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Abstract

We propose a new approach at the rectangle feature level to extract buildings
from high-resolution polarimetric synthetic aperture radar (PolSAR) data,
using both region-based and edge-based information. The first step employs
low-level detectors to provide raw region and edge information of the scene.
In the second step, the rectangle features are initially extracted from the edge
detection results, and further optimized to best fit the rough region-based
building detection results. In the last step, a novel Markov random field
(MRF) framework for rectangles is proposed, in which the data energy term
of rectangles is defined from the region information while the smoothness
term is defined according to the contextual prior knowledge about the build-
ings. Under this framework, the building rectangles are identified from the
optimized rectangle candidates by minimizing the total energy. The effec-
tiveness of the proposed method is demonstrated using the real fully PolSAR
data.

Key words: high-resolution synthetic aperture radar (SAR), polarimetric
SAR, building detection, rectangle, Markov random field (MRF), region,
edge

1. Introduction

Building detection is a crucial issue for many practical applications of the
fully polarimetric synthetic aperture radar (PolSAR) data, such as the 3-D
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reconstruction, the environment or urban planning, etc.. The full information
carried by PolSAR data is of great benefit to the building detection problem.
These information permits to explore the special physical scattering nature
of buildings. In the low and middle resolution images, buildings can only be
detected as a certain class at the pixel level since no details about building
edges or shapes are visible. The building class can be identified based on the
scattering mechanism classification. For example, the method proposed in
(Guillaso et al., 2005) classified the pixels into three basic categories: single-
bounce, double-bounce and volume scattering. Then buildings were detected
as the double-bounce scattering pixels.

Another group of methods to detect buildings from the PolSAR data are
based on the study of the target backscattering behavior during the synthetic
aperture radar (SAR) image integration. For example, the Time-Frequency
(TF) approaches have been proposed in (Ferro-Famil and Pottier, 2007) to
analyze the signal stationarity and coherence in the time-frequency domain.
They were used to study dense urban areas and detect man-made targets
(Ferro-Famil and Pottier, 2007; Reigber et al., 2007). These approaches are
also at the pixel level and region-based results are obtained.

With the improved resolution of SAR data, more details emerge in the
building areas, such as roofs, the bright double-reflection line, the shadows,
the layover areas, etc.. Such details allow to detect buildings based on the
edges of the bright strips/blocks. These bright strips/blocks in the image
mostly comes from the radar echoes of the building facades, roofs, edges and
wall-ground corners. One example is the approach proposed in (Xu and Jin,
2007). It first implemented the edge detection using the constant false alarm
rate (CFAR) edge detector for PolSAR data (Schou et al., 2003); then par-
allel line segments were extracted from the edges using the extended Hough
transform techniques (Xu and Jin, 2007); finally buildings were localized as
some certain rectangles formed by these parallel line segments.

The low-level (pixel level) detectors do not solve the problem well enough
when they come to the high-resolution images, since in these images buildings
are not only some nearby pixels, but also some objects with certain edges and
shapes, especially rectangle shaped objects as assumed in (Simonetto et al.,
2005; Xu and Jin, 2007). Thus high-level features, like rectangle features for
instance, should be exploited. Moreover, the region-based and edge-based
approaches employ two kinds of different yet complementary information:
the region-based approaches detect buildings as the groups of pixel having the
similar responses in the image, such as pixels with double-bounce scattering
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(Guillaso et al., 2005) or high coherence value (Ferro-Famil and Pottier,
2007); while the edge-based approaches indirectly detect buildings by retrieving
the characteristic edges of buildings, such as the pairs of parallel line segments
(Xu and Jin, 2007), and then deducing the building regions from these edges.
It is expected that the coupling of these two kinds of information will improve
the results.

In this paper, we propose a new approach at the rectangle feature level,
combining the region-based and edge-based information to detect buildings
from the high-resolution PolSAR data. Some low-level detectors are used in
the first step to provide raw region or edge information of the scene, which
offers the entries for the next step. In the second step, the rectangle features
are initially extracted from the edge detection results, and further optimized
to fit the low-level region-based building detection results. Finally a novel
Markov random field (MRF) framework of rectangles is proposed, under
which the rectangles belonging to buildings are identified from the optimized
rectangle candidates by minimizing the total energy of the MRF framework.

The rest of the paper is organized as follows. Section 2 presents the
proposed approach. Experimental results are provided in Section 3 and con-
clusions in Section 4.

2. The proposed approach

Figure 1: The diagram of the proposed approach.

The diagram of the proposed approach is shown in Figure 1. The new
entries include the original PolSAR data and the low-level results obtained
in the first step. In Step 2, rectangle features are directly retrieved from the
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line segments and further optimized under the criterion proposed in (Simon-
etto et al., 2005), resulting in the optimized rectangle candidates that are
located near the true positions of the buildings. Finally in Step 3 a novel
MRF framework of rectangles is defined. The data energy term in this MRF
framework is defined by the region information while the smoothness energy
term is defined according to the contextual information. By minimizing the
total energy, the rectangles belonging to buildings are identified from all the
optimized candidates. In Section 2.1, the low-level detectors used in Step 1
are briefly described. The optimized rectangle candidate definition in Step
2 is introduced in Section 2.2. The new MRF framework of rectangles in
Step 3 will be presented in Section 2.3. The relevant parameter setting of
the MRF framework is analyzed in Section 2.4.

