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Abstract— Multiplicative update algorithms have proved to
be a great success in solving optimization problems with non-
negativity constraints, such as the famous nonnegative matrix
factorization (NMF) and its many variants. However, despite
several years of research on the topic, the understanding of
their convergence properties is still to be improved. In this
paper, we show that Lyapunov’s stability theory provides a very
enlightening viewpoint on the problem. We prove the exponential
or asymptotic stability of the solutions to general optimization
problems with nonnegative constraints, including the particular
case of supervised NMF, and finally study the more difficult case
of unsupervised NMF. The theoretical results presented in this
paper are confirmed by numerical simulations involving both
supervised and unsupervised NMF, and the convergence speed
of NMF multiplicative updates is investigated.

Index Terms— Convergence of numerical methods, Lyapunov
methods, multiplicative update algorithms, nonnegative matrix
factorization, optimization methods, stability.

I. INTRODUCTION

ONNEGATIVE matrix factorization (NMF) is a powerful

decomposition technique allowing the decomposition of
2-D nonnegative data as a linear combination of meaningful
elements in a dictionary [1]. Given an F x T data matrix V
having nonnegative coefficients, NMF consists in computing
a rank-K truncated approximation V of matrix V (with
K < min(F,T)) as a product V = WH, where both the
F x K matrix W and the K x T matrix H have nonnegative
coefficients. The columns of matrix W form the elements of
the dictionary, and the rows of H contain the coefficients of
the decomposition. The computation of this factorization is
generally formalized as a constrained optimization problem.
The objective functions most often encountered in NMF
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literature rely on the Euclidean (EUC) distance, the Kullback-
Leibler (KL) divergence [1], [2], or the Itakura-Saito (IS)
divergence [3]. All three of them lie within the general
framework of f-divergences [4], [5].

NMF can be considered either as a supervised or as an
unsupervised learning tool. In the case of supervised learn-
ing [6]-[9], the dictionary W is estimated from training
data in a preprocessing stage, and matrix H only has to
be computed given the data in matrix V. In the case of
unsupervised learning [1], both matrices W and H have to
be computed given V. Several algorithms have been pro-
posed in order to compute an NMF. The most popular is
the multiplicative update algorithm initially proposed by Lee
and Seung [2] for the EUC and KL divergences, which has
then been generalized to the p-divergence [4], [10]. This
algorithm can be applied both to supervised and unsupervised
NMEF. For the interested reader, other approaches have also
been proposed, such as the projected gradient method [11],
alternating least squares algorithms [12], the quasi-Newton
algorithm [13], a multilayer technique [14], or a space-
alternating expectation-maximization algorithm derived in a
statistical framework [15]. See for instance [13] for a recent
survey on the topic. Theoretical and numerical comparisons
between Lee and Sung’s multiplicative updates and other
algorithms are already available in the literature, see [11], [13],
[14], [16]-[18].

After Lee and Seung’s paper, the multiplicative update
philosophy has been applied to various optimization problems
involving nonnegativity constraints, such as some variants
of the NMF. These algorithms generally aim at enhancing
(or enforcing) a particular property in the decomposition,
depending on the application. In the context of image
representation and recognition for instance, various properties
have been investigated, such as orthogonality [19], spatial
localization [20], or transformation-invariance [21]. In
the context of multipitch and music transcription, some
desired properties are spectral harmonicity [22]-[24] and
temporal continuity [22], [23]. In source separation, classical
constraints include sparseness and temporal continuity [25],
decorrelation [26], and shift-invariance [27]. Note that
multiplicative updates have also been applied to nonnegative
tensor factorization via unfolding [13].

A curious point is that, to the best of our knowledge, despite
many years of research and several papers on the topic, the
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convergence properties of multiplicative update algorithms for
unsupervised NMF have not been clearly identified.

1) Lee and Seung proved that the objective function based
on EUC and KL decreases at each iteration [2] (and the
proof was later generalized to f-divergences [10], for
p € [1,2]). However, this neither proves that the limit
value of the objective function is a local minimum, nor
that the successive iterates converge to a limit point.

