
Biometrics 000, 000–000 DOI: 000

000 0000

Extraction of food consumption systems by non-negative matrix factorization

(NMF) for the assessment of food choices.
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Summary: In Western countries where food supply is satisfactory, consumers organize their diets

around a large combination of foods. It is the purpose of this paper to examine how recent nonneg-

ative matrix factorization (NMF) techniques can be applied to food consumption data in order to

understand these combinations. Such data are nonnegative by nature and of high dimension. The

NMF model provides a representation of consumption data through latent vectors with nonnegative

coefficients, we call consumption systems, in a small number. As the NMF approach may encourage

sparsity of the data representation produced, the resulting consumption systems are easily inter-

pretable. Beyond the illustration of its properties we provide through a simple simulation result, the

NMF method is applied to data issued from a french consumption survey. The numerical results

thus obtained are displayed and thoroughly discussed. A clustering based on the k-means method

is also achieved in the resulting latent consumption space, in order to recover food consumption

patterns easily usable for nutritionists.

Key words: Dimensionality reduction, food consumption patterns, NMF contribution clustering,

Non-negative Matrix Factorization (NMF), sparse data.
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1. Introduction

Food risk assessment has become an important issue for many national and international

bodies in charge of public health. It requires combining several disciplines, such as epidemi-

ology, nutrition, toxicology, and of course applied mathematics in order to develop rigorous

methods for quantitative risk assessment. Hence, a growing scientific literature devoted

to probabilistic and statistical methods applied to food risk assessment is now available

in applied mathematics journals, see Bertail and Tressou (2006); Tressou (2006); Bertail

et al. (2008) and the references therein for instance. Among topics that may be tackled

through mathematical modeling, an important issue lies in understanding food choices and

consumption behaviors. Some aspects of this question can be assessed by the means of food

consumption surveys that are collected among a given population according to different data

recording methods. For instance, a large food consumption survey, called INCA (Volatier,

2000), was conducted in 1999 by the Agence Française de Sécurité Sanitaire des Aliments

(AFSSA) on a French population sample. It is an individual survey based on classical 7-day

dietary records where respondents are required to report all their individual consumptions

during one single week.

A classical way to understand consumption behavior by the means of individual food

surveys consists in estimating the individual nutrient intakes, estimates being computed by

combining consumption data with a food nutrient composition database. Hence intakes are

calculated for several nutrients, this is a multivariate approach. Thereafter, homogeneous

subgroups of consumers having comparable nutrient intakes are identified by using classical

clustering statistical techniques. This operation is usually known as dietary pattern clustering.

Applications of exploratory multidimensional techniques, in the purpose of deriving dietary

pattern clusters, have recently been the subject of a good deal of attention. Among these,

cluster analysis tries to divide the subjects into homogeneous non-overlapping subgroups
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with a similar pattern of mean food intake. Until now, iterative partitioning methods such

as k-means clustering and hierarchical classification techniques are among the most widely

used approaches in this context (James, 2009; Samieri et al., 2008). Though it is of practical

simplicity, this approach presents several severe drawbacks:

• Whereas clustering is based on nutrient intakes, it is very difficult to a posteriori identify

foods that contribute by a majority to a given pattern. Because consumers do not buy

nutrients but foods, it is uneasy for the organizations in charge of nutrition policies to

clearly establish recommendations that can be easily understood by the consumers.

• Classical clustering methods implicitly assume that average dietary patterns do exist and

can be considered as quite representative for a given subgroup. Whether common dietary

patterns may exist, individual behavior may also represent an important part in food

choice.

Therefore, this paper proposes a different modeling of population consumption that can

be directly applied to consumed food quantities without converting into nutrient intake

estimates. Even though a very large number of different foods are involved in individual

consumption patterns, all possible food combinations are not observed in practice. Certain

foods are preferentially combined or substituted as a function of hedonic choices and/or socio-

cultural habits. One may then realistically expect that the vast majority of consumption data

can be described by a few patterns, that are linear combinations of consumption vectors of

specific foods. These underlying factors can be interpreted as latent variables that we call

consumption systems (CS) in the specific context of this study. Therefore, according to this

modeling, an individual diet must be seen as a linear superposition of several consumption

systems.

Principal Component Analysis and Factor Analysis form part of a collection of statistical

methods that aim at recovering such latent variables. However, they have been designed
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for dealing with Gaussian data. Latent variables and noise are indeed modeled as Gaussian

random vectors, which considerably restricts the range of applications for these methods.

Considering that observed episodically consumed foods data can be defined as nonnegative

data that have excess zeros and measurement error (Kipnis et al., 2009), there is consid-

erable empirical evidence for assuming non Normality of the data. Recently, a new latent

variable based method has been proposed, called Non-Negative Matrix Factorization (NMF

in abbreviated form) (Lee and Seung, 1999, 2001) in situations where measurements are

nonnegative by nature, such as ours. Originally, this method was developed for image analysis

by assuming that brain perception uses parts-based representations. This algorithm for non-

negative matrix factorization is able to learn parts of data structures. This is in contrast to

other methods, such as principal components analysis and vector quantization, that learn

holistic, not parts-based, representations. NMF is distinguished from the other methods by

its use of non-negativity constraints. This novel approach has recently been applied to a

variety of applications in different fields, ranging from audio source separation (Ozerov and

Févotte, 2010) in signal processing, to portfolio diversification (Drakakis et al., 2007) in

mathematical finance, through clustering of scotch whiskies (Young et al., 2006).

Thus, it is expected that, here, NMF will permit to extract parts-based substructure, i.e.

consumption systems, that are responsible for the whole structure observed in food survey

datasets. In complement, each individual consumption pattern is a linear combination of

several non-negative consumption systems, and these combinations may be sparse, which

would facilitate their interpretation. In order to identify target groups or consumers having

similar behavior, NMF analysis must be completed by a clustering of individuals in the

consumption system space.