2.1. Low level detector description

Several low-level detectors are used in the first step to retrieve the raw
region-based and edge-based information. The region-based detectors are in-
troduced in Section 2.1.1. The edge-based detectors are described in Section
2.1.2. The new entries obtained are listed in Section 2.1.3.

2.1.1. The region-based detectors

Two region-based detectors are used: the MRF based segmentation of
PolSAR data and the TF coherence approach (Ferro-Famil and Pottier,
2007). Moreover the results of these two detectors are fused to obtain a
rough region-based building detection result.

• The MRF based segmentation. This segmentation is obtained by im-
posing smoothness constraint on the H/α Wishart classification (Lee et al.,
1999a) result. Let us introduce the H/α Wishart classification first. An initial
scattering mechanism classification is derived by dividing the H/α plane into
eight zones and eight classes (Cloude and Pottier, 1997), in which entropy
H and α angle computed from the polarimetric covariance matrix are used to
characterize the scattering mechanism of each class. The initial cluster cen-
ters are defined as the average polarimetric covariance matrices of each class.
This initial classification is further refined by considering the statistical prop-
erties, which is achieved by the K-means algorithm and the revised Wishart
distance measure (Kersten et al., 2005) here. We denote the H/α Wishart

classification result by r[0] = {r[0]
s ∈ {1, 2, ..., LR}, s ∈ S}, where r

[0]
s is the

class label of pixel s, S is the pixel set, and LR is the number of classes, i.e.,
LR = 8. Then, r[0] is used to estimate the parameters contained in the energy
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definitions in the MRF framework. The data energy in the MRF framework
is defined by the observation log-likelihood while the smoothness energy is
defined based on the LR × LR class distance matrix D. The total energy is
minimized to achieve the final regularized segmentation r. More details can
be found in (Wang et al., 2008). The MRF based segmentation provides a
region map of the whole image. In this region map, each homogeneous region
is composed of pixels with similar statistical properties. Interpretation for
each class is also provided based on scattering mechanisms characterized by
H and α.

• The TF coherence approach. This approach is based on the correlation
properties of the targets across different sup-aperture images. The man-made
targets usually appear correlated among the sub-apertures, thus they can be
detected as pixels with high coherence values. By analyzing the signal coher-
ence in the time-frequency domain, a coherence image is obtained, in which
each pixel’s coherence value is denoted by ρs, 0 ≤ ρs ≤ 1. Then a thresh-
old is imposed on this coherence image, in order to obtain the binary rough
building labeling x[0] = {x[0]

s ∈ {0, 1}, s ∈ S}, where x
[0]
s = 1 if ρs is bigger

than the threshold, otherwise x
[0]
s = 0. x

[0]
s = 1 means pixel s belongs to

buildings.
• The fusion of the results from the above two detectors. Under the fu-

sion framework proposed in (Jodoin et al., 2007), the segmentation r and
the rough building labeling x[0] are fused to achieve x̂opt. x̂opt is close to x[0],
however is adapted to fit the regions in r. The two label fields are assumed
to form a joint MRFs. The fusion is fulfilled by minimizing the total en-
ergy based on this joint MRFs with the iterated conditional modes (ICM)
algorithm (Besag, 1986). Yet we improve the original fusion framework by
minimizing the total energy using the α-β-swap algorithm (Boykov et al.,
2001). One could refer to (Wang et al., 2008) for more details.

2.1.2. The edge-based detectors

Speckle filtering with Lee’s filter (Lee et al., 1999b) is first implemented.
Then we use the CFAR edge detector (Schou et al., 2003) to get an edge
intensity image. In this detector, a likelihood-ratio test is used to test whether
the two mean polarimetric covariance matrices estimated on each side of the
central pixel are equal. Edges are detected when the hypothesis of equality is
rejected. And the edge intensity of the central pixel can be computed from the
likelihood-ratio value. This edge intensity image is further filtered by means of
the ridge filter (Xu and Jin, 2007) to provide the binary edge image. Finally
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line segments are extracted from this binary edge image using the approach
proposed in (Venkateswar and Chellappa, 1992). Thus a label image with
line segments is achieved, in which the background has label value 0 and
each extracted line segment has a distinct label value. All the significant line
segments in the image are extracted, including those belonging to the edges
of buildings.

2.1.3. New entries

With the low-level detectors, new region-based and edge-based inputs
are now available: the rough region-based building detection result and the
edge-based label image with line segments.

2.2. Optimized rectangle candidate definition

In Step 2 of our method, the initial rectangle definition will be introduced
in Section 2.2.1. These initial rectangles are further optimized in Section
2.2.2.

2.2.1. Initial rectangle definition

In the label image with the extracted line segments, each line segment
has a certain label value. All the pixels on one line segment are regarded as
a group of samples, then a straight line segment can be obtained to fit these
samples. In this way, the extracted line segments from the new entries are
substituted by a set of straight line segments.

(a)
(b)

Figure 2: (a) The pair of parallel line segments that can be used to define a rectangle. (b)
The pair of parallel line segments that can not be used to define a rectangle.

