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The Frequency Spectrum

The Frequency spectrum is a common good characterized by:

A strong regulation

High occupancy variations

Possible congestions
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A Strong Regulation

The spectrum is divided into small parts

The spectrum is not technology agnostic

see ANFR frequency table [TNRBF]
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High Occupancy Variations

UMTS Measurements (2.1GHz) [urc]

5 locations in Paris

High spatio-temporal variations of the traffic
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Possible Congestions

PMR Measurements (450-470 MHz) [urc]

Still high spatio-temporal variations

Up to 94% of spectral occupancy
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Technological Trends

Radio is becoming flexible [Buddhikot07, Filin08]

Software Define Radio

Cognitive Radio / Dynamic Spectrum Access

Technologies are multi-carrier [3gpp]

OFDMA based standards (LTE, WiMAX)

Carrier aggregation (HSPA, LTE Advanced)

Regulators are changing the rules [ofcom07]

Spectrum is becoming technology agnostic (UMTS 900)

Spectrum can be reused by secondary users (IEEE 802.22)
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Study Framework

We focus on a mobile operator

Operating one or several technologies, e.g. LTE, HSPA, WiFi, etc

Able to lease spectrum frequency blocks to the regulator
[Buddhikot05]

Willing to optimize the spectrum usage in some sense
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Time DSA

System Model

Cell-by-cell DSA

Two Radio Access Networks (RAN) operated by one operator

A CAB (= a pool) made of frequency blocks

Cell capacity is proportional to the leased bandwidth

Spectrum cost is also proportional to the leased bandwidth

RAN1

Cell data rate 

of RAN i : 

RAN2

D iλ1
μ1

λ2
μ2

m

m m1 2

max

CAB

n1 n2users users
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Time DSA

System Model

ON/OFF elastic traffic

Poisson arrivals (λ1, λ2) for packet calls

Exp. volume of data to be downloaded (avg XON)

Service rate: µi = miDi

XON

timeArrival rate = λ  (RAN1) or λ  (RAN2)

Packet call arrival

Packet call

XON bits

DSA decision 
at new arrival

1 2

DSA decision 
at new departure

Cell nominal data
rate (for one
block): Di

Max. number of
users per cell:
(nmax

1 , nmax
2 )

Fair throughput
scheduling
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Time DSA

System Model

Reward = Revenues − Costs

Revenues = Sum of customer satisfactions [Enderle03]

φi (ni ,mi ) = Ku(1− exp(−µi/niµcom))

g1(s) = n1φ1(n1,m1) + n2φ2(n2,m2)

Spectrum cost is increasing with CAB occupancy

g2(s) = KB(m1 + m2) exp

(

−
mmax −m1 −m2

mcom

)

Reward:
g(s) = g1(s)− g2(s)

Note: Ku [euros], KB [euros/MHz], µcom [1/s], mcom are constants.
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Time DSA

A DSA Policy

A DSA policy dynamically assigns spectrum blocks to every RAN

Trade-off :
More spectrum =⇒ Higher spectrum cost
More spectrum =⇒ Higher throughput and more revenues

Chosen approaches: SMDP, heuristics, Q-learning
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Time DSA

SMDP Formulation

State space: s = (n1,m1, n2,m2)
with constraints n1 ≤ nmax

1 , n2 ≤ nmax
2 and m1 + m2 ≤ mmax

Reward function: g(s)

Action space: a = (a1, a2), ai ∈ {0,−1,+1}

Table: List of possible actions

Action a vector action index

Band1 constant and Band2 constant (0, 0) 1

Band1 constant and Band2 increases (0, +1) 2

Band1 constant and Band2 decreases (0,−1) 3

Band1 increases and Band2 constant (+1, 0) 4

Band1 increases and Band2 increases (+1, +1) 5

Band1 increases and Band2 decreases (+1,−1) 6

Band1 decreases and Band2 constant (−1, 0) 7

Band1 decreases and Band2 increases (−1, +1) 8

Band1 decreases and Band2 decreases (−1,−1) 9
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Time DSA

SMDP Transition Probabilities

DSA decisions are taken at each new event (arrival or departure)

ps,s′(a) is the proba. to go from s to s ′ if a is chosen

Let 1/νs(a) be the expected time until next decision epoch:

νs(a) = 1{n1<nmax
1 }λ1 + 1{n2<nmax

2 }λ2

+1{n1>0}µ1 + 1{n2>0}µ2.