This paper is organized as follows. Section 2 describes consumption survey data. Section

3 presents the proposed NMF modeling of consumption data as combinations of latent
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consumption systems. A description of the constitutive components of the model is given,

as well as its characteristics. The implementation method is developed and the theoretical

properties are also discussed in this section, through a toy simulation example in particular.

These theoretical concepts are applied in section 4 to the INCA database. A statistical

analysis is carried out in order to interpret the numerical results produced by the NMF

procedure. A k-means clustering method is next applied in the NMF-derived latent space.

Technical details are put together in the Appendix.

2. The INCA database

The ”Individuelle et Nationale sur les Consommations Alimentaires” (INCA) survey was

conducted in 1999 by AFSSA (Volatier, 2000). It was initially designed to assess a global

description of French consumer behaviors and estimate nutrient intakes at national level.

It consists of individual 7-day food records collected from 3003 French consumers over 11

months in order to take possible seasonality into account. It is a transversal survey performed

on two independent samples: one sample of 1,985 French adults over 15 years, and the other

of 1,018 children ranging 3-14 years. National representativeness was achieved by combining

proportional stratified sampling (geographical zone, town size) and quota sampling (age,

gender, social status, and household size). A group of 511 underreporting adults was excluded

from the initial sample in order to avoid an under-estimation of food intakes. They were

detected by using the method proposed by Schofield based on the ratio between the energy

intake and the basal metabolism. They represent about 25 % of the adult sample; this is a

classical proportion.

Each respondent was requested to self-report on a formatted record booklet, the quantities

and quality of all foods and beverages that have been consumed during one week, including

meals taken outside home. Consumed quantities or portion sizes were estimated by the means

of a calibrated picture book. For children, record books were filled by the parents. Each
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type of meal (breakfast, lunch, diner, etc.) was recorded separately. When the booklet was

completed, dietary records were validated and corrected if necessary by specialized surveyors

who visited all participants.

A closed-ended list of 880 food names was used to coding dietary records. These foods

were organized in 44 food groups displayed in Table 1, under the names that are used in the

subsequent figures.

[Table 1 about here.]

There are 37 groups for solid foods and 5 beverages groups (with or without alcohol).

Consumed quantity for all foods were converted into grams and expressed as grams/kg of

body weight/week, for they were divided by the body weight of the respondent. Some extra

information was also reported, such as several socio-demographic variables, including gender

and age, in order to make a possible classification of respondents.

For this study it was decided, for each respondent, to sum up all consumed quantities of

each 44 groups over the 7 days of the survey. The final working data is a 3003×44 data

matrix with about 39% of zero values corresponding to a given food group that was never

consumed during the 7-day survey. A very important variation range can be observed as

well between food groups depending on usual portion sizes as among respondents. In order

to minimize the influence of scaling effect due to portion size, data have been standardized.

Each summed quantity was divided by its marginal standard deviation allowing then to

reduce the influence of portion sizes.

3. NMF statistical model

It is the purpose of this section to set out the notations and list the model assumptions

that shall be needed in the subsequent statistical analysis. A detailed description of the



6 Biometrics, 000 0000

numerical procedure is also provided, together with a simulation experiment illustrating the

methodology under study.

3.1 Assumptions and notations

Here and throughout, we denote byMm,q(R) (byMm,q(R+), respectively) the space of m×q-

dimensional matrices with real entries (with nonnegative entries, respectively), and by ||.||

the Hilbert-Schmidt norm on this space (i.e. ||M ||2 =
∑m

i=1

∑q
j=1m

2
ij for M = (mij) ∈

Mm,q(R)).

Classical latent variable analysis methods, such as principal components analysis and

vector quantization, learn holistic, not parts-based, representations. NMF is distinguished

from these methods by its use of non-negativity constraints that lead to a parts-based

representation because they allow only additive, not subtractive, combinations.

Here, we assume that the food choices of an individual are described by a collection of F

foods indexed by f = 1, . . . , F . More precisely, the whole diet of an individual is modeled by

a vector of length F , Q = (Q(1), . . . , Q(F )) which takes its values in RF
+, the f th element Q(f)

of Q indicating the quantity of food f consumed. Because food consumption widely depends

on the nature of the food and its moisture contents, scaling effect can be observed between

these F variables. To avoid such effects, each Q(f) is normalized by its marginal standard

deviation. We set v(f) = Q(f)/σ(f) where (σ(f))2 = E[(Q(f) − E[Q(f)])2], for f = 1, . . . , F .

We assume that the vector v = (v(1), . . . v(F )) of renormalized food consumptions is drawn

as

v = Wh+ ε, (1)

where W ∈ MF,K(R+), h = (h1, . . . , hK) is a continuous random vector of length K lying

in RK
+ and ε = (ε(1), . . . , ε(F )) a Gaussian random vector with mean 0 and covariance Γ,

independent from h. The number K of latent components is usually chosen much smaller

than F , hence reducing the data dimension.
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In addition, we assume that the matrix of consumption systems W is full of rank K and

satisfies the normalization condition

F∑
f=1

Wf k = 1. (2)

This constraint allows for interpreting the columns of W . Consumption systems will be

thought as deterministic combinations of foods in the social-cultural context of the con-

sumption survey and a basis used by the consumer to organize his own diet. Wf k being

then referred to as the loading/weight of food f within consumption system k. In order to

guarantee a minimum amount of sparsity of the NMF representation and identifiability of

the model as well (see subsection 3.2 below), we also assume that, for all pair (k, l) such that

k 6= l in {1, . . . , K}2, there exists f ∈ {1, . . . , F} so that Wf,k = 0 whereas Wf,l > 0.