For each straight line segment, the line segments adjacent to it and par-
allel or orthogonal to it are sought out first. Then each pair of parallel or
orthogonal straight line segments may define an initial rectangle. For a pair
of parallel line segments, there are four endpoints. If there exists at least
one endpoint that satisfies the following condition, a rectangle can be defined
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Figure 3: The pair of orthogonal line segments and the defined rectangle.

based on this pair of parallel line segments. Let the two parallel line segments
be L1 and L2. We assume the considered endpoint belongs to L1. Then there
is a unique line, denoted by L3, that passes through this endpoint and is or-
thogonal to L2. The condition is that the intersection point of L3 and L2
is exactly on L2. If this condition is satisfied, the rectangle can be defined
as shown in Figure 2 (a). In contrast, the pair of parallel line segments as
shown in Figure 2 (b) can not be used to define a rectangle since the condition
is not satisfied. For each pair of orthogonal line segments, a rectangle can be
always defined. The intersection point of the two orthogonal lines provides
the first vertex of the rectangle. On each line segment, there is an endpoint
that is farther from the intersection point than the other. These two far end-
points provide the other two vertices of the rectangle. Then the rectangle can
be defined as shown in Figure 3.

Let SR be the set of the defined initial rectangles. We denote each rect-
angle Ri ∈ SR by its four vertices {Rk

i }4
k=1 as Ri = R1

i R
2
i R

3
i R

4
i , where Rk

i is
the kth vertex of Ri. In addition, each vertex is composed of one pixel in the
image, thus it can be further represented by Rk

i = (Rk
ix, R

k
iy), given Rk

ix and
Rk

iy being the column and row indexes of this pixel in the image.

2.2.2. Rectangle optimization

For ith rectangle Ri, a mask Mi is defined, which is a box surrounding Ri.
Similarly, we denote Mi by its vertices as Mi = M1

i M2
i M3

i M4
i . Mi is obtained

by moving the corresponding vertices of Ri along their respective off-center
directions by an offset (Nx, Ny), measured in the number of pixels, where
Nx is the offset in the column direction while Ny denotes that along the row
direction in the image. Here we set Nx = Ny = 15. With respect to Ri, the
following four numbers must be computed in advance, based upon the binary
rough region-based building detection result obtained in Step 1 of our method
and the mask Mi: the number of building pixels inside Ri, denoted by n1i,
that outside Ri but inside Mi by n2i, and the total number of pixels inside
Ri, say N1i, as well as the total number of pixels outside Ri but inside Mi,
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by N2i. The optimized R̂i inside Mi can be obtained according to (Simonetto
et al., 2005), in which the criterion to be optimized is given by

R̂i = max
Ri|Mi

{n1i/N1i × (1− n2i)/N2i}, (1)

that is, to find the optimum R̂i that covers to the most the number of building
pixels while leaving as few of them as possible within the domain between Ri

and Mi. Each initially defined rectangle can be optimized in this way. The
detailed optimization procedures were outlined in (Wang et al., 2008).

It is noteworthy in Eq. (1) that the accuracy of the optimized R̂i is re-
stricted by the mask Mi. Thus the performance may deteriorate if we simply
design the mask according to the initial value of Ri and keep it fixed during
the optimization. To improve this, we suggest the optimization algorithm
depicted in Table 1. This algorithm may always have the mask adapted if
necessary.

Table 1 The optimization algorithm to obtain the rectangle candidates from the
initial rectangles.

Input: Initial rectangle set SR.
1. Initialize ŜR = Ø. Set i = 1 and define NR the total number of rectangles in SR.
2. Get the candidate Ri ∈ SR. Let R

(0)
i = Ri and initialize the iteration index with

t = 1.
3. For R

(t−1)
i we define its mask M

(t)
i .

4. Find the optimized R̂
(t)
i based on M

(t)
i under the optimization criterion in Eq. (1).

5. If the difference between R̂
(t)
i and R

(t−1)
i is small enough or a maximum number of

iterations has been reached:
• if the [n1i/N1i × (1− n2i)/N2i] value of R̂

(t)
i is not 0, update the set by

ŜR = ŜR ∪ {R̂(t)
i }, break;

otherwise:
• let R

(t)
i = R̂

(t)
i and t := t + 1. Then go to Step 3.

6. Increase i by 1. If i ≤ NR go to Step 2.
Output: Optimized rectangle candidate set ŜR.

In Step 5 of the optimization algorithm depicted in Table 1, the difference
between R̂

(t)
i and R

(t−1)
i is defined as the maximum value of the Euclidean

distances between all the vertices of R̂
(t)
i and their counterparts of R

(t−1)
i . It

is noticed that in Step 5, if the [n1i/N1i× (1−n2i)/N2i] value of one rectangle
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is 0, this rectangle is not added into the optimized rectangle set ŜR, i.e., it
is removed. Thus after this optimization algorithm, the final total number of
rectangles is decreased.

