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NMF With Time–Frequency Activations to
Model Nonstationary Audio Events
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Abstract—Real-world sounds often exhibit time-varying spec-
tral shapes, as observed in the spectrogram of a harpsichord tone
or that of a transition between two pronounced vowels. Whereas
the standard non-negative matrix factorization (NMF) assumes
fixed spectral atoms, an extension is proposed where the temporal
activations (coefficients of the decomposition on the spectral atom
basis) become frequency dependent and follow a time-varying
autoregressive moving average (ARMA) modeling. This extension
can thus be interpreted with the help of a source/filter paradigm
and is referred to as source/filter factorization. This factorization
leads to an efficient single-atom decomposition for a single audio
event with strong spectral variation (but with constant pitch). The
new algorithm is tested on real audio data and shows promising
results.

Index Terms—Music information retrieval (MIR), non-negative
matrix factorization (NMF), unsupervised machine learning.

I. INTRODUCTION

T HE decomposition of audio signals in terms of elemen-
tary atoms has been a large field of research for years.

As we usually encounter very dissimilar audio events (both in
their spectral and temporal characteristics), the decomposition
on a single basis (such as the Fourier basis) is generally not
sufficient to accurately explain the content of a large class of
signals. Sparse decomposition techniques [1] use a redundant
dictionary of vectors (called atoms) and try to decompose a
signal using few of them (much fewer than the dimension of
the space): thus, the signal can be accurately decomposed with
few elements. When atoms are designed to fit the signal (for in-
stance harmonic atoms for musical signals [2]), these elements
become more meaningful, and then a supervised classification
can be performed to cluster atoms corresponding to a real event
in the signal [3]. These methods are quite powerful and give
good results. However, since the dictionary is fixed, it must be
designed to fit all possible signals, which is not achievable in
practice. Recently methods of data factorization were proposed
to simultaneously extract atoms from the signal and provide a
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decomposition on these atoms. These techniques that we call
factorization make use of the natural redundancy of the signal,
mimicking human cognition which utilizes this redundancy to
understand visual and audio signals: principal component anal-
ysis, independent component analysis [4], [5], sparse coding [6],
or NMF [7] have been introduced both to reduce the dimension-
ality and to explain the whole data set by a few meaningful ele-
mentary objects. Thanks to the non-negativity constraint, NMF
is able to provide a meaningful representation of the data: ap-
plied to musical spectrograms it will hopefully decompose them
into elementary notes or impulses. The technique is widely used
in audio signal processing, with a number of applications such
as automatic music transcription [8]–[10] and sound source sep-
aration [11]–[13].

However, the standard NMF is shown to be efficient when
the elementary components (notes) of the analyzed sound are
nearly stationary, i.e., when the envelope of the spectra of these
components does not change over time. Nevertheless, in several
situations, elementary components can be strongly nonsta-
tionary. In this paper, we will focus on timbral variability, i.e.,
variability of the spectral shape that we can find in plucked strings
sounds or singing voice (sounds of different vowels present
greatly dissimilar spectral shapes). However, we will not address
pitch variability that is encountered in vibrato or prosody. In case
of a noticeable spectral variability, the standard NMF will likely
need several non-meaningful atoms to decompose a single event,
whichoften leads toanecessarypostprocessing(tocluster thedif-
ferent parts of a single source [14]). To overcome this drawback,
Smaragdis [15] proposes a shift-invariant extension of NMF in
which time/frequency templates are factorized from the original
data: each atom then corresponds to a time–frequency musical
event able to include spectral variations over time. This method
gives good results, but does not permit any variation between
different occurrences of the same event (atom), its duration and
spectral content evolution being fixed.

In this paper, an extension of NMF is proposed in which tem-
poral activation becomes frequency dependent: it thus can be in-
terpreted with the help of the classical source/filter paradigm as
a source/filter factorization. Our method includes autoregressive
moving average (ARMA) filters estimated from the data, asso-
ciatesa time-varyingfilterwitheachsourceand learns thesources
(atoms) in a totally unsupervised way. this method presents some
similarity with Durrieu’s work [16], [17] in which a source/filter
model is used in a NMF framework to extract the main melody of
musical pieces. This model permits to efficiently take the strong
spectral variations of the human voice into account.

However, our approach is quite different since, in opposition
to Durrieu’s work, sources are learned, a time-varying filter is
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associated with each source and the class of filter we use is more
standard.