Hence, the model above stipulates that the variability of the (renormalized) consumption

vector v arises from two distinct sources, the one of the (non Gaussian) random weight vector

h, reflecting the part of each consumption system in the diet, and the one of the (Gaussian)

noise term ε.

In the following, assume that we observe N independent quantity vectors

Qn = (σ(f)v(f)
n )16f6F ,

with vn = Whn +εn, for n = 1, . . . , N , where εn’s are i.i.d random vectors with Gaussian dis-

tribution N (0,Γ). The entire set of normalized food consumptions may be then represented

by using a matrix notation:

V = WH + E, (3)

where V and E are F × N matrices and H a K × N matrix, the columns of which are

(v1, . . . , vN), (ε1, . . . , εN) and (h1, . . . , hN) respectively. Notice finally that the data V are

not observed, insofar as the normalization factors σ(f) are unknown. However, they can be
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replaced by their (consistent) empirical counterparts

σ̂
(f)
N =

(
2

N(N − 1)

N∑
16m<n6N

{Q(f)
n −Q(f)

m }2
)1/2

,

as for PCA on pre-normalized data. Hence, the numerical procedure we next describe will

be actually applied to the matrix V̂ =
(
v̂

(f)
n

)
, where v̂

(f)
n = Q

(f)
n /σ̂

(f)
N for f = 1, . . . , F .

Remark 1: (A multiplicative NMF model) The original NMF method has been

introduced by (Lee and Seung, 1999) in a deterministic setting. In this respect, we point out

that other ways of ”randomizing” the factorization V = WH than the additive fashion could

be considered. The noise term could be multiplicative and supposedly positive (drawn from

a lognormal distribution for instance), leading to a statistical model of the form v = ε×Wh.

In this setup, a statistical fit could be obtained by using the Kullback-Leibler divergence as

criterion. Investigation of such a statistical model is beyond the scope of the present paper

but will be tackled elsewhere.

3.2 The NMF procedure

Given the additive structure of the model, the principle of the NMF algorithm we consider

here consists in minimizing the residual sum of squares

DK(V, (W,H)) = ‖V −WH‖2

=
N∑

n=1

F∑
f=1

(
vfn −

K∑
k=1

WfkHkn

)2

over the set of pairs (W,H) inMF,K(R+)×MK,N(R+) subject to the constraints
∑F

f=1Wfk =

1 for all k = 1, . . . , K.

Based on this cost function, Lee and Seung (1999) proposed the following multiplicative

algorithm:

Wfk ← Wfk
[V H t]fk

[WHH t]fk

, Hkn ← Hkn
[W tV ]kn

[W tWH]kn

.

In order to respect the constraint given by equation (2), matrices W and H are normalized
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at each step

Hkn ←
Hkn∑F

f ′=1Wf ′k

,

Wfk ←
Wfk∑F

f ′=1Wf ′k

.

The multiplicative algorithm is based on the gradient descent approach and guarantees the

positivity of each component of W and H at each step. From a practical perspective, one

starts with an initial choice for (W,H) and the algorithm is iterated until the change in value

of DK(V, (W,H)) is negligible. Technical details of the achievement rules are developed in

the Web Appendix A.

The convergence properties of the algorithm have been studied in Lee and Seung (2001). It

has been proved that the criterion monitoring the convergence of the optimization algorithm

decreases towards one solution. Nevertheless there is no evidence in absence of additional

constraints on the underlying statistical model that the recovered solution is unique and

asymptotically correct, a factorization in a product of nonnegative matrices being not unique

in general. The topic of uniqueness/identifiability was tackled by Donoho and Stodden (2004)

and Laurberg et al. (2008) by imposing conditions on the column vectors of W or on the

distribution of the random vector h; they concluded that uniqueness is achievable under

specific conditions, see also (Cichocki et al., 2006). In particular, under special configuration

when any two distinct column vectors W.k and W.l belong to different facets of the positive

orthant RF
+, the uniqueness of the solution is proved (cf Theorem 8 in Laurberg et al.

(2008) for instance): from a geometric angle, this clearly guarantees that the simplicial cone

generated by the W.k’s is the largest one which contains the support of the r.v. Wh and is

included in the positive orthant both at the same time.
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3.3 NMF properties and simulations

The NMF model provides a new representation of consumption data as a basis of food

consumption systems (CS) with non-negative entries. According to this model, up to an

additive noise term, each individual consumption is represented by a nonnegative linear

combination of the CS’s:

Πvn =
K∑

k=1

hknW.k.

Vector Πvn belongs to the latent consumption subspace ΓK of RF , defined by the set of the

non-negative linear combinations of CS’s:

ΓK =

{
K∑

k=1

λkW.k : λk > 0 for k = 1, . . . , K

}
.

It can also be viewed as the projection of the individual consumption vn into the latent

space.

To illustrate the application of NMF statistical model for consumption data and its

properties we used simulations. Here we considered the case F = 3 and K = 2, since

data and results can easily be graphically represented in this situation. Given the 3×2

W matrix, simulated data were located within the subspace Γ2 defined by W.1 and W.2,

which were assumed as belonging to two different facets of the positive orthant R3
+, that is

W.1 = (2/3, 1/3, 0) and W.2 = (0, 2/3, 1/3). Concretely, 1000 points were generated, Πvn for

n ∈ {1, . . . , 1000}, in the set Γ2, given by:

Πvn = h1nW.1 + h2nW.2.

In this toy simulation example, it was assumed that h1n and h2n are drawn independently

from a lognormal distribution. The related parameters were chosen in such a way that the

simulated data distribution be comparable to that of the observations in the INCA database,

up to a point. The values for the mean and variance have been taken equal to 2 and 1

respectively, for both h1n and h2n and a white Gaussian noise ε with the identity as covariance

matrix has been added.
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Results of the simulation are presented in Figure 1.