2.3. The rectangle MRF framework

We introduce the proposed MRF framework for rectangles in this section.
For each rectangle R̂i ∈ ŜR, its label value is denoted by Li, Li ∈ {0, 1},
where Li = 1 means the rectangle R̂i belongs to buildings otherwise not.
Now let NR be the total number of elements in ŜR. If we model the label
field L = {Li, i ∈ {1, 2, ..., NR}} with the MRF, the optimized configuration
of L can be achieved by minimizing the energy of the form (Szeliski et al.,
2008)

E(L) = Edata(L) + λEsmooth(L). (2)

In Eq. (2), the data energy term Edata(L) measures the disagreement between
L and the observations; the smoothness energy term Esmooth(L) contains the
clique potentials of the MRF and describes the contextual information; and
λ is the regularization parameter. A new definition for the data energy term
will be given in Section 2.3.1. And the smoothness term is defined in Section
2.3.2. The minimization of the total energy in Eq. (2) will be described in
Section 2.3.3, as well as the postprocessing.

2.3.1. Data energy

For each pixel s in the original PolSAR images, the observed value is a
complex polarimetric covariance matrix Ts. If this 3 × 3 sample covariance
matrix has nL number of looks (Mâıtre, 2001), it is known that Zs = nLTs

follows the complex Wishart distribution (Lee et al., 1994) Wc(nL, Σ), i.e.,
Zs ∼ Wc(nL, Σ), where Σ is the expectation of the sample covariance matri-
ces. A combined use of the rough binary building detection result and the
original PolSAR data allows to estimate the Wishart distribution parame-
ters Σ1 and Σ0 for the building class and the background class. Under the
Maximum Likelihood (ML) criterion, a new label image {Ls ∈ {0, 1}, s ∈ S}
is obtained, where Ls = 1 means pixel s belongs to buildings otherwise back-
ground. Here the ML criterion can be formulated as

Ls =

{
1, if P (Zs|Σ1) ≥ P (Zs|Σ0),
0, otherwise,

(3)

where P (·) is the conditional probability.
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Based on the new label image, for each R̂i ∈ ŜR, with the corresponding
mask Mi, the data energy of R̂i is defined as

Edata(R̂i|Li = 1) = −n1i/N1i × (1− n2i)/N2i, (4)

Edata(R̂i|Li = 0) = −[1− n1i/N1i × (1− n2i)/N2i], (5)

where n1i, n2i, N1i and N2i are given in Section 2.2.2. Then Edata(L) in Eq.
(2) is given by

Edata(L) =

NR∑
i=1

Edata(R̂i|Li). (6)

2.3.2. smoothness energy

The smoothness energy term can be defined by the clique potentials of the
MRF. Before defining the clique potentials, let us define the neighborhood of
a rectangle first. For one vertex R̂k

i of the current rectangle R̂i, the N × N
neighborhood of R̂k

i is denoted by NR̂k
i
. The neighbor rectangle set of R̂i is

then defined as

NR̂i
= {R̂j ∈ ŜR|∃(k′, k) ∈ {1, 2, 3, 4}2, R̂k′

j ∈ NR̂k
i
, j 6= i}. (7)

Here we set N = 65. Only considering the second-order cliques, we have the
smoothness energy term of the form

Esmooth(L) =
∑

R̂i,R̂j |R̂i∈NR̂j

V (Li, Lj). (8)

The second-order clique potentials V (Li, Lj) are defined based on our
prior knowledge about the buildings: the rectangle buildings in a small
neighborhood usually have the same orientation, i.e., they are parallel or or-
thogonal to one another; two different buildings in the neighborhood should
not overlap, however, in images two adjacent buildings can be considered to
have small overlapping area. We have made the assumption that the rectangle
buildings in a small neighborhood are parallel or orthogonal to one another.
Although this assumption does not always hold in the real world and the use-
fulness of the proposed method may be hence limited, it holds in many urban
areas in developed countries.

Some parameters used in the clique potential definitions are introduced
first. The angle between two rectangles R̂i and R̂j is denoted by θij, 0 ≤
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θij ≤ π. The overlapping degree of R̂i and R̂j is evaluated by the parameter

Oij = max{Q(R̂i∩R̂j)/Q(R̂i), Q(R̂i∩R̂j)/Q(R̂j)}, 0 ≤ Oij ≤ 1, where Q(R̂i),

Q(R̂j) and Q(R̂i∩ R̂j) are the area of R̂i, the area of R̂j, and the overlapping

area of R̂i and R̂j, respectively. With these parameters, the second-order
clique potentials are defined as

if min(θij, π − θij) ≤ |θij − π/2|,
V (Li = Lj = 1) = KθW (| sin(θij)|, | sin(θthr1)|) + KOW (Oij, Omax),

else,
V (Li = Lj = 1) = KθW (| cos(θij)|, | cos(θthr2)|) + KOW (Oij, Omax),

(9)

V (Li = 0 or Lj = 0) = 0, (10)

where Kθ and KO are two weighting parameters; θthr1, θthr2 and Omax are
three thresholds. Function W (x, xmax) , where 0 ≤ x ≤ 1 and 0 ≤ xmax ≤ 1,
has the property: if x ≤ xmax, W (x, xmax) ≤ 0; otherwise, W (x, xmax) >
0. This function is defined based on that used in (Ortner et al., 2008), as
formulated in Eq. (11).

W (x, xmax) = − 1

x2
max

(
1 + x2

max

1 + x2
− 1) (11)
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Figure 4: The curves of | sin(θ)| and | cos(θ)| versus θ.