In Section II, we introduce the source/filter decomposition as
an extension of NMF. In Section III, we derive an iterative al-
gorithm similar to those used for NMF to compute this decom-
position. In Section IV, we present experiments of source/filter
decomposition of the spectrogram of three different sounds, and
compare this decomposition to the standard NMF. Conclusions
are drawn in Section V.

II. MODEL

A. NMF and Extension

Given an non-negative matrix and an integer such
that , NMF approximates by the product of
an non-negative matrix , and an non-negative
matrix :

i.e.

(1)

This approximation is generally quantified by a cost function
to be minimized with respect to (w.r.t.) and .

A common class of cost functions is designed element-wise

where is a scalar divergence (i.e., a function such that
and if and only if ). Sev-

eral classes of such divergences have been proposed, for in-
stance Bregman divergences [18] and -divergences [19], [20].
In this paper, we will focus on the -divergence which includes
usual measures (Euclidean distance, Kullback–Liebler diver-
gence and Itakura–Saito divergence). The -divergence is de-
fined for by

(2)

For and , the -divergence is defined by continuity

For these values, the -divergence, respectively, corresponds to
Itakura–Saito divergence and Kullback–Leibler divergence, and
for , it corresponds to the Euclidean distance.

One could notice that the singularities in the definition of the
-divergence for and no longer appear in the

partial derivative w.r.t. : this partial derivative is useful for de-
signing descent methods in order to minimize the cost function

. The first-order partial derivative of the -divergence w.r.t.
is for all

When applied to power (squared magnitude) spectrograms,
NMF factorizes data into a matrix (or basis) of frequency tem-
plates which are the columns of and a matrix whose

rows are the temporal vectors of activations corresponding
to each template. For a musical signal made of several notes
played by the same instrument, it is hoped that the decomposi-
tion leads to spectral templates corresponding to single notes or
percussive sounds. will then display a representation similar
to a “piano-roll” (cf. [8]).

This factorization however does not yield an effective rep-
resentation of a sound presenting a noticeable spectral evolu-
tion. For instance, a single note of a plucked string instrument
most of the time shows high-frequency components which de-
crease faster than low-frequency components. This character-
istic is not well modeled with a single frequency template. Sev-
eral templates are needed which results in a less meaningful de-
composition: roughly one for low-frequency partials and one for
high-frequency partials. The meaning of each template is lost
(a template no longer corresponds to a musical event such as a
note).

To address this issue, we propose an extension of NMF where
temporal activations become time/frequency activations. The
factorization (1) becomes

(3)

where the activation coefficients are now frequency dependent.
To avoid an increase of the problem dimensionality the
coefficients are further parameterized by means of ARMA
models (Section II-B).

Equation (3) can be interpreted with the help of the
source/filter paradigm: the spectrum of each frame of the
signal results from the combination of filtered templates
(sources). corresponds to the time-varying filter asso-
ciated to the source . The decomposition thus benefits from
the versatility of the source/filter model proved well suited for
numerous sound objects.

B. AutoRegressive Moving Average (ARMA) Modeling

is parameterized following the general ARMA model:

where is the normalized frequency
associated to frequency index (as audio signal
are real valued, we only consider frequencies between 0 and the
Nyquist frequency). are the coefficients of the MA part of
the filter and those of the AR part. is the global gain
of the filter: in order to avoid identifiability problems, the first
coefficient of all filters is imposed to be equal to 1. For

no longer depends on and the decomposition
corresponds to a standard NMF with temporal activations .
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Defining and ,
time/frequency activations can be rewritten as

where is the Toeplitz matrix with
and is similar to but of

dimension . MA only and AR only models are
included by respectively taking and . It is worth
noting that is always non-negative while there exists
no non-negativity constraint on or on .

The parameterized power spectrogram given in (3) then
becomes

(4)

III. ALGORITHM

We choose a general -divergence cost function

with and
and the expression of is given in (2).

The partial derivative of the cost function w.r.t. any variable
( being any coefficient of or ) is

(5)

The expression of the gradient of w.r.t. a vector of several
coefficients of or is the same, replacing the partial deriva-
tive by a gradient in (5).

This leads to update rules for a multiplicative gradient descent
algorithm similar to those used in [7], [21], [15]. In such an it-
erative algorithm, the update rule associated to one of the pa-
rameters is obtained from the partial derivative of the cost func-
tion w.r.t. this parameter, written as a difference of two positive
terms:

The update rule for is then

(6)

This rule ensures that remains non-negative, becomes constant
if the partial derivative is zero and evolves in the opposite direc-
tion of the partial derivative (thus in the descent direction).