2) In constrained optimization, all the local minima of the
objective function are proved to be stationary points,
defined as the solutions to Karush, Kuhn, and Tucker’s
(KKT) optimality conditions. Stationary points of NMF
were studied in [16], [17], and [28]. Some numerical
examples have been presented in [18], where the KKT
conditions are not fulfilled after a high (but finite)
number of iterations, but this does not contradict the
possible asymptotic convergence to a local minimum.

3) Since the multiplicative updates involve ratios, numer-
ical problems could be encountered if the denominator
becomes arbitrarily small. In order to circumvent this
problem, it is proposed in [28] to add a small posi-
tive quantity to the denominator, and it is proved that
any accumulation point of the sequence of the iterates
computed in this way is a stationary point.! However,
there is no guarantee that such a stationary point is a
local minimum, nor that the algorithm converges to this
accumulation point.

Analyzing the convergence properties of unsupervised NMF
multiplicative updates is difficult because at each iteration
these algorithms usually switch between two different updates:
one for the left factor W, and one for the right factor H. Never-
theless, the convergence analysis happens to be simpler in the
case of supervised NMF, where only one of the two factors
is updated, the other one being kept unchanged throughout
the iterations. In this paper, we analyze the convergence of
general multiplicative update algorithms, where all variables
are updated at once (which includes the particular case of
supervised NMF), before studying the case of unsupervised
NMF. Two important aspects of these algorithms have to be
taken into account.

1) Local convergence: Since the objective function gen-
erally admits several local minima [14], [16], there is
no guarantee that the algorithm converges to the global
minimum. So the best result we can prove is the local
convergence to a local minimum.? This means that if
the algorithm is initialized in a given neighborhood of
a local minimum called basin of attraction, then the
algorithm will converge to this local minimum.

2) Stability: Because of the multiplicative form of the algo-
rithm, a zero entry remains zero in all subsequent itera-
tions. Zeroing may happen because of a bad initialization
or because of the finite machine precision for instance.
This prevents the convergence to a local minimum

INote that this proof only stands for the EUC distance, and does not apply
when the added quantity is zero.

2Avoiding to be trapped in a local minimum distinct from the global
minimum is out of the scope of this paper (the interested reader can have
a look at [29] and [30]).
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whose corresponding coefficient would be nonzero.
However, this problem can be very easily circumvented.
Indeed, in this case, numerical simulations show that
the limit point of the algorithm is generally unstable,
replacing the zero entry by any arbitrarily small quantity
will make the algorithm escape from this trap and finally
converge to a stable limit point. Other well-known
examples of unstable stationary points of the algorithm
(with nonzero entries) are saddle points [12], [16], [17].
These remarks show that an appropriate notion for analyzing
the convergence of multiplicative update algorithms is the
asymptotic stability in the sense of Lyapunov’s theory [31],
which implies both local and stable convergence. In this
paper, we analyze the convergence properties of general
multiplicative update algorithms that are designed to solve
optimization problems with nonnegativity constraints. We thus
apply Lyapunov’s first and second methods to find some
criteria that guarantee the exponential or asymptotic stability
of the local minima of the objective function. This analysis
is then applied to prove the stability of supervised NMF
multiplicative updates, and we finally show how Lyapunov’s
first method provides some interesting insights into the con-
vergence properties of unsupervised NMF multiplicative up-
dates. The numerical simulations illustrate those theoretical
results, and the convergence speed of NMF multiplicative
updates is investigated. This paper is organized as follows.
In Section II, we present some elementary results about NMF,
general optimization problems with nonnegativity constraints,
and multiplicative update algorithms. The convergence of these
algorithms is analyzed by means of Lyapunov’s stability theory
in Section III, and the case of NMF is studied in Section IV.
Some numerical simulations are presented in Section V, and
the main conclusions are summarized in Section VI. Finally,
the mathematical proofs of the main results presented in this
paper are included in the Appendix (due to lack of space, some
proofs have been moved to a separate document [32]).

