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The Frequency Spectrum

The Frequency spectrum is a common good characterized by:

@ A strong regulation
@ High occupancy variations

@ Possible congestions
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A Strong Regulation

@ The spectrum is divided into small parts
@ The spectrum is not technology agnostic
@ see ANFR frequency table [TNRBF]
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Possible Congestions

® PMR Measurements (450-470 MHz) [urc]
@ Still high spatio-temporal variations
@ Up to 94% of spectral occupancy
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Technological Trends

Radio is becoming flexible [Buddhikot07, Filin08]
@ Software Define Radio

@ Cognitive Radio / Dynamic Spectrum Access

Technologies are multi-carrier [3gpp]
@ OFDMA based standards (LTE, WiMAX)
o Carrier aggregation (HSPA, LTE Advanced)

Regulators are changing the rules [ofcom07]
@ Spectrum is becoming technology agnostic (UMTS 900)
@ Spectrum can be reused by secondary users (IEEE 802.22)
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Study Framework

@ We focus on a mobile operator

@ Operating one or several technologies, e.g. LTE, HSPA, WiFi, etc

@ Able to lease spectrum frequency blocks to the regulator
[Buddhikot05]

@ Willing to optimize the spectrum usage in some sense

(ENST)

e.g. IMHz
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A pool of spectrum blocks

The Coordinated Access Band
(CAB)
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QOutlines

@ Time DSA

@ Optimal Policies
o A Simple Heuristic
@ Q-Learning Approaches

@ Space-time DSA

@ Tabu Search on a Cell Cluster
e Dynamic Scenario
o Infinite Network

@ Conclusion
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Time DSA
System Model

Cell-by-cell DSA

Two Radio Access Networks (RAN) operated by one operator
A CAB (= a pool) made of frequency blocks

Cell capacity is proportional to the leased bandwidth

e 6 ¢ ¢ ¢

Spectrum cost is also proportional to the leased bandwidth

Mmax

CAB ‘
k

/

Cell data rate
of RAN i : D;
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Time DSA

System Model

@ ON/OFF elastic traffic

@ Poisson arrivals (A1, A2) for packet calls

@ Exp. volume of data to be downloaded (avg Xon)
m,-D,-

Xon

Packet call arrival

/ / Packet call C ” . I d t
A A A A i @ (ell nominal data
| | h rate (for one

> block): D;

@ Service rate: u; =

Arrival rate = A1 (RAN1) or A5(RAN2) time
@ Max. number of
users per cell:
R (nmax max)
D — @ Fair throughput
XON bits .

scheduling

DSA decision DSA decision

at new arrival at new departure
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Time DSA

System Model

@ Reward = Revenues — Costs

@ Revenues = Sum of customer satisfactions [Enderle03]
(b,'(n,', mi) = Ku(]- - exp(_ﬂi/niﬂcom))

g1(s) = m1(n1, my) + napo(n2, my)

@ Spectrum cost is increasing with CAB occupancy

Mmax — My — mz)

mcom

g2(s) = Kg(mi + ma) exp <—

@ Reward:
g(s) = &i(s) — &(s)

Note: Ky [euros], Kg [euros/MHz], tcom [1/s], mcom are constants.
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A DSA Policy

@ A DSA policy dynamically assigns spectrum blocks to every RAN

@ Trade-off :
More spectrum = Higher spectrum cost
More spectrum = Higher throughput and more revenues

@ Chosen approaches: SMDP, heuristics, Q-learning
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Time DSA

SMDP Formulation

@ State space: s = (ny, my, na, my)
with constraints ny < n", ny < n3"® and my + my < Mpay
@ Reward function: g(s)

@ Action space: a = (a1, a2), a; € {0,—1,+1}

Table: List of possible actions

| Action | avector | action index |
Band1l constant and Band2 constant (0,0) 1
Band1 constant and Band2 increases | (0, +1) 2
Band1l constant and Band2 decreases | (0, —1) 3
Band1 increases and Band2 constant | (+1,0) 4
Band1 increases and Band2 increases | (+1,+1) 5
Band1 increases and Band2 decreases | (+1,—1) 6
Bandl decreases and Band2 constant | (—1,0) 7
Bandl decreases and Band2 increases | (—1,+1) 8
Band1l decreases and Band2 decreases | (—1,—1) 9
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Time DSA

SMDP Transition Probabilities

@ DSA decisions are taken at each new event (arrival or departure)