A. Update of Frequency Templates

We derive multiplicative update rules for from the ex-
pression of the partial derivative of the cost function with re-
spect to .

The partial derivative of the parameterized spectrogram de-
fined in (4) with respect to is

where is a Kronecker delta.
Then, by replacing this expression in (5) with , we

obtain the partial derivative of the cost function with respect to

This derivative is written as a difference of two positive terms

and

Then the update rule of is:

(7)

B. Update of Temporal Activation Gain

In the same way as for , we derive multiplicative update
rules for from the expression of the partial derivative of the
cost function with respect to .

The partial derivative of the parameterized spectrogram de-
fined in (4) with respect to is

where is a Kronecker delta.
Then, by substituting this expression into (5) with ,

we obtain the partial derivative of the cost function with respect
to

This derivative is written as a difference of two positive terms

and
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Then the update rule of is

(8)

We can notice that when and (i.e., there is no
filter), the update rules of and are the same as the ones
given in [21] which are the standard NMF rules for a -diver-
gence cost function where corresponds to frequency tem-
plates and to temporal activations.

C. Update of Filters

The update rules of the coefficients of the filters are derived in
a similar way, but the updates are not element-wise, but rather
“vector-wise”: we derive an update rule for each and for
each .

Update of : The gradient of the parameterized spectro-
gram w.r.t. is

Then, by substituting this expression into (5) with ,
we obtain the gradient of the cost function w.r.t.

where

Both matrices and are positive definite under
mild assumptions: these matrices are clearly positive semi-defi-
nite and it can easily be shown that if there are at least dif-
ferent indexes such that then is non-sin-
gular (for , the assumption is very similar). This assump-
tion is always true in practice as long as the frame with index

is not a null vector (i.e., with all samples equal to 0): in this
particular case, the decomposition is trivial, and the global gains

should be equal to 0.
Then, we follow the approach given in [22] and derive the

following update rule for the MA part of the filter:

(9)

As and are both nonsingular, is well de-
fined and is ensured to never be zero.

Update of : The update rules of are derived in the
same way as for . The partial gradient of the parameterized
spectrogram with respect to is

Then, by substituting this expression into (5) with ,
we obtain the partial gradient of the cost function with respect
to

where

and

Both matrices and are positive definite under mild
assumptions.

Thus, we derive the following update rule for the AR part of
the filter:

(10)

D. Description of the Algorithm

The update rules (7)–(10) are applied successively to all the
coefficients of , all the coefficients of , all the coefficients of

, and all the coefficients of . Between the updates of each of
these matrices (and tensors), the parameterized spectrogram
is recomputed: as for the standard NMF algorithm, this recom-
putation between each update is necessary to ensure the conver-
gence.

Identifiability: As for the standard NMF, the decomposition
(4) which minimizes the cost function is not unique. To cope
with identifiability issues, we impose constraints on
and :

• for all and , we impose that and (considered as
polynomials) have all their roots inside the unit circle;

• for all , we impose for some norm ;
• for all and , we impose and .
Thus, at the end of each iteration of our algorithm, we trans-

form and by replacing roots outside the unit circle by
the conjugate of their inverse and accordingly adapting the gain,
normalize each column of , divide and by their first
coefficient and update in order not to change by these
modifications. All these transformations have no influence on
the values of the parameterized spectrogram.

Another choice of filters normalization has been tested: rather
than imposing and , we can impose for all

and . It
corresponds to a power normalization and then it is more mean-
ingful.
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Our algorithm is detailed in Algorithm 1. In the remainder
of the paper, we will refer to this algorithm by the expression
“source/filter factorization.”

Algorithm 1 Source/filter spectrogram factorization

Input:
Output:

Initialize with non-negative values

Initialize with flat filters

for to do

compute

for all and do
compute and

end for

compute

for all and do
compute and

end for

compute

for all and do
compute and

end for
bring back roots of all filters inside the unit circle
divide the coefficients of all filters by the first one
normalize

update appropriately

end for

E. Dimensionality

Since our algorithm is a dimensionality reduction technique
like NMF, one should take care of the dimension of the decom-
position provided. The dimension of the original data is . In
the standard NMF with atoms, the dimension of the parame-
terized spectrogram is (where

stands for the number of coefficients of matrix or tensor
). With our algorithm, the dimension of the parameters is:

.
Thus, one should have , i.e.,

and , so and must be
small. As in practice , the condition to be respected is

.
One should notice that our decomposition allows a significant

reduction of the number of atoms needed to accurately fit
the data when the parts of the sounds present strong spectral
variations. Then the total dimension of the parameters obtained

with our decomposition remains comparable to the one obtained
with standard NMF as will be shown in Section IV.