II. THEORETICAL BACKGROUND
A. Multiplicative Update Algorithms and NMF
Given a matrix V € RiXT and an integer K < min(F, T),
unsupervised NMF consists in computing a reduced-rank
approximation of V as a product V = WH, where
W e RE*K and H € RX*T. This problem can be formalized
as the minimization of an objective function

F T K
D(V|WH)=ZZd(uﬂ wakhkt) (1)
k=1

f=1t=1
where d is a scalar divergence, i.e., a function such that
Vx,y € Ry,d(x]y) >0, and d(x|y) = 0 if and only if y = x.
pS-divergences [4], [5] are defined for all § € R\{0, 1} as

el = = (=10 = pe ) @

The EUC distance corresponds to f = 2, and KL and
IS divergences are obtained when f — 1 and f — O,
respectively: dgp(x|y) = xIn(x/y) —x + y and djs(x|y) =
x/y—In(x/y)— 1.
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The generalization of Lee and Seung’s multiplicative up-
dates to the f-divergence takes the following form [4], [10]:

(Ve (WH)!~2)HT

W <« Weo (WHYP-THT (3)
wi(v @ (WH)~?%)
H <« HQ WT (WH)—1 “)

where the symbol ® and the fraction bar denote entrywise ma-
trix product and division, respectively, and the exponentiations
must also be understood entrywise. In the case of unsupervised
NMEF, updates (3) and (4) are computed alternately, whereas in
the case of supervised NMF, the update (4) only is computed
at each iteration, the matrix W being kept unchanged.

In [10], it is proved that if § € [1,2], then the objective
function is nonincreasing at each iteration of (3) and (4). As
in [2], this algorithm can be interpreted as a gradient descent
with an adaptive step size for each entry, defined as a function
of both matrices W and H, chosen so that the successive
iterates remain nonnegative. Alternatively, we consider the
approach used in [19], [22], and [25], the recursion for W
in (3) can be written Vf, k, wsr < wyk (m /p )» where
pY e = 0 and m% = 0 are such that the partlal derlvatlve of

the objective function w.r.t. w i is equal to p})k - m’]‘zk
T
Aﬂ 1
' h B L 5
5wfk ; kt — Izll ft ft kt Q)
P me
where
K
bfr = z W ihi. (6)

Thus, if (6D/owysr) > 0, (m‘]‘c)k/p?k) < 1 so that w g
decreases and, conversely, if (D /0w fr) <0, (mfk/p ) > 1
so that w sy increases. The same remark stands for matrix H.
This confirms that the updates (3) and (4) form a descent
method.

We focus in this paper on a generalization of this approach
which involves an exponent step size # > 0

v e WHHHTY

W o« W®( (WHY-THT ) @)
wi v e (WH? )Y

o< H®( W (WH)F! ) ®

Note that standard multiplicative updates (3) and (4) cor-
respond to the particular case # = 1. As will be shown in
Section V, 5 actually permits us to control the convergence
rate, and in particular to outperform the standard case # = 1.
This approach was first introduced in [22].

The convergence properties of these generalized updates
will be analyzed in Section IV. The following proposition
proves that (7) and (8) satisfy the same decrease property
as (3) and (4) for all 5 €]0, 1] (ie., 0 <y < 1).3

3n this paper, we use the ISO notation for intervals, which uses inward
pointing brackets to indicate inclusion of the endpoint, and outwards pointing
brackets for exclusion.

1871

Proposition 1: Consider the objective function D(V|W H)
defined in (1), involving the A-divergence (2), with f €
[1,2]. If  €]0, 1], if all coefficients in the numerator and
denominator in recursion (7) are nonzero, and if (W, H) is
not a fixed point of (7), then (7) makes the objective function
strictly decrease. Similarly, if # €]0, 1], if all coefficients in
the numerator and denominator in recursion (8) are nonzero,
and if (W, H) is not a fixed point of (8), then (8) makes the
objective function strictly decrease.

Proposition 1 is proved in Appendix A. Note that this
decrease property does not guarantee that the limit value
of the objective function is a local minimum, nor that the
successive values of W and H converge to a limit point.
From now on and until Section IV, we will introduce a
general framework for multiplicative update algorithms, where
all variables are updated at once (which includes the particular
case of supervised NMF).

B. General
constraints

Optimization Problems with Nonnegativity

We consider the minimization in the first orthant R’} of
an objective function J : Rﬁ — R, which is twice contin-
vously differentiable in its domain. For any vector x =
[x1...x,]7 € R, the constraint x; > 0 is said to be
active if x; = 0, or inactive if x; > 0. The following two
propositions are classical results in constrained optimization
theory [33].