[Figure 1 about here.]

Figure 1 depicts the simulated data in the original space of dimension F = 3. The estimates

of the consumption systems produced by the algorithm described in subsection 3.2 are very

close to the theoretical values W.1 and W.2. Indeed, after 1000 iterations, we obtained:

Ŵ.1 = (0.67, 0.33, 0.00) and Ŵ.2 = (0.01, 0.66, 0.33). The normalized vectors Ŵ.1 and Ŵ.2 are

graphically identified as the straight lines they generate. Guidelines for the interpretation of

the graphic displayed in Fig. 1 can be the following:

(1) a point close to the origin correspond to a weak or quasi-null consumption;

(2) a point close to one of the CS straight line, W.1 say, represents individual consumptions

with a weak contribution on W.2, and the further the point from the origin, the highest

the contribution of the related CS to the global diet.

The parts of the data that are described by the CS’s, Πv, are represented in the plane

containing W.1 and W.2 (see Web Figure 1) and lie in the interior of the cone generated by

theses vectors.

The relevance of the model (1) in regards to prediction/interpretation can be measured

by the fraction of the whole variability arising from the component Wh with a parts-based

representation, comparing the quantities

R2
f = Wf.Γh

tWf.,

f ∈ {1, . . . , F}, to var(v(f)), where tM denotes the transpose of any matrix M and Γh the

covariance matrix of the r.v. h. From a statistical perspective, it can be naturally estimated

by its empirical counterpart:

R̂2
f = Ŵf.Γ̂h

tŴf.,
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where Γ̂h = N−1
∑

n6N(H.n−H̄N) t(H.n−H̄N) and H̄N = N−1
∑

n6N H.n. For the simulation

example above, R2 = (0.999, 0.999, 0.997).

4. Statistical results and discussion

In this section, the NMF procedure is implemented on the INCA database. Results are

presented and discussed from the perspective of nutrition policy and consumer behavior

assessment.

4.1 Model complexity

In the first place, it should be noticed that the NMF procedure requires to pick the number

K of underlying consumption systems, which can be viewed as a complexity parameter

and is typically chosen in ranges such that K � N . As illustrated in Web Figure 2, the

determination of the optimal number of consumption systems can be achieved by plotting

the residual sum of squares as a function of K, typically ranging from 1 to F , and looking

for a kink in this curve. Unfortunately, in spite of the slight diminution of the decreasing

rate one observes between K = 5 and K = 10 with this data set, there is no clear indication

for how to determine the optimal value of K. This regular decrease of the sum of squares

when the number of CS’s increases is confirmed by the regular growth of the percentage of

prediction. Table 3 gives the percentage of prediction for K equal to 5, 10 and 20 and for each

food group. In average, the percentage of prediction increases by 54% for K = 10, compared

to K = 5. The increasing of prediction percentage from K = 10 to K = 20 becomes equal

to 90%, almost the double of the previous increasing. This fact perfectly illustrates the need

for a trade-off between statistical fit and interpretability.

In absence of any theoretical results for grounding automatic selection procedures based on

complexity penalization in the NMF setup (see the discussion in section 5), a strategy may

consist in selecting K in order to achieve a satisfactory sparsity rate for W and H in such a
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way that the resulting model can easily be interpretable for an end-user. Heuristically, if K

is too small, the matrix W tends to be less sparse (while H tends to be sparser in contrast)

and vice versa when K is too large. For the study, we are more interesting on achieving

a high degree of sparsity for W that is the most expected output of NMF modeling i.e.

understanding the structure of consumption behavior by the means of the CS’s. Thus, it was

decided to compare the results derived from NMF procedure for different empirical values

of K, namely 5, 10 and 20. Web Figures 3 and 4 and Figure 2 depict the order of magnitude

of the W ’s entries for the different values of K. A grayscale mapping table was used for this

illustration. Consumption systems appear in columns and food groups in rows. The larger

the loadings of the food group in a given CS, the darker is the cell of the table; for null

loading, white is used.

[Figure 2 about here.]

As expected, the larger the number of CS’s, the sparser the vectors representing the CS’s.

For K sufficiently large, the CS’s can be characterized by a small number of food, consumed

in a same meal or corresponding to a same consumption behavior. For K equal to 5, the

CS’s are not sufficiently sparse, while, in contrast, for K equal to 20, the interpretation of

the CS’s obtained is poor in terms of food association. A number K of CS’s equal to 10 thus

permits to achieve a good trade-off between sparsity and interpretability of the CS’s.

4.2 Implementation of the NMF procedure on the INCA database

In this section, the NMF procedure is implemented on the INCA database with a number

K of CS’s equal to 10. Interpretation of the matrix W can be based upon Figure 2. For each

consumption system, the larger the proportion of a food group, the more it contributes to

the CS. For instance, CS W.10 is mainly represented by pizzas, sandwiches and cooked dishes

and non alcoholic beverages: this structure can be regarded as the part of the diet based on

”fast food-like consumption”. It can also be observed that certain food groups may appear
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in several consumption systems (e.g. meat) while some other groups may be involved in a

few CS’s and in a weak proportion (e.g. offals and diet supplements). This gives indication

on food groups which are traditionally consumed and how they are associated according to

the French consumer habits. Most consumption systems are characterized by a few strongly

contributing products. This sparsity structure of W was an objective when choosing the

value of K, as it gives a synthetic view of the different consumption behaviors. We shall say

that food groups are ”associated”, when they are consumed during a same meal and/or they

describe similar food behaviors. For example, meat is often consumed with potatoes in W.9,

or eating pizzas also implies eating sandwiches in W.10.

We also underline that the weights hk of the CS’s in the global diet are not independent,

as we can see from their correlation matrix in Table 2.

[Table 2 about here.]