Besides, one should notice that a large number of the coef-
ficients of the filters are useless and therefore do not need to
be retained: when the global gain of one of the filter be-
comes close to zero, these coefficients ( and ) become
meaningless and then are useless in the decomposition and can
be removed without affecting the values of the parameterized
spectrogram.

Finally, in the decomposition (4), all atoms are associated to
filters of the same order, but it is also possible to implement a
larger model where filters do not have the same characteristics
for all atoms. This larger model is not presented in this paper for
readability reasons.

F. Computational Complexity

The computational complexity of one iteration of source/filter
factorization depends on and . The computational
complexity of each step of the algorithm is given here.

• Computation of : operations.
• Update of and operations each.
• Update of operations.
• Update of operations.
• Normalization/stabilization: oper-

ations.
The total complexity of a single iteration of the algorithm is
then operations. With our current implemen-
tation in Matlab, 100 iterations of our algorithm applied to a
1025 550 spectrogram (corresponding to a 6.5 s signal sam-
pled at Hz with 2048-sample-long windows and
75% overlap) with atoms, and last
about 300 s (on an Intel® Core™ 2 Duo E8400 @3.00 GHz, with
Matlab’s multithreaded math libraries). In comparison, 100 it-
erations of standard NMF with the same spectrogram, the same
parameters ( , but and ) on the same com-
puter last about 9 s: our algorithm appears to be slower than
standard NMF. However, this comparison puts our algorithm at
a disadvantage, which is designed to work with fewer atoms than
standard NMF: in this case our algorithm deals with many more
parameters than NMF. If we compare execution times with the
same number of parameters, the difference is smaller: for the
same spectrogram, 100 iterations of our algorithm with
atoms, and (i.e., with the dimensionality of a
standard NMF with ) last about 60 s.

About a third of the computation time is due to the computa-
tion of the roots of all filters (considered as polynomials) during
the stabilization process. Some improvements could be made by
considering another regularization method. The inversion of the
matrices and (a bit more than 10% of the total compu-
tation time) and the computation the frequency response of all
filters (slightly less than 10% of the total computation time) are
also very costly.

G. Practical Implementation and Choice of

We empirically observed the monotonic decrease of the cost
function and the convergence of the algorithm for
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over a large set of tests: this decrease and this convergence are
illustrated in particular cases in Section IV-D.

However, the algorithm is unstable for : some nu-
merical instabilities appear while poles of the filters come close
to the unit circle. These instabilities are very common when
becomes close to 2 (Euclidean distance); however, the strong
dynamics of audio data is better fitted when becomes close to
0 as stated in [21]. In order to avoid these instabilities, we limit
the modulus of poles: the monotonic decrease of the cost func-
tion is no longer observed but it permits to avoid non desirable
behavior of the decomposition (very resonant order 2 filters only
permit to fit one partial).

For the examples in the next section, we chose since
the numerical instabilities were almost negligible and the results
were more accurate than with (Itakura–Saito divergence).

IV. EXAMPLES

In this section, several experiments are presented to show
that our algorithm is well adapted to decompose sounds having
strong spectral variations. All the spectrograms used in these ex-
periments are power spectrograms obtained from recorded sig-
nals by means of a short-time Fourier transform (STFT).

Algorithms (standard NMF and source/filter factorization)
were initialized with random values (except for the filters which
were initially flat) and were run until apparent convergence. The
algorithms have been rerun with 100 different initializations
in order to maximize the chances to come close to a “good”
minimum. Despite these different starting points, the reached
solutions were similar in terms of qualitative aspect of the
reconstructed spectrograms.

A. Didgeridoo

1) Description of the Excerpt: In this section, our algorithm
is applied to a short didgeridoo excerpt. The didgeridoo is an
ethnic wind instrument from northern Australia. It makes a con-
tinuous modulated sound produced by the vibrations of the lips.
The modulations result from the mouth and throat configura-
tion with the help of which the player is able to control several
resonances. Fig. 1(a) represents the spectrogram of the excerpt:
the sound produced is almost harmonic (with some noise) and
a strong moving resonance appears in the spectrogram. We can
thus consider that this signal is composed of a single event en-
compassing spectral variations, and try to decompose it with
a single atom . The sampling rate of the excerpt is

Hz. We chose a 1024-sample-long Hann window
with 75% overlap for the STFT.