Proposition 2 (First-order KKT optimality conditions): Let
VJ(x) denote the gradient vector of the objective function
J: R’i — R, which is twice continuously differentiable in its
domain. Then for any local minimum x of J in R’} :

1) Vi e {1...n}suchthat x; >0, V;J =0;
2) Vi e {1...n} such that x; =0, V;J > 0.
If x; = 0 and V;J > 0, the constraint is said to be

strictly active. Following these considerations, we introduce
the following notation for denoting the extraction of particular
sub-vectors or sub-matrices.

Notation 1:

1) [.]o is obtained by selecting the coefficients (of a vector)
or the rows and columns (of a matrix) corresponding to
strictly active constraints, i.e., whose index i is such that
ViJ(x) > 0 (and x; = 0).

2) [.]+ is obtained by selecting the coefficients, or the rows
and columns, whose index i is such that V;J(x) = 0
(and either x; > 0 or x; = 0).

3) [} is obtained by selecting the coefficients, or the rows
and columns, correspondlng to inactive constraints, i.e.,
whose index i is such that x; > 0 (and V;J(x) = 0).

We then have the following optimality condition at order
two.

Proposition 3 (Second-order optimality condition): Let
V2J(x) denote the n x n Hessian matrix of the objective func-
tion J : R’i — R, which is twice continuously differentiable
in its domain. Then for any local minimum x of J in R’i, the
sub-matrix [V2J(x)], is positive semidefinite.
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C. Multiplicative Update Algorithms

In order to introduce general multiplicative update algo-
rithms, we first have to assume that function J satisfies certain
conditions.

Assumption 1 (Decomposability of the objective function):
Let J : R, — R be an objective function which is twice
continuously differentiable in its domain. We assume that the
gradient of J can be decomposed as the difference of two
nonnegative functions

VJ(x) = p(x) —m(x) ©)

where both functions p : R, — R, and m : R, — R’ are
continuously differentiable in the domain of J.

Note that, in Assumption 1, functions p and m are not
unique. Indeed, any nonnegative constant (or continuously
differentiable function) can be added to both p and m, without
changing their difference.

Example 1: An example of function J satisfying Assump-
tion 1 will be provided in (17), at the beginning of Section I'V.
It corresponds to the NMF objective function introduced in (1),
whose partial derivatives can be written as the difference of
two continuously differentiable nonnegative functions, defined
in (5) and (32).

Assumption 2: Let x € R'[. Given an objective function
J satisfying Assumption 1, we assume that Vi € {l...n},
pi(x) > 0 and m;(x) > 0.

Note that if Assumption 1 stands, there always exist func-
tions p;(x) and m;(x) such that Assumption 2 also stands
Vx e R!. Indeed, any positive constant (or continuously
differentiable function) can be added to both functions p;(x)
and m;(x), without changing their difference.

Definition 1 (Multiplicative mapping): Consider the mini-
mization of an objective function J satisfying Assumption 1.
For any step size # € R, the multiplicative mapping ¢ is
defined in the domain of all x € R’} satisfying Assumption 2,
as

$(x) = A(x)"x

where A(x) = diag m(x)/p(x)), m(x) and p(x) have been
defined in Assumption 1, and diag(.) denotes the diagonal
matrix whose diagonal coefficients are those of the vector
argument.

The proof of the following lemma is straightforward.

Lemma 4 (Regularity of the mapping): Let J be an objec-
tive function satisfying Assumption 1, and let x € R’| satisfy-
ing Assumption 2. Then, Vy € R, the mapping ¢ introduced
in Definition 1 is defined and continuously differentiable in a
neighborhood of x.

The following lemma is a corollary of Proposition 2.

Lemma 5: Let x € R} be a local minimum of a function
J satisfying Assumption 1. If Assumption 2 holds, then x is a
fixed point of the mapping ¢ introduced in Definition 1 (i.e.,
¢ (x) = x).