The W (Oij, Omax) part in Eq. (9) is easy to understand: if the overlap-
ping degree of the two rectangles in a clique is smaller than Omax, these two
rectangles are both encouraged to be labeled by 1. The curves of | sin(θ)|
and | cos(θ)| shown in Figure 4 will help us to understand the meaning of
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the W (| sin(θ)|, | sin(θthr1)|) or W (| cos(θ)|, | cos(θthr2)|) part in Eq. (9). As
shown in Figure 4 (a), if θ between the two rectangles is close to 0 or π,
then | sin(θ)| < | sin(θthr1)|, therefore W (| sin(θ)|, | sin(θthr1)|) < 0; otherwise,
W (| sin(θ)|, | sin(θthr1)|) ≥ 0. This implies we favor the two rectangles in a
second-order clique both to have label value 1 if they are parallel. Similarly,
the two rectangles in a second-order clique are also favored to be both build-
ings if θ between them is approximately π/2. To sum up, if two rectangles
in a clique are parallel or orthogonal to each other and the overlapping part
of them is small enough, the clique potentials defined in Eqs. (9) and (10)
encourage the two rectangles both to be labeled by 1.

Since during the image formation, the parallelism of two objects are well
preserved, θthr1 should be set close to 0 or π. However, the angle between
two orthogonal objects is usually no longer π/2 in the obtained image due to
different azimuth and range pixel spacing. Thus θthr2 should be set according
to our prior knowledge about the angle between two orthogonal objects in the
image. This threshold may be a little far from π/2. An example is given
in Figure 4, in which θthr1 = 5/180 × π and θthr2 = 60/180 × π. Another
threshold in our clique potential definition is Omax. We hope that the two
detected buildings in a second-order clique are not overlapping too much,
thus Omax should be set to a small value, such as 0.15.

2.3.3. Energy minimization and postprocessing

The total energy in Eq. (2) is minimized by the ICM algorithm. Although
the results may not be stable with different initializations, good initial values
usually provide satisfactory regularization results. The estimation minimiz-
ing only the data energy (the smoothness term is assigned to be 0) is used as
the initial value for the ICM algorithm in our experiments.

After energy minimization, postprocessing is executed to combine two rect-
angles into one when the two rectangles satisfy the following condition: each
long edge of the first rectangle and its counterpart of the second rectangle are
on the same straight line, and the two rectangles are partly overlapping.

2.4. Parameter setting

The parameters contained in the rectangle MRF framework are as follows:
three thresholds θthr1, θthr2, and Omax; the weighting parameters Kθ and KO;
and the regularization parameter λ. The setting of the three thresholds has
been discussed at the end of Section 2.3.2. Then the left three parameters are
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Kθ, KO and λ. We analyze their influences on the regularization results in
this section.

Two special situations shown in Figure 5 and Figure 6 are analyzed in the
following to provide a general knowledge about how to choose the appropriate
values. In order to introduce the smoothness energy influence, it is assumed
that one rectangle in the clique already has label value 1. For brevity, f(θ) is
used to substitute | sin(θij)| or | cos(θij)|, and f(θthr) to substitute | sin(θthr1)|
or | cos(θthr2)| in Eq. (9) henceforth.

(a) (b)

Figure 5: The cliques in which one rectangle contains the other one.

In the first situation as shown in Figure 5, one rectangle contains the other
one in the clique. If one rectangle has label value 1, we expect the other has
label value 0, then, its energetic variation ∆E between taking label value 1
and 0 should be positive. Since Oij = 1, ∆E can be expressed as

∆E =Edata(R̂i|Li = 1)− Edata(R̂i|Li = 0)

+ λ[KθW (f(θ), f(θthr)) + KO
1−O2

max

2O2
max

].
(12)

Let ∆Edata = Edata(R̂i|Li = 1) − Edata(R̂i|Li = 0). We have the following
four cases.

1. If ∆Edata < 0 and W (f(θ), f(θthr)) < 0, ∆E > 0 implies

λKO
1−O2

max

2O2
max

> |∆Edata|+ λKθ|W (f(θ), f(θthr))|. (13)

2. If ∆Edata < 0 and W (f(θ), f(θthr)) ≥ 0, ∆E > 0 means

λKθ|W (f(θ), f(θthr))|+ λKO
1−O2

max

2O2
max

> |∆Edata|. (14)

3. If ∆Edata ≥ 0 and W (f(θ), f(θthr)) < 0, ∆E > 0 is equivalent to

|∆Edata|+ λKO
1−O2

max

2O2
max

> λKθ|W (f(θ), f(θthr))|. (15)
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4. If ∆Edata ≥ 0 and W (f(θ), f(θthr)) ≥ 0, ∆E > 0 is always met.

It is noted that both Eqs. (14) and (15) hold if Eq. (13) is satisfied. With
the knowledge that max(|∆Edata|) = 1, and if W (f(θ), f(θthr)) < 0 then
max(|W (f(θ), f(θthr))|) = 1, that

λKO
1−O2

max

2O2
max

> 1 + λKθ (16)

is sufficient for Eq. (13). Denote the inequality (16) by “Condition 1”.

(a) (b)

Figure 6: The cliques in which two rectangles are not overlapping at all.