2) Experiment and Results: The spectrogram of the excerpt
is decomposed with a standard NMF algorithm for
atom and atoms, and with source/filter factorization
for atom, with an order 3 AR modeling ( and

). Reconstructed spectrograms are respectively repre-
sented in Figs. 1(b), (c), and (d).

Although the didgeridoo is played alone in the analyzed spec-
trogram, the standard NMF needs many atoms to accurately de-
compose the power spectrogram. With 1 atom, NMF does not
accurately represent the moving resonance [Fig. 1(b)]. With five

Fig. 1. Original power spectrogram of the extract of didgeridoo (a) and recon-
structed spectrograms (b), (c), and (d). (a) Original spectrogram, (b) Standard
NMF,� � �, (c) Standard NMF,� � �, (d) Source/filter factorization,� � �.

atoms, some spectral variations appear [Fig. 1(c)], but the res-
onance trajectory remains a bit unclear. Besides, the signal is
not decomposed in a meaningful way (each atom is a part of the
sound which has no perceptual meaning) and the dimensionality
of the parameters is large .

In opposition to the standard NMF, source/filter factorization
permits to accurately represent the spectral variability of the
sound [Fig. 1(d)] with a single atom, keeping the dimensionality
low : the moving resonance of the
original sound is well tracked, and the total error is smaller
than that of the standard NMF with . In this case, the
decomposition is more efficient and relevant than the standard
NMF.

B. Harpsichord

1) Description of the Excerpt: In this section, our algorithm
is applied to a short harpsichord excerpt, composed of two dif-
ferent notes ( and ): first, the is played alone, then
the , and lastly, both notes are played simultaneously. The
spectrogram of the extract is represented in Fig. 2(a). As for
most of plucked string instruments, high-frequency partials of a
harpsichord tone decay faster than low-frequency partials. This
phenomenon clearly occurs in the L-shaped spectrograms of
Fig. 2(a). The sampling rate of the excerpt is Hz.
We chose a 2048-sample-long Hann window with 75% overlap
for the STFT.

2) Experiment and Results: The spectrogram of the excerpt
was decomposed with a standard NMF algorithm for
atoms (1 atom per note) and atoms, and with source/filter
factorization for atoms, with an ARMA modeling (

and ). Reconstructed spectrograms are respectively
represented in Figs. 2(b), (c), and (d).

The standard NMF needs several atoms per note to accurately
decompose the L-shaped power spectrograms: with only two
atoms (one per note played), the faster decay of high frequency
content does not appear at all [Fig. 2(b)]. With six atoms, the
attenuation of high frequency partials appears [Fig. 2(c)], but



750 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 4, MAY 2011

Fig. 2. Original power spectrogram of the extract of harpsichord (a) and recon-
structed spectrograms (b), (c), and (d). (a) Original spectrogram, (b) Standard
NMF,� � �, (c) Standard NMF,� � �, (d) Source/filter factorization,� � �.

each atom is a part of a note spectrum and has no real perceptual
meaning.

The ARMA modeling included in our algorithm leads to a
good description of the overall spectrogram shape. Two atoms
(one per note) are enough to accurately fit the original short time
spectrum: each atom is harmonic [Fig. 3(a)] and corresponds to
one note while the decay of high frequency partials is clearly
well described by the ARMA modeling [see time/frequency ac-
tivations in Fig. 3(b)]. The dimensionality of the
data provided by our algorithm

remains lower than with a standard NMF with six atoms
and the global error between the original

and the reconstructed spectrogram is approximately the same as
the one obtained with the standard NMF with .

Thus, the decomposition provided by source/filter factoriza-
tion seems to give a more meaningful representation of the given
spectrogram than the one obtained with the standard NMF.

C. Guitar With Wah Pedal

1) Description of the Excerpt: In this section, our algorithm
is used to decompose a short extract of electric guitar processed
by a wah pedal. The wah pedal (or wah-wah pedal) is a popular
guitar effect which consists of a resonant filter, the resonant fre-
quency of which is controlled by means of a foot pedal. This ef-
fect is named by emphasizing the resemblance with the human
onomatopoeia “Wah.” A single note of electric guitar processed
by a moving wah pedal presents strong spectral variations and
therefore cannot be well represented by a single atom in a stan-
dard NMF.