Proof: Obviously, if x; = 0, ¢i(x) = x;. Otherwise,
Proposition 2 proves that Vi € {1...n} such that x; > 0,
pi(x) = m;(x), thus ¢;(x) = x;. ]

Definition 2 (Multiplicative update algorithm): Consider
the minimization of an objective function J satisfying

(10)
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Assumption 1. A multiplicative update algorithm is defined
by a recursion of the form x(*tD = ¢(x(?), where the
mapping ¢ : RY. — R’} was defined in Definition 1.

Note that, if there exists p such that x») does not sat-
isfy Assumption 2, then x(?*!) may be undefined, and the
algorithm must stop.* Also, note that recursion x?*D =
@¢(x(P)) can be seen as a descent method. Indeed, if x € R%
satisfies Assumption 2, the first-order expansion of function
n+ J (A(x)"x) in a neighborhood of # = 0 yields

J($(x)) = J(x¥) = 7V (x)" (In (A(x)) $(x)) + O ()

= —n§¢i(x)<mi(x> = pi(x)In (’;((;‘))) +00r).

This equation shows that, if ¢(x) # x and if n > 0 is
small enough, then J(¢(x)) — J(x) < 0, which means that
the objective function decreases.

III. STABILITY ANALYSIS OF MULTIPLICATIVE UPDATES

We analyze the convergence of multiplicative update al-
gorithms by means of Lyapunov’s stability theory. In neural
networks literature, this theory has been used for various
problems, such as analyzing the global exponential stability
of discrete recurrent neural networks with time-varying de-
lays [34], [35] or analyzing the discrete-time dynamics of
a class of self-stabilizing minor component analysis (MCA)
extraction algorithms [36].

A. Stability Definitions

Let us recall a few classical definitions in Lyapunov’s
stability theory of discrete dynamical systems [31]. Notation
I.]| denotes any vector norm.

Definition 3 (Lyapunov stability): A fixed point x € R, of
the recursion xP*1) = ¢(x(P)), where mapping ¢ : R? —
R’J’r is continuous in a neighborhood of x, is said to be
Lyapunov stable if Ye > 0, 30 > 0 such that Vx© ¢ R%,
@ —x|| <6 = |xP) —x|| <& VpeN.

This property means that initializing the recursion close
enough to x guarantees that the subsequent iterates remain
in a given bounded domain around x. However, it does
not guarantee local convergence. A fixed point which is not
Lyapunov stable is called unstable.

Definition 4 (Asymptotic stability): A fixed point x € R}
of the recursion x P+ = ¢(x()), where mapping ¢ : R —
R’J’r is continuous in a neighborhood of x, is said to be
asymptotically stable if it is Lyapunov stable and there exists

& > 0 such that Vx© ¢ R%, IxO—x|| <6 =xP — x.
p—>+00

This property means that initializing the recursion close
enough to x guarantees the convergence to x. A fixed point
which is Lyapunov stable, but not asymptotically stable, is
sometimes called marginally stable.

Definition 5: (Exponential stability and rate of conver-
gence) A fixed point x € R’} of the recursion xPHD =
¢ (x(P), where mapping ¢ : R% — R’ is continuous in a

4However, this singular case is never observed in practical NMF problems.
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neighborhood of x, is said to be exponentially stable if there
exists d,a > 0, and p €]0, 1[ such that vx© ¢ R%

lx@ —xll <6 = Ix —x| < allx® — x|l p? VpeN.
(1D

In this case, the minimum value of p such that (11) stands
is called the rate of convergence of the recursion.

This property ensures a linear speed of convergence, it
also implies asymptotic stability. A fixed point which is
asymptotically stable, but not exponentially stable, is generally
characterized by a sublinear speed of convergence (depending
on the initialization). Note that all the stability properties
defined above are local, which means that those properties
hold in a neighborhood of the fixed point x.

B. Lyapunov’s First (or Indirect) Method

Lyapunov’s first (or indirect) method permits us to char-
acterize the exponential stability and the corresponding con-
vergence rate of a dynamical system. Let us first recall its
principle, which we apply in the domain R’ .

Theorem 6 (Lyapunov’s first stability theorem): Let x €
R be a fixed point of the recursion xP*+D = ¢(x(P)), where
mapping ¢ : RT — R’ is continuously differentiable in
a neighborhood of x. Let V@' (x) be the Jacobian matrix>
of mapping ¢ at point x. Then the exponential stability
(or unstability) of x is characterized by the eigenvalues of
VT (x).

