)−(iv)) and p, we
resort to general non-linear programming method for solving the minimization
problem (4), with no guarantee of convergence to an optimal solution. For specific
cost functions and configurations, one can compute the median matrix efficiently,
in polynomial time, as claimed in the next proposition.

Proposition 3. Let N ∈ N∗ and σm are permutations of Sn for m ∈ 1 . . . n.
Assume also that ∀i ∈ 1 . . . n, m 6= m′ implies σm(i) 6= σm′(i). Then, equipped
with the cost cH, M̄ = 1/n

∑N
m=1M

σm is a median matrix of (Mσm)m∈1...N for
dcH . It can be computed with complexity O(n2N ∧ nN log(nN)).

6 Applications to rank aggregation

The advantages of the approach to the ’consensus issue’ proposed in the pre-
ceding sections are now illustrated on numerical experiments related to the so-
termed ’rank aggregation task’ for meta-search engines in the context of Infor-
mation Retrieval (IR) applications.

6.1 Datasets

Our experimental study is based on the LETOR database ([LXQ+07]). It is
a public data repository, created for evaluating ranking algorithms. There are
two ’rank aggregation’ datasets in LETOR: MQ2007-agg and MQ2008-agg. Both
datasets are of the same format, but differ in size and in number of ranks to be
aggregated. A query q is submitted to N search engines; each engine outputs a
list of pairs (document, score). Each line of the database is of the form:



Relevance QueryId ScoreEngine1 ... ScoreEngineN DocId

where Relevance is an integer between 0 (irrelevant) and 2 (highly relevant).
With our previous notations, n changes at each query, we denote it by nq,
whereasN is constant within the dataset (21 for MQ2007-agg, 25 for MQ2008-agg).
Table 1 contains some basic statistics about the data: the number of queries,
engines, the average number of documents by query and the max number of
documents by query. The goal is to find, for each query in the dataset, the best
possible ranking, ranking accuracy being assessed by the means of the Normal-
ized Discounted Cumulative Gain (NDCG) measure ([JK02]). Recall that the
DCG, up to rank r, is defined by

DCGr(σ) =
r∑

i=1

2rel(σ−1(i)) − 1
log2(1 + i)

,

where rel denotes the relevance of document i for a given query, and σ the sought
aggregated ranking. Now NDCGr is the same quantity normalized so that we
have NDCGr(σ) = 1 for the best ranking.

LETOR provides a benchmark with the BordaCount method ([AM01]).

dataset MQ2007-agg MQ2008-agg

#queries 1692 784
#engines 21 25
#avgdocs 41.1 19.4
#maxdocs 147 121

Table 1. Datasets statistics

6.2 Implementation Details

The (huge) size of the datasets considered lead us to rule out general cost func-
tions and the use of the Mallows model. Instead, we chose the Hamming cost
cH and used Proposition 3 for median computations (when the hypothesis of
disjoint supports of Proposition 3 is not satisfied, the computed ’median’ solely
consists of an approximation of the optimum). We then tested and compared
the models of section 4.2 (except the Mallows model, too demanding in regards
to the dataset size) to extract a ranking from the computed median matrix. For
the degenerate Mallows model, we used the Hungarian method (Kuhn-Munkres
algorithm) [Mun57]. It has complexity O(n3

q), where nq denotes the number of
documents associated to query q.

6.3 Results

LETOR datasets are organized into training, validation and test set. However,
since, like BordaCount our method is unsupervised, we used the whole dataset
as a test set without restriction.



NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

BordaCount 0.1902 0.2014 0.2081 0.2128 0.2188 0.2247 0.2312 0.2377 0.2444 0.2507
LUCE Greedy 0.1980 0.2058 0.2137 0.2229 0.2301 0.2379 0.2441 0.2505 0.2575 0.2648
LUCE Random 0.2275 0.2328 0.2406 0.2450 0.2515 0.2578 0.2623 0.2683 0.2745 0.2814
Mallows-∞ 0.1920 0.2044 0.2100 0.2170 0.2226 0.2283 0.2346 0.2419 0.2471 0.2535

Table 2. Results comparisons on the MQ2007-agg dataset

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

BordaCount 0.2368 0.2806 0.3080 0.3432 0.3713 0.3888 0.3992 0.3724 0.1643 0.1694
LUCE Greedy 0.2026 0.2563 0.3058 0.3426 0.3752 0.3936 0.4030 0.3749 0.1567 0.1644
LUCE Random 0.2188 0.2726 0.3005 0.3279 0.3498 0.3691 0.3833 0.3579 0.1456 0.1508
Mallows-∞ 0.1937 0.2374 0.2787 0.3176 0.3487 0.3703 0.3841 0.3587 0.1459 0.1541

Table 3. Results comparisons on the MQ2008-agg dataset

The tables above show that, for both datasets, rank aggregation based on
the Hamming-Kantorovich distance in Kn lead to competitive results, compared
to the BordaCount procedure.

7 Conclusion

In this paper, we have provided a novel family of distances between rankings of a
finite number of elements, which can be viewed as mass transportation distances,
by the means of an embedding of the set of permutation matrices Σn in the set
Kn of doubly-stochastic matrices. This convexification step is also shown to be
a key ingredient for defining a new and flexible concept of median, reflecting
a consensus among a finite number of rankings. Although the freedom in the
choice of the cost function may lead to optimize a variety of tasks in the ranking
context such as stability evaluation or ranking prediction, a simple application
of this approach based on the Hamming cost yielded promising results, com-
peting with those produced by the BordaCount method on LETOR benchmark
datasets. Truth be told, this choice has been mainly motivated by computational
convenience. Algorithmic issues concerning distance/median computation and
properties of the median (Pareto efficiency, etc.), depending on the conditions
fulfilled by the underlying cost, will be the subject of further research.