As a wah pedal is well modeled by an AR filter with two com-
plex conjugates poles, we chose to decompose the extract with

and . The chosen extract represented in Fig. 4(a) is
composed of three different notes played successively (the first
note is played a second time at the end of the extract). Each note
can be viewed as a harmonic pattern which is filtered by a reso-
nant filter, the resonant frequency of which varies between 400

Fig. 3. Source/filter decomposition (� � �� � � � and � � �) of the power
spectrogram of the harpsichord excerpt. (a) Frequency templates. (b) Time/fre-
quency activations.

and 1200 Hz: this resonance clearly appears in the power spec-
trogram. The sampling rate of the excerpt is Hz.
We chose a 1024-sample-long Hann window with 75% overlap
for the STFT.

2) Experiment and Results: As the analyzed sound presents
strong spectral variations, the standard NMF needs many atoms
to accurately decompose the power spectrogram. Thus one
atom no longer corresponds to one note, and the decomposition
does not correspond to the analysis that could be performed by
a human listener. Fig. 4(b) represents the power spectrogram
reconstructed from the NMF of the original spectrogram
with three atoms and Fig. 4(c) with ten atoms. With three
atoms, NMF is not able to track the resonance of the wah
pedal. With ten atoms, the resonance appears, but the signal
is not well explained (each atom is a part of a note and
then has no perceptual meaning) and the dimensionality is
higher .

With source/filter factorization, the strong spectral variations
of each note can be accurately represented in the filter activa-
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Fig. 4. Original power spectrogram of the extract of electric guitar processed
by a wah pedal (a) and reconstructed spectrograms (b), (c), and (d). (a) Orig-
inal spectrogram, (b) Standard NMF, � � �, (c) Standard NMF, � � ��,
(d) Source/filter factorization,� � �.

Fig. 5. Source/filter decomposition (� � � and � � �) of the power spectro-
gram of the wah processed guitar excerpt. (a) Frequency templates. (b) Time/fre-
quency activations.

tions taking an order 2 AR modeling ( and )
as shown in Fig. 4(d). Then three atoms (one for each note)

Fig. 6. Evolution of the cost function over iterations (decomposition of ex-
cerpts in Sections IV-B and IV-C). (a) Harpsichord excerpt. (b) Wah guitar ex-
cerpt.

are enough to correctly fit the original spectrogram. Indeed, the
global -divergence error between the original and the recon-
structed spectrogram obtained with source/filter factorization is
approximately the same as the one obtained with standard NMF
with ten atoms; this -divergence (obtained with source/filter
factorization) is also approximately half that obtained with stan-
dard NMF with three atoms. Each atom is harmonic and corre-
sponds to one note, and the resonance of the wah pedal clearly
appears. The dimensionality of the representation obtained with
source/filter factorization remains about half that of NMF with
ten atoms: . The decomposition
provided by our algorithm distinguishes a stationary spectrum
representing “average” guitar sounds (contained in ) from the
nonstationary effect due to the wah pedal (described by time/fre-
quency activations). The three frequency templates (columns of

) obtained are represented in Fig. 5(a): each template is har-
monic with its own fundamental frequency; thus, it corresponds
to a note (standard NMF with three atoms provides similar tem-
plates). The time/frequency activations are rep-
resented in Fig. 5(b): the resonance of the wah pedal appears
clearly where the notes are played. Thus, the decomposition pro-
vided by our algorithm seems to give a more meaningful repre-
sentation of the given spectrogram.
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D. Convergence of the Algorithm

The evolution of the cost function over iterations for source
filter/factorization is represented in Fig. 6 with eight different
random initializations, for the decomposition of excerpts pre-
sented in Sections IV-B (harpsichord excerpt) and IV-C (wah
guitar excerpt). The value of the -divergence is represented
after each iteration. Figures show a monotonic decrease of the
cost function and an apparent convergence. In Fig. 6(a), all ini-
tializations lead to the same final value of the cost function and
the shape of the evolution is very similar for all initializations.
On the other hand, in Fig. 6(b), all initializations do not lead to
the same value of the cost function, showing that multi-initial-
ization is useful.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new iterative algorithm which
is an extended version of the non-negative matrix factorization
based on a source/filter representation. We showed that this rep-
resentation is particularly suitable to efficiently and meaning-
fully decompose nonstationary sound objects including notice-
able spectral variations.

In the future, this extended decomposition should be further
developed to deal with small pitch variations (like vibrato), for
instance using a constant-Q spectrogram like in [23], [24]. Be-
sides, we plan to introduce harmonic constraints in the basis
spectra following [25]–[27]. Finally, we plan to investigate the
introduction of continuity constraints between filters from one
frame to another following the approach given in [12], [26],
[21].
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