In the second scenario as illustrated in Figure 6, two rectangles in the
clique are not overlapping at all. If the label value of one rectangle is 1, we
hope the labeling of the other depends only on its own data energy. Since
Oij = 0, its energetic variation ∆E between taking label value 1 and 0 is

∆E = Edata(R̂i|Li = 1)− Edata(R̂i|Li = 0) + λ[KθW (f(θ), f(θthr))−KO].
(17)

With the aforementioned definition for ∆Edata, we have

1. If ∆Edata ≤ 0 and W (f(θ), f(θthr)) ≤ 0, ∆E < 0 is met by any means.

2. If ∆Edata ≤ 0 and W (f(θ), f(θthr)) > 0, ∆E < 0 is equivalent to

Kθ|W (f(θ), f(θthr))| −KO <
|∆Edata|

λ
. (18)

This is denoted by “Condition 2”.

3. If ∆Edata > 0 and W (f(θ), f(θthr)) < 0, ∆E > 0 implies

KO + Kθ|W (f(θ), f(θthr))| < |∆Edata|
λ

, (19)

which is termed by “Condition 3”.
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4. If ∆Edata > 0 and W (f(θ), f(θthr)) > 0, ∆E > 0 yields

KO −Kθ|W (f(θ), f(θthr))| < |∆Edata|
λ

, (20)

i.e., “Condition 4”.

The effects of the three parameters λ, KO and Kθ on the regularization
results are analyzed based on the above four conditions. For a certain image,
|∆Edata| for each rectangle is fixed. For simplicity, when we discuss the
influence of one parameter, the other two are assumed to be fixed.

1. The effect of λ: Condition 1 implies

λ >
1

KO
1−O2

max

2O2
max

−Kθ

. (21)

For Conditions 2, 3, and 4, it is noticed that the bigger λ is, the less
possible that Conditions 2, 3, and 4 are met. So λ should not be too
large, i.e., it should be around the value of 1/[KO(1−O2

max)/(2O
2
max)−

Kθ].

2. The effect of KO: Since Condition 1 is satisfied once λ is chosen ac-
cording to Eq. (21), we only need to discuss the influence of KO on
Conditions 2, 3 and 4. The bigger KO is, the more possible Condition
2 is met but the less possible Conditions 3 and 4 are met. This means
it is more likely for the cliques shown in Figure 6 (a) and (b) to be
detected as buildings.

3. The effect of Kθ: Still, we only consider the influence of Kθ on Condi-
tions 2, 3 and 4. Condition 4 will be more easily satisfied given a bigger
value for Kθ, in contrast to an decreasing possibility for Conditions 2
and 3 to hold. That is, there is a higher possibility for the cliques as in
Figure 6 (a) to be detected as buildings while opposite for the cliques
in Figure 6 (b).

Generally, the effects of KO and Kθ on the regularization results are
consistent with what we expect in Eq. (9). The bigger KO is, the term
relevant to the overlapping degree Oij in the clique potentials casts more
effects on the regularization results; while given a bigger Kθ value, the term
dependent on the angle θij brings greater impact.
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3. Experimental results

The effectiveness of the proposed method is verified by experimental results
on two different data sets. For each test site, the detection result using our
method is compared with the region-based building detection result using the
TF coherence approach and the edge-based result using the extended Hough
transform.

3.1. The first data set

(a) (b)

Figure 7: (a) The span image of the first data set. (b) The corresponding optical image
from Google Earth c©2007 Google.

The first data set is a fully PolSAR data set with metric resolution. The
images have 256 × 256 pixels. The span image is shown in Figure 7 (a)
and the corresponding optical image is shown in Figure 7 (b). In Figure 7
(a), the range is the top to the bottom while the azimuth is the left to the
right. It is observed that in this test site, there are several buildings parallel
or orthogonal to one another, located in the urban areas and surrounded by
trees. The detection results in different steps of our method will be displayed
in the following.

In Step 1 of our method, the obtained new inputs using the low-level de-
tectors are shown in Figure 8. Figure 8 (a) is the binary rough region-based
building detection result. Figure 8 (b) is the binary image with the ex-
tracted line segments. Here the label image with the extracted line segments
is changed into a binary image for displaying purpose. In fact, each line
segment in this label image has a distinct label value as mentioned before.
These results are achieved with the following parameter values: the regular-
ization parameter for the MRF based segmentation has the value of 3; the

16



(a) (b)

Figure 8: The low-level detectors’ results for the first data set. (a) The binary rough
region-based building detection result. (b) The extracted line segments.

threshold for the coherence image is 0.32; for the CFAR edge detector, the
parameters are taken as 7 × 3 window, 1 pixel gap, 4 directions and false
alarm rate 0.01.

(a) (b) (c)

Figure 9: (a) The extracted straight line segments. (b) The initial rectangles. (c) The
optimized rectangle candidates.

Figure 9 displays the results obtained in Step 2 of our method. The ex-
tracted line segments [Figure 8 (b)] are substituted by a set of straight line
segments [Figure 9 (a)]. Then initial rectangles are defined based on these
straight line segments [Figure 9 (b)]. These initial rectangles are further op-
timized to provide the rectangle candidates. For the optimization algorithm
depicted in Table 1, the maximum number of iterations in Step 5 is set to 5.
The obtained rectangle candidates are shown in Figure 9 (c).