1) x is an exponentially stable fixed point if and only
if all the eigenvalues of V¢! (x) have a magnitude
lower than 1. In this case, the rate of convergence of
the recursion is equal to the spectral radius® of matrix
V¢ (x), which is denoted p (V¢T (x)) < 1.

2) If at least one eigenvalue of V@7 (x) has a magnitude
greater than 1, then x is unstable.

Note that, if all eigenvalues of V@ (x) have a magnitude
lower than or equal to 1, and at least one of them has
magnitude 1, then Theorem 6 does not permit arriving at any
conclusion, the fixed point can be Lyapunov stable or unstable.
In order to apply Theorem 6 to the mapping ¢ defined in
(10), we characterize the eigenvalues of matrix Ve (x) in
the following proposition.

Proposition 7: Let x € R’} be a local minimum of an
objective function J satisfying Assumption 1, and suppose
that Assumption 2 holds. Let ¢ be the mapping introduced in
Definition 1, which is continuously differentiable in a neigh-
borhood of x. Moreover, let us define the positive semidefinite
matrix

P(x) = D(x)V?J(x)D(x) (12)

with D(x) = diag(x/p(x))'/? (where p(x), defined in As-
sumption 1, has no zero entry), and the positive scalar

o2 (13)
T =PI

SFor 1 < i, j <n, the (i, j)th coefficient of matrix V¢ (x) is (04 /0x;).
6The spectral radius of a matrix is the maximum among the magnitudes of
its eigenvalues.
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where |.|> denotes the matrix 2-norm or spectral norm’ (if
|P(x)|l2 =0, n* is infinite).

Then, if # = 0, all the eigenvalues of the Jacobian matrix
Vo' (x) are equal to 1. Otherwise, the multiplicity of 2 = 1
as an eigenvalue of V¢! (x) is equal to the dimension of
the kernel of matrix [P(x)]4+ (with the use of Notation 1).
Moreover, the other eigenvalues of Vg (x) are as follows:

1) if n €]0, #*[, all the other eigenvalues have a magnitude

lower than 1;

2) if 5 < 0, all the other eigenvalues are greater than 1;

3) if # > y*, at least one eigenvalue is lower than —1;

4) if 5 = n*, at least one eigenvalue is equal to —1.

Proposition 7 is proved in Appendix B. Note that, in the
case # = 0, ¢ is the identity transform. In other respects, if
[P(x)]; is nonsingular, 1 is not an eigenvalue of V¢! (x).
Now we can state the stability properties of mapping (10):

Proposition 8: Let x € R’} be a local minimum of an
objective function J satisfying Assumption 1, and suppose
that Assumption 2 holds. Let ¢ be the mapping introduced
in Definition 1, which is continuously differentiable in a
neighborhood of x.

Then, following the notation introduced in Proposition 7:

1) x is an exponentially stable fixed point if and only if

n €10, #*[ and matrix [P (x)]+ is nonsingular;

2) if # ¢ [0, #*], x is an unstable fixed point;

3) if # =0, x is a marginally stable fixed point.

Proof: The first and second assertions are corollaries of
Theorem 6 and Proposition 7. The third assertion is trivial
since, if # = 0, mapping ¢ is the identity transform. [ ]

Note that the nonsingularity of matrix [P (x)]+ is equivalent
to the combination of the two following properties:

Vi such that x; =0, V;J(x) > 0,

matrix [V2J(x)]; is positive definite.

(14)
5)

If n = n*, orif # €]0, #*[ and matrix [P (x)]+ is singular,
Lyapunov’s first method does not permit arriving at any con-
clusion, since there is at least one eigenvalue of magnitude 1.

Finally, the following proposition completes Proposition 8§,
and proves the equivalence between the exponentially stable
fixed points of mapping ¢, and the local minima of function
J satisfying both properties (14) and (15).

Proposition 9: Let J be an objective function such that
Assumption 1 holds. Let x € R’} be a vector satisfying As-
sumption 2. Let ¢ be the mapping introduced in Definition 1,
which is continuously differentiable in a neighborhood of x.
Assume that # > 0 and that x is an exponentially stable fixed
point of mapping ¢. Then x is a local minimum of function
J, which additionally satisfies properties (14) and (15).