The strongest correlation (between h6 and h7) is equal to −0.245 and half of the absolute

values are below 0.1. One may interpret the sign of the correlation between two hk’s in

terms of ”opposition” or ”complementarity” of the consumption behaviors related to the

corresponding CS’s. For instance, h6, corresponding to CS W.6, where coffee, sugar, bread

biscotti are predominant food groups, is negatively correlated to h7 which corresponds to

CS W.7, mainly represented by breakfast cereals, milk, ultra-fresh dairy products: this can

be interpreted as opposed consumption behaviors.

In geometrical terms, consumption systems form a new basis for consumption data. Data

can be projected on any map generated by two consumption systems; whatever the selected

couple, the graphical appearance of data is very similar to Web Figure 1.

Beyond global interpretability aspects, another attractive property of NMF modelling lies

in the fact that it can be used, as a byproduct, for ”prediction”: the CS-based quantity

v̂n = Ŵ ĥn can be viewed as a proxy for the individual consumption vn. In order to assess the
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quality of the approximation, Table 3 provides elementary statistics for data and predictions.

More precisely, it gives for each food group the mean, the standard deviation, the minimum

and the maximum of the observed and the predicted quantities.

[Table 3 about here.]

First of all, the average consumed quantity for each food group is recovered by the model.

The mean of prediction error is approximately equal to zero as stipulated by the assumption

of the model. Given a food group, the standard deviation of the predictions is, in average,

about 50% of the standard deviation of data. The maximum value of the standard deviation,

reached for ”rice and semolina”, is equal to 0.83. For about 70% food groups, the standard

deviation is larger than 0.5. The minimum is reached for ’diet supplements’ and is equal to

0.05, which food group is actually involved in the consumption of very few individuals. In

contrast to the largest values (underestimated by the model) the minimum values (close to

zero for each food group) are well captured by the CS-based component.

In order to explain how to interpret more precisely these results, we now focus on meat

consumption. The fraction of variability explained by the CS-based component is equal

to 70%. For this food group, we simultaneously plotted the distribution of the related

consumption data and that of the predictions in Fig. 3.

[Figure 3 about here.]

The range of the 3003 consumption values is split into 40 bins of length equal to 0.3. Notice

that the overall shape of the distribution is well captured by the model. The maximum value

for both distributions is equal to about 18% reached in the third class (0.6−0.9) for the data

and in the forth class (0.9− 1.2) for predictions. The greatest values are not well estimated

by the CS-based part of the model but concern very few individuals. To some extent, this is

also the case for the lowest values: the frequency of vn’s in (0− 0.3) is equal to 2%, although

the (normalized) meat consumption lies in this interval for 12% of the observed population,
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actually, 80% of them have a null meat consumption. This cannot be well captured by the

CS-based component insofar as, for this part of the model, null meat consumption implies

also zero consumption of products to which it is associated (for instance potatoes when

considering CS No. 9, vegetables for CS No. 5 . . .). Null or quasi-null consumptions thus

produce large residuals in general.

Investigating the statistical fit of the model food group by food group is informative, but

must be however completed by analyzing the correlations accross the various food groups.

Table 2 gives an extract from the correlation matrix of the empirical errors/residuals ε(f) in

model (1), displaying the ten highest correlations in absolute value. It is noteworthy that

certain empirical correlation coefficients are significant: the strongest correlation coefficient,

between ε(13) and ε(23), is equal to 0.55 and the lowest one, between ε(10) and ε(43), is equal to

0.31. Notice also that all correlations are positive: a large residual for the consumption of one

food group leads to a large residual for the consumption of another food group. In addition,

observe that the pairs of food groups corresponding to strong correlation coefficients are not

necessarily predominant in the same CS. Butter, food group No. 13, is predominant in CS’s

W3, W6 and W9, while vegetables, food group No. 23, is predominant in CS’s W5 and W8, and

sauces, food group No. 43, is predominant in CS W5. This can be interpreted as follows: large

residuals are simultaneously observed for two food groups, when the additive superposition of

CS’s do not permit to describe the consumption habits of certain individuals, these individual

choices concerning the combination of these food groups overtaking the average trends to

some extent.

4.3 Consumer clustering based on consumption systems

NMF model actually provides a new representation of consumption data by latent CS’s,

characterizing most of the population consumption behavior. In the latent consumption

space, each individual is represented by an additive combination of these consumption



Extraction of food consumption systems by NMF 17

systems. Next, the aim of this section is to identify eventual food consumption patterns

among individuals by using latent consumption space derived from NMF. It is expected that

clusters based on NMF representation can then be easily interpretable in terms of consumer

groups, such as ”group at risk”.

Recent clustering techniques using NMF (Xu et al., 2003; Ding et al., 2008) consist in

considering a partition of the data straightforwardly connected to the CS’s . More precisely,

individuals are divided into, at most, K clusters C1, . . . , CK , where each individual, vn, is

assigned to cluster Ck with k ∈ {1, . . . , K}, when:

Ck = argmax{hln; l = 1, . . . , K}. (4)

According to this strategy, the CS’s and the clusters are in one-to-one correspondence. An

individual is assigned to the cluster for which she/he presents the highest contribution in

her/his pattern hn.

This clustering method has been applied to the contribution matrix H derived from the

INCA database by the NMF procedure. In order to illustrate graphically the results, we

considered two specific CS’s, those which explain the major part of the total variability of

the data (once the additive noise has been removed) for instance, namely W(1) and W(2),

where the indexes (1) and (2) are defined by:

(1) = argmaxk∈{1, ..., K} W.kΓ̂h
tW.k, (5)

(2) = argmaxk∈{1, ..., K}\{(1)} W.kΓ̂h
tW.k, (6)

where Γ̂h denotes the empirical variance covariance matrix of the h.n’s. In this sense, the two

most discriminative CS’s actually correspond to the fourth and seventh CS’s respectively.