In Step 3 of our method, a new label image under the ML criterion is
obtained in order to define the data term. The obtained new label image for
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(a) (b)

Figure 10: (a) The label image with two classes (the building class in white and the back-
ground class in black). (b) The detected buildings using only the data energy term.

the current test site is shown in Figure 10 (a). To verify the effectiveness of
the data term, we neglect the smoothness term (no contextual information is
considered) and assign Li = 1 when Edata(R̂i|Li = 1) < Edata(R̂i|Li = 0). In
this way the detected buildings are shown in Figure 10 (b). It is observed that
most of the buildings in the scene are detected, which verifies the effectiveness
of the proposed data term. Now we focus on the results after regularization.
The three thresholds are set as θthr1 = 5/180 × π, θthr2 = 60/180 × π and
Omax = 0.15 for this test site. In the following, the influences of Kθ, KO

and λ values on the regularization results are first illustrated. Then the final
detection results are provided.

(a) (b) (c)

Figure 11: Regularization results for the first data set with different parameter values. (a)
Kθ = 1, KO = 1 and λ = 0.05. (b) Kθ = 1.5, KO = 1 and λ = 0.05. (c) Kθ = 1, KO = 1.5
and λ = 0.035.

The effects of Kθ, KO and λ values on the regularization results have been
analyzed in Section 2.4. Based on these remarks, once the two weighting
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parameters Kθ and KO are selected, λ can be set according to Eq. (21).
Some realizations with different parameter values are displayed in Figure 11.
Compared to the result in Figure 11 (a), more overlapping rectangles are
detected as buildings in Figure 11 (b), since bigger Kθ is used for the result
in Figure 11 (b) and the overlapping term in the clique potentials affects
the results less. When bigger KO is used, it is expected that less overlapping
rectangles are detected. This is verified by Figure 11 (c), in which one less
overlapping rectangle is detected as buildings compared to Figure 11 (a).

(a) (b) (c)

Figure 12: The final building detection results for the first data set. (a) The detection re-
sult of the proposed method. (b) The region-based detection result using the TF coherence
approach. (c) The edge-based detection result using the extended Hough transform.

The final detection result of the proposed method under the values KO = 1,
Kθ = 1, and λ = 0.05 is displayed in Figure 12 (a). Compared with the
region-based result in Figure 12 (b), the detected buildings in Figure 12 (a)
have clearer shapes and edges since the fusion improves the region-based
results and the edge constraints are considered. Meanwhile, there are less
false detections in the non-building areas in the result of our method [Figure
12 (a)] compared to the edge-based result in Figure 12 (c), which may profit
from the region-based results. If we compare the detection result in Figure
12 (a) with the optical image in Figure 7 (b), it is observed that the main
buildings in the scene are mostly detected. In addition, almost all of them
have right locations and orientations. These results verify that the interaction
of the region and edge information improves the building detection quality.

Due to the difficulty for the authors to collect the ground truth data, the
detection results are quantitatively evaluated in a simple way based on our
visual inspection. The probability of detection (POD) and the false alarm
ratio (FAR) are used to evaluate the results. The actual number of buildings
observed in the scene is denoted by Nbuild. For a real building region, if there
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is at least one detected rectangle overlapping with this region, this building is
considered to be rightly detected. The number of rightly detected building is
denoted by Nright. Then POD is given by POD = Nright/Nbuild. It measures
the fraction of observed targets that are correctly detected. FAR is defined
as follows. We denote the total number of detected rectangles by Nrect and
the number of false detections by Nfalse. As long as one detected rectangle
does not overlap with any real building region at all, it is regarded as a false
detection. FAR is computed by FAR = Nfalse/Nrect. It gives the fraction
of the detected targets that are observed to be non-targets. Since the region-
based approach detects buildings as groups of pixels, we only compute the
POD and FAR values of the results from the proposed method and the edge-
based method. The POD and FAR values for the results of the first data set
are shown in Table 2. Form it, one can observe that the proposed method has
a POD value of 92.86%, which is comparable to the POD value of the edge-
based method (100%). While the FAR value of the proposed method (0%)
is much lower than that of the edge-based method (44.26%). These values
represent a good detection result of the proposed method.

Table 2 The POD and FAR values for the detection results of the first data set.

The proposed method The edge-based method

Nbuild 14 14
Nright 13 14
POD 92.86% 100%
Nrect 13 61
Nfalse 0 27
FAR 0% 44.26%

3.2. E-SAR data set

The second data set used for experiments is the German Aerospace Center
(DLR) E-SAR L-band fully PolSAR data. These data are obtained ... The
test site used is around the Dresden city (Germany), with 512× 512 pixels.
The span image is shown in Figure 13, in which the range is the left to the
right while the azimuth is the top to the bottom. This test site contains a lot
of buildings. Most of them have the same orientations. However, exceptions
exist, like the two bright vertical buildings in the middle of the image.