® ps ¢ (a) is the proba. to go from s to s’ if a is chosen

@ Let 1/vs(a) be the expected time until next decision epoch:

Vs(a) = Il_{n1<n:ll-nax})\1 + :ﬂ_{n2<nénax})\2

L n>0pH1 + Liny>03 p2-

@ Transition probabilities are given by:

(ENST)

Ai/vs(a)
pi/vs(a)

0

pss'(a) =

Dynamic Spectrum Access

if (n}=n;+1)

and (Vj m; = mj + ),
if (nf=n;—1)

and (Vj m; = mj + ),
otherwise.
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Time DSA

SMDP Uniformization

@ Continuous Time Markov chain — Equivalent Dicrete Time
@ A small transition step 1/v (Vs, a, vs(a) < v)

@ Transition probabilities are modified [Bertsekas07]:

A ,(a) _ p575’(a)]/5(a)/1/ |f S # S,’
Pes L1 Zs’;ﬁs INJs,s/(a) otherwise.

@ Recall: a DSA policy R associates to each system state s an action
R(s) in the action space of s
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SMDP Policy Iteration

Algorithm 1 Policy Iteration
1: Initialization: Let R be an arbitrary stationary policy.
2: Value-determination: For the current policy R, we solve the system of

linear equations whose unknowns are the variables {Jg, hg(s)}: hr(1) =
0 and

hr(s) = g(s) = Jr + > _ Ps.s(R(s))hr(s").

s'eS

3: Policy improvement: For each s € S, we find:
R'(s) = arg max {g(s) —Jr +
acA(s)
2 ﬁs,s«a)hR(s')} .
s'eS

4. Convergence test: If R’ = R, the algorithm is stopped, otherwise, we
go to step 2 with R := R'.
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Time DSA

SMDP Strengths and Weaknesses

Strengths:
@ Provides centralized optimal policies
@ Upper bounds on system performance

@ Takes into account RAN loads (A1, A2), number of active users
(n1, n2), dynamic of the system

Weaknesses:
@ Dependent on system parameters (no threshold policy)
@ Not usable in real-time

@ Or requires massive storage of data
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Time DSA
Heuristic DSA

Heuristic DSA principles:
@ We neglect (n1, np) variations and focus on (A1, \2)

@ We assume that (my, my) is fixed for given (A1, \2)

@ Each RAN acts as a M/M/1/nm3
@ Average reward:

max

8H(A1, A2, m1, my) Z Z T (Ai)nidi(ni, m;i) — g2(ma, mo)

i=1 nj=

where the 7, (i), i € {1,2}, n; € {0, ..., n"®} are the steady state
probabilities of a M/M/1/nm3
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Time DSA

Heuristic DSA

Algorithm 2 Heuristic DSA
1: Estimate arrival rates A1 and Xs.
for all (my, m;) do
Compute the average reward gy.
end for
Allocate bandwidth according to the tuple (my, my) that maximizes the
average reward gy.
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Time DSA

Heuristic DSA

@ Example: \1 =X = A
@ 'Link adaptation’-like curves provide allocations and thresholds
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Time DSA

Q-Learning based DSA

@ System param. A1, A2, p1, p2 and Xopp are still needed

@ QL is used to optimize discrete discounted-reward problems
[Watkins89]

@ [Tadepalli98] and [Abounadi0l] have proposed RL algos for the
average cost problem

@ [Gosavi04] has proposed an algo. for average cost and
continuous-time problems
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Time DSA

Gosavi's Q function update:

Q(st,ar) = (1 - a)Q(st,ar) +arn—apdr +aarg ren:(x) {Q(st41,2)}
a S

Events (i.e. arrivals or departures)

7\

a,is taken a,.,Is taken
S; Sirq time
- 0; - ) Oﬁ] "

r,is observed, and  I,,,is observed, and
Q(s,a,) is updated  Q(s,,a,,) is updated
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Time DSA

@ Gosavi's algo. differ from value-iteration by substracting an estimate
p of the average reward per time-unit

@ p is estimated using a second learning factor:
C—QQ-3)C+pBr

T—(1-p5)T+p3 0
p=C/T
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QL Algorithm

Algorithm 3 Q-learning based DSA

1: Initialize the following parameters:

o ..
@ the number of times Q is exploited: kK =0

@ the number of visits to the state-action pair (s,a): N,(s,a) =

2: repeat

3:  Exploration: with proba. p, a; chosen at random

4.  Exploitation: w/ 1 — p, choose action a; that maximizes Q(s;, a)
5. Update a =1/(1+ Ny(s,a)) and 8 =1/(1 + k).

6: Update Q(st, at) and p

7. k<« k+1, Ny(st,at) — Ny(se,ar) + 1.