Data assigned to cluster C(1) or cluster C(2) are projected on the map generated by W(1) and

W(2). This is illustrated by Figure 4, where the points of cluster C(1) are represented by full

circles and the points of cluster C(2) by crosses. In this case only a subsample of the initial

population is represented: those having the highest contributions for both selected CS’s.
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[Figure 4 about here.]

Observe that most of the points lying in cluster C(1) are closer to W(1) than to W(2),

and vice-versa for C(2). However, this is not always true. Indeed, it should be noticed that

the contributions hkn’s do not exactly reflect euclidian distances to the axis W.k insofar as

the latent vectors extracted by NMF are neither orthogonal nor of unit euclidian norm. In

addition, this clustering scheme does not take into account the fact that different CS’s may

strongly contribute to the diet behavior of many individuals, while the latter are forced to

be assigned to only one cluster. Because it is easy to understand that a given consumer may

combine several CS’s in order to build her/his own diet, the strategy developed by Xu et al.

(2003) and Ding et al. (2008), originally tailored for document clustering or audio source

separation, seems to be unadapted to consumption data.

Consequently, it was decided to apply classical k-means clustering method using the

contributions H, so as to calculate the distance between individuals. To identify the optimal

number of cluster, k-means clustering algorithm was applied on the matrix of the individual

contributions H for a number of clusters l running from 1 to 30. For each value l the total

within-sum of squares was computed. By the mean of his criterion it is possible to identify

the approximate optimal number of clusters between 5 and 10: it was decided to select l = 6,

leading to the six clusters, shown in Figure 5.

[Figure 5 about here.]

The six clusters were drawn in the subspace generated by W2, W4 and W5. More precisely,

for each cluster, each individual n is represented by the vector of coordinates (h2n, h4n, h5n).

The choice of the three CS is guided by Web Figure 6 given the coordinates of the centroid

of each cluster : the CS W2, W4 and W5 are predominant of cluster 3, 4 and 1 respectively.

We remark that cluster 2 and cluster 3 are well separated. They group together individuals

having a consumption behavior given predominantly by the CS W2 and W5 respectively.
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The structure of both clusters shows that both CS represent opposed consumption behavior

in the population. Other clusters group together individuals having a lower or quasi-null

contribution on both CS’s.

To compare with a clustering method directly applied on data, clusters obtained by k-

means through NMF are represented on the consumption base. Let us focus now on the

three food groups that are predominant for CS W2, W4 and W5, named cooked pork meats,

biscuit and vegetables respectively. For each cluster, individuals are represented by their

consumption of the three food groups in Web Figure 5. In the consumption space, clusters

obtained by the NMF representation are not separated. The representation of the individual

consumption in the space of food group does not allow to recover a consumer grouping similar

to that provided by the NMF method.

5. Conclusion

The characterization of consumers eating behaviour is a crucial issue to understand the

trend in food consumption and its impact on agricultural production and public health. The

clustering techniques are widely applied to reach this goal and to identify the similarities

and differences in dietary patterns between countries and regions. As an example the World

Health Organization (WHO) developed this approach to describe the various diets around

the world and resulted in thirteen so-termed cluster diets (Wirfält et al., 2001). In this case

the clustering was based on the economical data collected by the Food and Agricultural

Organization and known as the FAO Food Balance Sheets. The food balance sheet shows for

each food item i.e. each of about 100 primary commodities available for human consumption

which corresponds to the sources of supply and its utilization. The total quantity of foodstuffs

produced in a country added to the total quantity imported and adjusted to any change in

stocks gives the supply available during that period. On the utilization side a distinction

is made between the quantities exported, fed to livestock and used for seed, losses during
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storage and transportation, and food supplies available for human consumption. The per

capita supply of each such food item available for human consumption is then obtained by

dividing the respective quantity by the related data on the population actually partaking in

it.

In practice the clustering applies on average values for per capita consumption on a period

of at least one year. Under these conditions the main problem observed in individual food

consumption surveys which is the proportion of null values does not occur. On the other hand

this averaged picture does not reflect correctly the complexity of the consumption structure

within a considered country or region. The cluster diets are extremely useful to compare the

overarching structure of the diets around the world and in particular for developing countries

where processed food does not represent the main component of the dietary pattern. In

developed countries where several thousands of foods are currently available on the market,

estimating the risks and the benefits of a particular dietary pattern are unlikely to be

observable from the consumption of agricultural commodities. This paper shows that new

statistical techniques can allow extracting homogeneous consumption systems behind the

cluster diets. For the future, these techniques should help in quantifying the health impact

of food on particular consumer groups.

The NMF methodology appear as a feasible way to tackle this issue. The underlying model

can be interpreted at two levels: it permits to extract consumption systems, accounting of

the socio-cultural habits present at the population level, while describing the individual

preferences of a given consumer through the individual weights assigned to the CS’s. The

part of the individual diet that cannot be expressed in terms of consumption systems forms

the residual noise. When the number of consumption systems introduced in the model is

K = 10, the percentage of prediction is in average about R2 = 32%. This value is small when

compared to the results of the simulation study but seems rather pertinent when considering
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the importance of individual choice in the organization of an individual diet. according to

this explanation, residuals can be explained as the mixture of individual preferences and

measurement uncertainty. Measurement uncertainty also contains all sources of errors, such

as aggregation of different foods, portion size estimation and consumer lack of memory.

Compared with other multivariate techniques, such as factorial analysis, NMF presents

very specific and interesting properties : factors are not orthogonal and the related weights

are not necessarily independent. An individual can be then equally combine independent or

not CS. That means that she/he can organize her/his own diet with opposed consumption

behaviors or, inversely, not combined closed consumption behaviors. The benefit lies on the

fact that individual consumption description is more realistic because it takes into account

the diversity of consumption behaviors within a population.