Transition probabilities are given by:

ps,s′(a) =























λi/νs(a) if (n′i = ni + 1)
and (∀j m′

j = mj + aj),

µi/νs(a) if (n′i = ni − 1)
and (∀j m′

j = mj + aj),

0 otherwise.
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Time DSA

SMDP Uniformization

Continuous Time Markov chain −→ Equivalent Dicrete Time

A small transition step 1/ν (∀s, a, νs(a) ≤ ν)

Transition probabilities are modified [Bertsekas07]:

p̃s,s′(a) =

{

ps,s′(a)νs(a)/ν if s 6= s ′,
1−

∑

s′ 6=s p̃s,s′(a) otherwise.

Recall: a DSA policy R associates to each system state s an action
R(s) in the action space of s
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Time DSA

SMDP Policy Iteration

Algorithm 1 Policy Iteration

1: Initialization: Let R be an arbitrary stationary policy.
2: Value-determination: For the current policy R , we solve the system of

linear equations whose unknowns are the variables {JR , hR(s)}: hR(1) =
0 and

hR(s) = g(s)− JR +
∑

s′∈S

p̃s,s′(R(s))hR(s ′).

3: Policy improvement: For each s ∈ S , we find:

R ′(s) = arg max
a∈A(s)

{g(s)− JR +

∑

s′∈S

p̃s,s′(a)hR(s ′)

}

.

4: Convergence test: If R ′ = R , the algorithm is stopped, otherwise, we
go to step 2 with R := R ′.
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Time DSA

SMDP Strengths and Weaknesses

Strengths:

Provides centralized optimal policies

Upper bounds on system performance

Takes into account RAN loads (λ1, λ2), number of active users
(n1, n2), dynamic of the system

Weaknesses:

Dependent on system parameters (no threshold policy)

Not usable in real-time

Or requires massive storage of data
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Time DSA

Heuristic DSA

Heuristic DSA principles:

We neglect (n1, n2) variations and focus on (λ1, λ2)

We assume that (m1,m2) is fixed for given (λ1, λ2)

Each RAN acts as a M/M/1/nmax
i

Average reward:

gH(λ1, λ2,m1,m2) =
2

∑

i=1

nmax
i

∑

ni=0

πni
(λi )niφi (ni ,mi )− g2(m1,m2)

where the πni
(λi ), i ∈ {1, 2}, ni ∈ {0, ..., n

max
i } are the steady state

probabilities of a M/M/1/nmax
i
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Time DSA

Heuristic DSA

Algorithm 2 Heuristic DSA

1: Estimate arrival rates λ1 and λ2.
2: for all (m1,m2) do
3: Compute the average reward gH .
4: end for
5: Allocate bandwidth according to the tuple (m1,m2) that maximizes the

average reward gH .
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Time DSA

Heuristic DSA

Example: λ1 = λ2 = λ

’Link adaptation’-like curves provide allocations and thresholds
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Time DSA

Q-Learning based DSA

System param. λ1, λ2, µ1, µ2 and XON are still needed

QL is used to optimize discrete discounted-reward problems
[Watkins89]

[Tadepalli98] and [Abounadi01] have proposed RL algos for the
average cost problem

[Gosavi04] has proposed an algo. for average cost and
continuous-time problems
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Time DSA

QL Model

Gosavi’s Q function update:

Q(st , at) = (1− α)Q(st , at) + α rt − α ρ δt + α arg max
a∈A(s)

{Q(st+1, a)}
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Time DSA

QL Model

Gosavi’s algo. differ from value-iteration by substracting an estimate
ρ of the average reward per time-unit