8: St < St41.

9: t—t+1.

10: until End of the learning period
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Time DSA

QL Convergence

@ Example of convergence speed
= agent will keep learning for 200 thousand events

(ENST)
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Time DSA

Performance Evaluation

@ QL and Heuristic achieve similar performance
@ But QL does not require the knowledge of system parameters
@ As load increases, all algos converge to FSA

1000

800

600

Mean reward per time unit
B
o
o
T

200
& ——&— Optimal DSA
— © —FSA
——— Heuristic DSA
— = — QL-based DSA
~200 i i i i i
0 0.5 1 15 2 25 3

Arrival rate A [s7Y]

(ENST) Dynamic Spectrum Access 16 June 2010 27 / 53



Time DSA

Performance Evaluation

@ At low loads, proposed algos provide significant gains
@ At very low loads, proposed algos are optimal
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Time DSA

Performance Evaluation

@ FSA allocates by definition half of the CAB to each RAN

@ Results are explained by a better utilization of the spectrum

11 T T T T T
1000906 —6 —0— —— —
0.9 1
5
2 08f 4
N
5
o 0.7F 4
<
o
§
3 0.6F 7 1
= 7
—+&— Optimal DSA
0.5 — © — FSA policy
—— Heuristic DSA
041 — = — QL-based DSA} -
i i i i

i
0 0.5 1 15 2 25 3
Arrival rate A [s7]

(ENST) Dynamic Spectrum Access 16 June 2010 29 /53



Time DSA

Performance Evaluation

@ However, at the cost of a reduced user throughput !
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Time DSA

QOutlines

@ Time DSA

@ Optimal Policies
o A Simple Heuristic
@ Q-Learning Approaches

@ Space-time DSA

o Tabu Search on a Cell Cluster
¢ Dynamic Scenario
o Infinite Network

@ Conclusion

(ENST) Dynamic Spectrum Access 16 June 2010 31 /53



Space-time DSA

Network Model

@ A single operator with a single RAT
@ Leasing of the spectrum bands

@ DSA at cell level

@ Hexagonal network
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Space-time DSA
Network Model

@ Carrier to Interference Ratio (CIR) and cell capacity
R—a
2;3:{1 (dC,i -R)™

CIR! =

Fc
Ce=)_ W logy(1+ CIRE)
f=1

@ Fair throughput scheduling among users : D, = C./N,.

dci-R
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Space-time DSA

Network Model

@ Reward = Revenues — Spectrum Cost

@ Revenues = Sum of customer satisfactions
¢c(Dec) = Ku(1 — exp(—=Dc/Deom))
@ Spectrum cost o< Leased spectrum bandwidth
Kg Wr F

@ Reward:
B

g = Z NC¢C(DC) - KB Wf F
c=1

Note: K, [euros], Kg [euros/MHz] and Dcom [bps] are constants.
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Space-time DSA

Network Model

@ A DSA policy assigns spectrum blocks to every cell in the RAT

@ Trade-off :
More spectrum = Higher spectrum cost
More spectrum = Higher throughput and more revenues

@ Chosen approach: Tabu search [Glover89] [urc2]
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Space-time DSA

Tabu Search Approach lllustrated

@ A solution: s is a boolean matrix of size Fpax X B, s5¢c = 1 if
frequency f is assigned to cell ¢

10101
s=1/0 1011
0 00O0TO

In this example, Fp.x =3, B=5and F =2.

@ A move: mis a boolean matrix of size F,,,x X B, one or two
elements of m are non-zero, i.e., we allow to:

@ remove an assigned frequency to a cell
o add a new frequency to a cell
@ replace a used frequency by an unused frequency

@ A neighbor: s’ = s @® m for some m in the set of possible moves
@ Attribute of s: g(s)
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Space-time DSA
Tabu Search Approach lllustrated

Algorithm 4 TS algorithm for DSA

Initialization: an initial solution s;,;; is found.

S < Sinjt

8max g(sinit)

while Nb. of iterations < MAXITER do
Neighborhood formation: all possible neighbors of the initial solu-
tion s are created, except those who are listed as tabu.
Neighbor selection: s’ not in Tabu List and that maximizes g(s’)
Tabu list update: the reward g(s’) corresponding to the selected
solution s’ is added to the Tabu List.