Due to the diversity of food supply, the period of time when the same food is consumed

twice can be very long, For consumption surveys which are based on dietary records, even

when records are summed over 7 days, it seems obvious there is no frequent replication

of the same meal for the same individual. Therefore the observed combination of CS for

one individual cannot readily be interpreted as a complete diet. The clusters are more

representative of some average diet components for a group of consumers. The results we

observed here are also dependent on the INCA database and the application of NMF to

other surveys collected in other countries where consumption behavior may differ would

exhibit other consumption systems. But the feasibility of this approach is demonstrated by

the consistency of the obtained results, in regard of nutritional knowledge.

Though very promising, the application of NMF techniques bring several open problems,

listed below. In the future, the latter should be tackled and solved hopefully, for a better

understanding of the application of NMF to consumption data in particular.

• Until now, no theoretical grounds have been set for the statistical consistency of NMF pro-
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cedures. Investigating the asymptotic properties of suchM -estimation techniques (provided

that the underlying NMF representation is unique) is a challenging theoretical problem

and will be tackled in a forthcoming article.

• One of the limitations of the additive NMF model considered in this paper lies in the

fact that it stipulates that nonnegative data can be observed (the noise being Gaussian)

with positive probability, while null values occur with probability zero. Such a modeling

is naturally arguable in the dietary context. Building a more relevant NMF model for

consumption data, where noise is incorporated in a multiplicative way for instance (see

Remark 1), defines an ambitious direction for further investigation.

• From a practical perspective, the major question is the determination of the optimal

number of latent vectors. The sparsity of factors and the value of errors crucially depend on

this number. Nevertheless, the consequences of under- or over-estimating K are unknown.

This is a typical model selection problem, not yet tackled in the literature (Donoho and

Stodden, 2004; Laurberg et al., 2008).

• The study was restricted to 44 food groups. An application to a larger number of foods

must be conducted in order to ascertain that NMF method is adapted to larger dimen-

sion consumption data and if results give a more precise description of the consumption

behaviors.

• For dietitians, nutritionists and nutrition policy-makers the added-value of NMF can only

be appreciated if it can be combined with a clustering technique that gives clues on

the grouping of consumers as potential groups at risk that may similarly combine the

same consumptions systems. The proposed solution based on k-means clustering is still

insufficient. Better characterization of these groups must be achieved and this will be done

in further developments.
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Figure 1. Representation of simulated data. Points are the data and the straight line are
the estimated consumption systems.



Extraction of food consumption systems by NMF 27

1 2 3 4 5 6 7 8 9 10

Bread, biscotti
Breakfast cereals

Pasta
Rice, semolina

Other cereal
Viennese pastry

Biscuit
Cakes

Milk
Ultra−fresh dairy products

Cheeses
Eggs

Butter
Oils

Maragarine
Others fats

Meat
Fowl

Offals
Cooked pork meats

Fishes
Shellfishes
Vegetables

Potatoes
Pulses

Fruits
Dried fruits

Ices
Chocolate

Sugars
Water

Non alcoholic drinks
Alcohols

Coffee
Hot drinks

Pizzas
Sandwiches

Soups
Cooked dishes

Starter
Dessert

Compote
Sauces

Diet supplements

Figure 2. Graphical representation of the W matrix which describes the loadings of each
of the 44 food groups to each of the K consumption systems for K = 10.
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Figure 4. Data clustering representation in the map generated by W(1) and W(2). Full
circles are the projected data assigned to cluster C(1) and crosses to C(2).
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Table 1
Naming of the 44 food groups.

Group Naming Group Naming Group Naming

1 Breads 16 Others fats 31 Water
2 Breakfast cereals 17 Meats 32 Non alcoholic drinks
3 Pasta 18 Fowls 33 Alcoholic drinks
4 Rice, semolina 19 Offals 34 Coffee
5 Others cereals 20 Cooked pork meats 35 Hot drinks
6 Vienna pastry 21 Fishes 36 Pizzas, quiches, pastries
7 Biscuits 22 Shellfishes 37 Sandwiches
8 Cakes 23 Vegetables 38 Soups
9 Milk 24 Potatoes 39 Cooked dishes
10 Ultra fresh dairy products 25 Pulses 40 Starters
11 Cheeses 26 Fruits 41 Dessert
12 Eggs 27 Dried fruits, oilseeds 42 Compots
13 Butter 28 Ice creams 43 Condiments and sauces
14 Oils 29 Chocolate 44 Meal substitutes
15 Margarines 30 Sugars
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Table 2
Correlation matrix of the CS weights h1, . . . , hK and an extract from the correlation matrix of the empirical errors.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 1.000 0.003 0.018 -0.044 0.040 0.022 -0.055 0.102 -0.077 -0.060
h2 1.000 -0.036 -0.237 0.035 0.170 -0.280 0.124 0.051 -0.008
h3 1.000 0.014 0.040 0.048 -0.016 -0.081 -0.016 -0.069
h4 1.000 -0.139 -0.177 0.090 -0.209 -0.036 0.018
h5 1.000 0.159 -0.137 -0.110 -0.071 -0.081
h6 1.000 -0.245 0.094 0.037 -0.042
h7 1.000 -0.124 -0.050 -0.118
h8 1.000 -0.070 -0.185
h9 1.000 0.022
h10 1.000

ε(10) ε(13) ε(15) ε(17) ε(20) ε(23) ε(24) ε(30) ε(31) ε(43)

ε(10) 1.00 0.38 0.35 0.37 0.32 0.40 0.36 0.44 0.35 0.31
ε(13) 1.00 0.32 0.35 0.43 0.55 0.35 0.44 0.41 0.40
ε(15) 1.00 0.43 0.41 0.53 0.35 0.39 0.39 0.23
ε(17) 1.00 0.38 0.48 0.41 0.44 0.45 0.28
ε(20) 1.00 0.44 0.42 0.41 0.48 0.32
ε(23) 1.00 0.44 0.49 0.43 0.53
ε(24) 1.00 0.43 0.45 0.38
ε(30) 1.00 0.43 0.41
ε(31) 1.00 0.37
ε(43) 1.00
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Table 3
Elementary Statistics on the 44 food groups.