Appendix - Technical Proofs

Proof of Proposition 1

Observe first that, for any (A,A′) ∈ K2
n, the quantity dc(A,A′) is well-defined

as a minimum, since the functional µc is linear (hence continuous) on {Φ :
{1, . . . , n}4 → R} and thus continuous on M(A,A′) as well, which space is



compact. Therefore a transportation plan Φ∗ achieves the minimum (2). It is
called an optimal transportation plan (OTP). The symmetry of dc immediately
results from the symmetry of the cost function c. The separability of dc is an easy
consequence of hypothesis (i) and (iv) for c. Let us finally prove the triangular
inequality for dc. Assume that A, A′ and A′′ are three given matrices in Kn. Let
us denote by Φ1 an OTP from A to A′′, and by Φ2 an OTP from A′′ to A′. From
the gluing lemma [Vil09, p.23] there exists a map Φ132 from {1, . . . , n}3 to [0, 1]
such that ∀(i, j, k, l) ∈ {1, . . . , n}4,∑

(k,l)∈{1,...,n}2
Φ132 ((i, j), (r, s), (k, l)) = Φ1 ((i, j), (r, s))

and ∑
(i,j)∈{1,...,n}2

Φ132 ((i, j), (r, s), (k, l)) = Φ1 ((r, s), (k, l))

Let Φ ((i, j), (k, l)) =
∑

(r,s)∈{1,...,n}2 Φ132 ((i, j), (r, s), (k, l)), then, triangular in-
equality of c and Minkowski inequality implies:

dc,p(A,A′) ≤ µ1/p
c,p (Φ)

=


∑

(i,j)∈{1,...,n}2

(k,l)∈{1,...,n}2

(r,s)∈{1,...,n}2

c ((i, j), (k, l))p Φ132 ((k, l), (r, s), (i, j))



1/p

≤ dc(A,A′′) + dc(A′′, A′)

Proof of Corollary 1

The Caley distance is bi-invariant. By virtue of Proposition 2, the cost c itself
is bi-invariant. Now, under the action

(σ, σ′) ∈ Sn×Sn 7→
((

(i, j), (k, l)
)
∈ {1, . . . , n}4 7→

(
(σ(i), σ′(j)), (σ(k), σ′(l))

))
,

the set {1, . . . , n}4 has 4 distinct orbits. The first orbit is the diagonal Dn =
{
(
(i, j), (i, j)

)
: (i, j) ∈ {1, . . . , n}2}, the 3 other orbits are Hn = {

(
(i, j), (i, l)

)
:

j 6= l}, Vn = {
(
(i, j), (k, j)

)
} and On = {

(
(i, j), (k, l)

)
: i 6= k, j 6= l}. On

Dn, the cost c is necessarily zero due to condition (i). From S2
n invariance of

c, we know that c takes a constant value h over Hn, (over Vn and over On
respectively). Triangular inequality implies that o ≤ h+ v, but also that h ≤ 2o
and v ≤ 2o. We now distinguish two cases. Either o < +∞ or else o = +∞. If
o = +∞ then either v or h is infinite, in which case we have already seen that it
corresponds to the Hamming distance on permutations (which is obviously bi-
invariant too and different from the Cayley distance), since we rule out the case
where o = v = h = +∞. If o < +∞, then h and v are also finite. Since both h and



v are finite, invariance also leads to h = v using (Mσ)T = (Mσ)−1. Considering
the distance between a transposition matrix and the identity, we deduce that
h = v = 1/2. Now, considering the matrix corresponding to a length 3-cycle we
deduce that 3o ≤ 2 (otherwise the cost of transportation from the identity to
the cycle using only horizontal or vertical movements is larger than n whereas
Cayley distance is equal to n − 1). But now there is a contradiction with the
length n cycle whose transportation cost to the identity is less than 2n/3 instead
of n− 1 for the Cayley distance.

Proof of Proposition 3

It easy to see that the transportation distance between two vectors v and w in
Rn induced by the cost c(i, j) = I{i 6= j]} is

∑n
i=1 |wi − vi|/2. Consider a fixed

row index i in 1 . . . n. By definition of cH, the transportation plan should not
mix rows (otherwise the transportation cost would be infinite). The cost induced
by row i between the matrix Mσ and M , where σ denotes any permutation of
Sn and M any matrix in Kn, is then: 1−M(i, σ(i)). Hence, we have:∑

m

dcH(M,Mσm) ≥
∑
i

∑
m

(1−M(i, σm(i))) .

Now, since M is doubly stochastic, we may write∑
i

∑
m

(1−M(i, σm(i))) = nN−
∑
i

∑
m

M(i, σm(i)) ≥ Nn−
∑
m

∑
i

M̄(i, σm(i))

. Since all the σm(i)’s are distinct (i being fixed), we have∑
m

dcH(M,Mσm) ≥
∑
m

dcH(M̄,Mσm).

If log(nN) ≤ n, one may store all the matrices Mσm using a dictionary structure,
where each lookup costs at most log(nN). Otherwise, one can simply sum up
the matrices Mσm .
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