ρ is estimated using a second learning factor:

C ← (1− β)C + β rt

T ← (1 − β)T + β δt

ρ = C/T
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Time DSA

QL Algorithm

Algorithm 3 Q-learning based DSA

1: Initialize the following parameters:

...

the number of times Q is exploited: k = 0

the number of visits to the state-action pair (s, a): Nv (s, a) = 0

2: repeat
3: Exploration: with proba. p, at chosen at random
4: Exploitation: w/ 1− p, choose action at that maximizes Q(st , a)
5: Update α = 1/(1 + Nv (s, a)) and β = 1/(1 + k).
6: Update Q(st , at) and ρ
7: k ← k + 1, Nv (st , at)← Nv (st , at) + 1.
8: st ← st+1.
9: t ← t + 1.

10: until End of the learning period
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Time DSA

QL Convergence

Example of convergence speed
=⇒ agent will keep learning for 200 thousand events
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Time DSA

Performance Evaluation

QL and Heuristic achieve similar performance

But QL does not require the knowledge of system parameters

As load increases, all algos converge to FSA
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Time DSA

Performance Evaluation

At low loads, proposed algos provide significant gains

At very low loads, proposed algos are optimal
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Time DSA

Performance Evaluation

FSA allocates by definition half of the CAB to each RAN

Results are explained by a better utilization of the spectrum

0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Arrival rate λ  [s−1]

M
ea

n 
C

A
B

 u
til

iz
at

io
n

 

 

Optimal DSA 
FSA policy
Heuristic DSA 
QL−based DSA

(ENST) Dynamic Spectrum Access 16 June 2010 29 / 53



Time DSA

Performance Evaluation

However, at the cost of a reduced user throughput !

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Arrival rate λ  [s−1]

A
ve

ra
ge

 u
se

r 
th

ro
ug

hp
ut

 [M
bp

s]

 

 

Optimal DSA
FSA 
Heuristic DSA 
QL−based DSA

(ENST) Dynamic Spectrum Access 16 June 2010 30 / 53



Time DSA
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Space-time DSA

Network Model

A single operator with a single RAT

Leasing of the spectrum bands

DSA at cell level

Hexagonal network
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Space-time DSA

Network Model

Carrier to Interference Ratio (CIR) and cell capacity

CIR f
c =

R−α

∑Bf

i=1 (dc,i − R)−α

Cc =

Fc
∑

f =1

Wf log2(1 + CIR f
c )

Fair throughput scheduling among users : Dc = Cc/Nc .
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Space-time DSA

Network Model

Reward = Revenues − Spectrum Cost

Revenues = Sum of customer satisfactions

φc(Dc) = Ku(1− exp(−Dc/Dcom))

Spectrum cost ∝ Leased spectrum bandwidth

KB Wf F

Reward:

g =
B

∑

c=1

Ncφc(Dc)− KB Wf F

Note: Ku [euros], KB [euros/MHz] and Dcom [bps] are constants.
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Space-time DSA

Network Model

A DSA policy assigns spectrum blocks to every cell in the RAT

Trade-off :
More spectrum =⇒ Higher spectrum cost
More spectrum =⇒ Higher throughput and more revenues

Chosen approach: Tabu search [Glover89] [urc2]
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Space-time DSA

Tabu Search Approach Illustrated

A solution: s is a boolean matrix of size Fmax × B , sf ,c = 1 if
frequency f is assigned to cell c

s =





1 0 1 0 1
0 1 0 1 1
0 0 0 0 0





In this example, Fmax = 3, B = 5 and F = 2.