For this data set, the parameters are assigned with different values from
the first data set. For the low-level detectors in Step 1 of our method, the
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Figure 13: The span image of the test site from the E-SAR L-band fully PolSAR data
around Dresden city c©DLR.

parameters relevant are set as the following values: the regularization param-
eter for the MRF based segmentation has the value of 3E-6; the threshold
for the coherence image is 0.7; for the CFAR edge detector, the parameters
are taken as 7×3 window, 1 pixel gap, 4 directions and false alarm rate 0.01.
In Step 2, the maximum number of iterations for the optimization algorithm
depicted in Table 1 is also set to 5. For the parameters with respect to the
MRF framework of rectangles in Step 3, the following values are used: θthr1

and θthr2 are set to 15/180 × π and 60/180 × π, respectively; Omax is 0.05;
Kθ, KO and λ are 1, 1, and 0.0051, respectively.

The results obtained from the low-level detectors in Step 1 of our method
are shown in Figure 14, including the binary rough region-based building de-
tection result [Figure 14 (a)] and the extracted line segments [Figure 14 (b)].
In Step 2, we obtain the initial rectangles as shown in Figure 15 (a) and
the optimized rectangle candidates as shown in Figure 15 (b). In Step 3,
the label image used to define the data energy of the rectangles is shown in
Figure 16 (a) while the detected buildings using only the data energy term
are shown in Figure 16 (b). It is observed from Figure 16 (b) that almost
all the rectangles located in the building areas are detected while those in the
background areas are suppressed, which verifies the effectiveness of our data
energy definitions. The final detection results of various methods are given
in Figure 17. In the result of our method [Figure 17 (a)], most detected
buildings have right orientations and locations. However, a few false detec-
tions also exist. It is noticed that most of these falsely detected rectangles
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(a) (b)

Figure 14: The low-level detectors’ results for the E-SAR test site. (a) The binary rough
region-based building detection result. (b) The extracted line segments.

(a) (b)

Figure 15: (a) The initial rectangles. (b) The optimized rectangle candidates.
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(a) (b)

Figure 16: (a) The two class label image used to define the data energy of the rectangles.
(b) The detected buildings using only the data energy term.

are not overlapping with their neighbor buildings and sharing the similar
orientations. Also some buildings are missed in the result, which may due to
small data energy values. The data energy values depend on the threshold
used for the coherence image. When bigger threshold is used, fewer build-
ings will be detected finally. On the contrary, if we decrease this threshold,
there will be more false detections. Hence the appropriate threshold value
should be selected empirically to reach a compromise between over-detection
and incomplete detection. It is also observed that our method yields better
performance than the approach using only the region information [Figure 17
(b)] or that using only the edge information [Figure 17 (c)].

The POD and FAR values for the results of this data set are displayed in
Table 3. It is observed that the FAR value of the proposed method (32.43%)
is comparable to that of the edge-based method (30.67%), but the proposed
method has a higher POD value (82.61%) than the edge-based method (65.22%).
These results verify the effectiveness of the proposed method and the useful-
ness of the combination of the region and edge information when detecting
buildings.
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(a) (b) (c)

Figure 17: The final building detection results for the E-SAR test site. (a) The detection
result of the proposed method. (b) The region-based detection result using the TF coher-
ence approach. (c) The edge-based detection result using the extended Hough transform.

Table 3 The POD and FAR values for the results of the E-SAR data set.

The proposed method The edge-based method

Nbuild 69 69
Nright 57 45
POD 82.61% 65.22%
Nrect 111 150
Nfalse 36 46
FAR 32.43% 30.67%

4. Conclusion

In this paper, a new approach is proposed to detect buildings from the
high-resolution PolSAR data. The rectangle features are extracted and ana-
lyzed from the high-resolution images directly. The edge-based information is
employed to define the initial rectangles, which are further optimized based
on the region information. The region-based information is then exploited to
characterize the optimized rectangle candidates, i.e., to define the data energy
terms of the rectangle candidates. And a novel MRF is defined on a set of
rectangles. The smoothness term, composed of the second-order clique poten-
tials of this MRF, takes into account the contextual information of buildings.
The total energy is minimized to provide the final detection results. The ex-
perimental results using the real fully PolSAR data verifies the effectiveness
of the proposed method. Even if we assign the smoothness term of the MRF
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framework to be 0, most buildings can be detected with right positions and
orientations. However, many false detections also exist. After introducing
the contextual information using the MRF of rectangles, the false detections
are suppressed to some extent. The final detection results show that the com-
bined use of the region and edge information improves the detection quality,
compared to the results using only the region or edge information. When the
buildings in one area are parallel or orthogonal to one another, the proposed
method can rightly detect most of the buildings with few false detections.

It is noticed that in our MRF framework, there are six free parameters
that should be set by the users. The robustness of the proposed method is
influenced by these parameters, aslo by the initialization of the ICM algorithm
used to minimize the total energy of the MRF framework. In order to get good
detection results in practice, we proposed an analysis about how to choose the
appropriate parameter values and also suggested a simple and comparatively
good initialization for the ICM algorithm.

In the proposed approach, the final detected buildings are some rectangles
selected from the optimized rectangle candidates. Therefore the accuracy
of the optimized rectangle candidates affects the final detection efficiency
greatly. To improve this, two aspects can be tracked in the future: one is to
seek for a better optimization criterion; the other is to improve the region-
based building detection results we used to fit the initial rectangles to.

The main drawback of our method is the assumption that the neighboring
buildings in an area are parallel or orthogonal to one another. In fact, the
orientations of buildings in the real world are versatile. The usefulness of the
proposed method may be hence limited, depending on the considered urban
area.
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