8. Max. reward update:

if g(s') > gmax, then gn. — g(s’) end if
9: end while

a e

N o
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Space-time DSA

Tabu Search Approach lllustrated

Notes:
@ Tabu List size is not a real issue

@ Solutions with the same reward are equivalent for the algorithm
@ Initialization:

o Total number of frequencies to be used by the operator is unknown
o Solution set is divided in search spaces {1, ..., Frnax}

@ Random solutions are generated in every search space

@ The best solution ever seen is sy

@ Total number of neighbors is:

B
Fmax B_BSO+ZFC (Fmax_Fc)

c=1

i.e., generating all possible neighbors is very feasible.
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Space-time DSA
Performance in Case of Heterogeneous Traffic

9@ We study 8 'hot spots’ scenarios
@ Spatial heterogeneity is increasing
@ The last scenario is the homogeneous one

Table: Studied users distributions and corresponding standard deviations o

‘ central cell ‘ middle-circle cells ‘ outer-circle cells ‘ o ‘

33 2 1 7.28
27 3 1 5.88
21 4 1 4.58
15 5 1 3.46
15 3 2 2.94
9 6 1 2.76
9 4 2 1.73
3 3 3 0
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Space-time DSA

Performance in Case of Heterogeneous Traffic

@ We compare FSA and DSA

Fixed Spectrum Access (FSA)
@ TS is launched on the homogeneous case

@ Frequency allocation is kept constant for all scenarios

Dynamic Spectrum Access (DSA)
@ TS is launched for each scenario

@ There is one frequency allocation per scenario
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Space-time DSA

Performance in Case of Heterogeneous Traffic

® For 0 = 0, both methods achieve the same reward
@ Advantage of DSA is increasing with heterogeneity
® Rewardx3 in the most heterogeneous case

300
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a
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N
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I
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@
S
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Standard deviation o
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Space-time DSA

Performance in Case of Heterogeneous Traffic

@ Obtained spectrum assignment using TS DSA for ¢ = 7.28
@ 3 frequencies for the central cell

@ Regular allocation for outer cells ~ reuse 3
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Space-time DSA

Convergence Speed

@ Around 200 or 300 iterations provide very good results
@ s it possible to use TS in real time ?
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Space-time DSA

Dynamic scenario

>

® Assumed traffic : ON/OFF
(Xow bits, A s71)

@ Monte carlo simulations

Arrival rate

@ Arrival rate is decreasing with

the distance to the central cell )
1
. A /6
® Average arrival rate : A ; 1
2Rc 4Rc
Distance to central cell

@ TS is launched for 300 iterations at the very beginning
@ At each event (arrival or departure), TS is launched for 10 iterations

@ Initial solution is the allocation at the time TS is launched
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Space-time DSA

Dynamic scenario

@ For low loads, only part of the spectrum is used
@ At A=15s71 rewardis x 3
o At A\=4s"1 gainis +13%

(ENST)
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Space-time DSA

Dynamic scenario

@ Throughput is proportional to the bandwidth
= user throughput is less with DSA

@ Radio resources are used where needed
= blocking probability is lowered

user throughput blocking probability

—+— TS-based DSA
—5—FSA

N

Lo

s g
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€15 g
3 g
] g
8 2

L L L
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users arrival rate A (s”) users arrival rate A (s”)
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Space-time DSA

Further Work: Infinite Network

@ How to extend to an infinite network ?

Local algorithm:

C =)
.@...... @ TS is launched on a 19 cell
..@..... cluster

@ Centered where a new event

. . . . occurs
........ @ Other cell assignments

=X =X 0=

unchanged
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Further Wo

Space-time DSA

k: Infinite Network

@ As heterogeneity increases, FSA reward decreases

® +5% reward in favor of DSA

TS iterations = 20, Num trials = 50

TS iterations = 20, Num trials = 50

2800

35

Mean users distribution o

v
2750+
2700 +
2650

2600

Mean reward

2550

2500 i Lt
i ”'Jw'"h M “‘/M\ L
[} 2450 s T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of events Number of events
Model:
@ Starting point: homogeneous traffic (5 users/cell)
@ Arrivals and departure occurs with uniform distribution
@ Max number of users/cell is 10
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Conclusion

Conclusion

@ Various mathematical tools have been tested for the resource
allocation problem

@ Significant gains can be achieved by considering time and spatial
variations of the traffic

@ Two frontiers: real-time implementation and infinite network

® New models: green reward, flat rate
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