A move: m is a boolean matrix of size Fmax × B , one or two
elements of m are non-zero, i.e., we allow to:

remove an assigned frequency to a cell
add a new frequency to a cell
replace a used frequency by an unused frequency

A neighbor: s ′ = s ⊕m for some m in the set of possible moves

Attribute of s: g(s)
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Space-time DSA

Tabu Search Approach Illustrated

Algorithm 4 TS algorithm for DSA

1: Initialization: an initial solution sinit is found.
2: s ← sinit

3: gmax ← g(sinit)
4: while Nb. of iterations ≤ MAXITER do
5: Neighborhood formation: all possible neighbors of the initial solu-

tion s are created, except those who are listed as tabu.
6: Neighbor selection: s ′ not in Tabu List and that maximizes g(s ′)
7: Tabu list update: the reward g(s ′) corresponding to the selected

solution s ′ is added to the Tabu List.
8: Max. reward update:

if g(s ′) > gmax , then gmax ← g(s ′) end if
9: end while
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Space-time DSA

Tabu Search Approach Illustrated

Notes:

Tabu List size is not a real issue

Solutions with the same reward are equivalent for the algorithm

Initialization:

Total number of frequencies to be used by the operator is unknown
Solution set is divided in search spaces {1, ..., Fmax}
Random solutions are generated in every search space
The best solution ever seen is sinit

Total number of neighbors is:

Fmax B − Bs0 +

B
∑

c=1

Fc (Fmax − Fc)

i.e., generating all possible neighbors is very feasible.
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Space-time DSA

Performance in Case of Heterogeneous Traffic

We study 8 ’hot spots’ scenarios

Spatial heterogeneity is increasing

The last scenario is the homogeneous one

Table: Studied users distributions and corresponding standard deviations σ

central cell middle-circle cells outer-circle cells σ

33 2 1 7.28

27 3 1 5.88

21 4 1 4.58

15 5 1 3.46

15 3 2 2.94

9 6 1 2.76

9 4 2 1.73

3 3 3 0
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Space-time DSA

Performance in Case of Heterogeneous Traffic

We compare FSA and DSA

Fixed Spectrum Access (FSA)

TS is launched on the homogeneous case

Frequency allocation is kept constant for all scenarios

Dynamic Spectrum Access (DSA)

TS is launched for each scenario

There is one frequency allocation per scenario
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Space-time DSA

Performance in Case of Heterogeneous Traffic

For σ = 0, both methods achieve the same reward

Advantage of DSA is increasing with heterogeneity

Reward×3 in the most heterogeneous case
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Space-time DSA

Performance in Case of Heterogeneous Traffic

Obtained spectrum assignment using TS DSA for σ = 7.28

3 frequencies for the central cell

Regular allocation for outer cells ≈ reuse 3
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Space-time DSA

Convergence Speed

Around 200 or 300 iterations provide very good results
Is it possible to use TS in real time ?
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Space-time DSA

Dynamic scenario

Assumed traffic : ON/OFF
(XON bits, λ s−1)

Monte carlo simulations

Arrival rate is decreasing with
the distance to the central cell

Average arrival rate : λ

TS is launched for 300 iterations at the very beginning

At each event (arrival or departure), TS is launched for 10 iterations

Initial solution is the allocation at the time TS is launched
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Space-time DSA

Dynamic scenario

For low loads, only part of the spectrum is used
At λ = 1 s−1, reward is × 3
At λ = 4 s−1, gain is +13%
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Space-time DSA

Dynamic scenario

Throughput is proportional to the bandwidth
=⇒ user throughput is less with DSA
Radio resources are used where needed
=⇒ blocking probability is lowered
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Space-time DSA

Further Work: Infinite Network

How to extend to an infinite network ?

Local algorithm:

TS is launched on a 19 cell
cluster

Centered where a new event
occurs

Other cell assignments
unchanged
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Space-time DSA

Further Work: Infinite Network

As heterogeneity increases, FSA reward decreases

+5% reward in favor of DSA
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Starting point: homogeneous traffic (5 users/cell)

Arrivals and departure occurs with uniform distribution

Max number of users/cell is 10
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Conclusion

Conclusion

Various mathematical tools have been tested for the resource
allocation problem

Significant gains can be achieved by considering time and spatial
variations of the traffic

Two frontiers: real-time implementation and infinite network

New models: green reward, flat rate
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