Group Observed Predicted for K = 10 Percentage of predicted

Mean Sdt Dev Min Max Mean Sdt Dev Min Max K = 5 K = 10 K = 20
1 1.04 1.00 0.00 10.90 1.039 0.58 0.05 4.36 0.372 0.335 0.783
2 0.35 1.00 0.00 17.80 0.35 0.51 0.00 4.78 0.155 0.263 0.467
3 0.86 1.00 0.00 12.83 0.86 0.68 0.00 6.07 0.324 0.458 0.460
4 0.74 1.00 0.00 11.39 0.74 0.83 0.00 14.56 0.356 0.683 0.502
5 0.15 1.00 0.00 29.28 0.15 0.28 0.00 4.92 0.025 0.079 0.445
6 0.51 1.00 0.00 10.35 0.51 0.42 0.00 2.82 0.172 0.177 0.530
7 0.56 1.00 0.00 8.98 0.56 0.57 0.00 3.31 0.218 0.327 0.423
8 0.68 1.00 0.00 11.79 0.68 0.46 0.01 3.39 0.062 0.210 0.342
9 0.72 1.00 0.00 11.35 0.72 0.70 0.00 6.11 0.529 0.486 0.553
10 0.79 1.00 0.00 12.39 0.79 0.60 0.00 5.60 0.246 0.357 0.641
11 0.98 1.00 0.00 10.85 0.98 0.56 0.01 4.17 0.322 0.315 0.291
12 0.78 1.00 0.00 9.55 0.78 0.35 0.08 2.83 0.099 0.126 0.936
13 1.08 1.00 0.00 17.43 1.08 0.61 0.00 5.42 0.344 0.374 0.577
14 0.59 1.00 0.00 16.31 0.59 0.46 0.00 4.83 0.107 0.214 0.723
15 1.05 1.00 0.00 11.91 1.048 0.66 0.00 10.52 0.465 0.430 0.673
16 0.09 1.00 0.00 24.80 0.093 0.09 0.00 0.65 0.004 0.009 0.987
17 1.21 1.00 0.00 11.79 1.21 0.70 0.01 5.67 0.259 0.484 0.506
18 0.86 1.00 0.00 16.16 0.86 0.36 0.07 2.70 0.123 0.127 0.244
19 0.33 1.00 0.00 11.15 0.33 0.31 0.00 2.53 0.028 0.094 0.942
20 1.02 1.00 0.00 10.92 1.02 0.69 0.03 5.67 0.246 0.471 0.390
21 0.85 1.00 0.00 12.04 0.85 0.50 0.01 5.19 0.190 0.245 0.290
22 0.38 1.00 0.00 16.61 0.38 0.27 0.00 2.19 0.046 0.072 0.953
23 1.36 1.00 0.00 6.78 1.36 0.74 0.10 6.96 0.580 0.553 0.743
24 1.08 1.00 0.00 9.07 1.08 0.58 0.03 5.03 0.265 0.338 0.492
25 0.44 1.00 0.00 14.16 0.44 0.35 0.00 2.73 0.040 0.120 0.883
26 0.84 1.00 0.00 12.66 0.84 0.60 0.00 4.20 0.312 0.365 0.300
27 0.20 1.00 0.00 30.40 0.20 0.58 0.00 10.44 0.024 0.342 0.987
28 0.39 1.00 0.00 13.20 0.39 0.33 0.00 2.86 0.075 0.111 0.548
29 0.42 1.00 0.00 11.01 0.42 0.50 0.00 2.98 0.092 0.246 0.485
30 0.93 1.00 0.00 9.96 0.93 0.82 0.00 6.26 0.266 0.676 0.357
31 1.23 1.00 0.00 7.71 1.23 0.56 0.18 5.19 0.234 0.314 0.585
32 0.63 1.00 0.00 14.51 0.63 0.60 0.00 3.94 0.315 0.365 0.469
33 0.50 1.00 0.00 15.02 0.50 0.69 0.00 5.06 0.273 0.471 0.450
34 0.66 1.00 0.00 15.11 0.66 0.71 0.00 5.16 0.402 0.507 0.716
35 0.45 1.00 0.00 16.12 0.45 0.65 0.00 11.57 0.123 0.423 0.916
36 0.72 1.00 0.00 9.58 0.72 0.61 0.03 4.75 0.203 0.373 0.442
37 0.50 1.00 0.00 9.71 0.50 0.65 0.00 4.87 0.190 0.419 0.592
38 0.65 1.00 0.00 11.01 0.65 0.66 0.00 5.31 0.124 0.432 0.811
39 0.96 1.00 0.00 7.93 0.96 0.50 0.10 3.80 0.141 0.249 0.438
40 0.52 1.00 0.00 12.75 0.52 0.50 0.00 5.24 0.159 0.255 0.281
41 0.54 1.00 0.00 10.59 0.54 0.50 0.00 3.49 0.121 0.249 0.447
42 0.42 1.00 0.00 10.25 0.42 0.60 0.00 10.65 0.066 0.359 0.957
43 0.92 1.00 0.00 15.03 0.92 0.61 0.06 6.33 0.305 0.373 0.698
44 0.05 1.00 0.00 37.41 0.05 0.05 0.00 0.57 0.001 0.002 0.991