Proposition 9 is proved in Appendix B.

C. Lyapunov’s Second (Direct) Method

For a fixed point that is not exponentially stable, Lyapunov’s
second method permits us to further investigate its stability

TThe spectral norm of a matrix is equal to its greatest singular value. In
the particular case of Hermitian matrices, the spectral norm is equal to the
spectral radius.
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properties, and possibly prove its Lyapunov or asymptotic
stability. In this section, we will prove the following result,
which completes that of Proposition 8: if # €]0, #*[, even if
(14) does not stand, (15) alone is sufficient for guaranteeing
the asymptotic stability of the dynamical system. Let us first
recall the principle of Lyapunov’s second method, which we
apply in the domain R’ .

Definition 6 (Lyapunov function): For any x € R}, a Lya-
punov function y — V(x, y) is a continuous scalar function
defined on a neighborhood of x included in R’jr, which is
positive definite (in the sense that V (x,x) = 0, and V (x, y) >
0 for all y # x).

Theorem 10 (Lyapunov’s second stability theorem): Let
x € R be a fixed point of a continuous mapping
¢ R} — RL.

1) If there is a Lyapunov function V such that
V(x,¢(y)) < V(x,y) for all y in a neighborhood of x,
then x is Lyapunov stable.

2) If there is a Lyapunov function V such that
V(x,¢9(y)) < V(x,y) for all y # x in a neighborhood
of x, then x is asymptotically stable.

If x is a local minimum of a continuous function J, a natural
candidate Lyapunov function for the mapping ¢ defined in
Definition 1 would be V (x, y) = J(y) — J(x). However, this
choice raises two problems.

1) In some cases, a fixed point x is Lyapunov-stable,
whereas the objective function J is not globally
monotonically decreasing.®

2) The condition that V is positive definite may not be
satisfied in a neighborhood of x.°

For these reasons, we propose an alternative Lyapunov
function in the following lemma.

Lemma 11: Consider an objective function J satisfying
Assumption 1, and x € Ri, such that Assumption 2 holds.
Then the function

1
Vx,y) = 5()’ — x)" diag (M) (y

X4y

defines a symmetric Lyapunov function on R x R’}.

Proof: The definition and continuity of function V on
the borders of the domain R’ follow from the inequality
|vi —xi)/(xi +y)| <1 Vx, yi € RE. |

We can now state our main result.

Proposition 12: Let x € R/ be a local minimum of a
function J satisfying Assumption 1, and suppose that Assump-
tion 2 and (15) hold. If # €]O, #*[ (where #* was defined
in (13)), then the mapping ¢ introduced in Definition 1 makes
the Lyapunov function y — V(x, y) defined in (16) strictly
decrease in a neighborhood of x. As a consequence, x is an
asymptotically stable fixed point of mapping ¢.

Proposition 12 is proved in Appendix C. Considering
Proposition 8, it can be noticed that, if all hypotheses in
Proposition 12 stand but (14) is not satisfied, then x is an

—x) (16)

8This is the case of NMF with 1 < 7 < 2.

9n the case of unsupervised NMF, because of the invariances of the
factorization, there is a continuous set of fixed points y satisfying J(y) =
J(x) (see Sec. IV).
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asymptotically stable, but not exponentially stable, fixed point
of mapping ¢. This means that, depending on the initialization,
the dynamical system generally has a sublinear speed of
convergence.

IV. APPLICATION TO NMF

In this section, we show how Lyapunov’s stability theory
can be applied to the particular problem of NMF with an
objective function based on the f-divergence, which was
introduced in Section II-A. We first focus on the simple case of
supervised NMF, which is a direct application of the theory
presented in Section III, and then study the more complex
case of unsupervised NMF. Due to the lack of space, the
complete proofs have been moved to a separate document [32].
Nevertheless, the key ideas are provided whenever possible in
the following discussion.

Notation 2: In the following, the entries of the ' x K matrix
W and the K x T matrix H are remapped into vectors w and h
of dimensions K F and KT, respectively. Vector x is formed
by concatenating w and h. Then let us define the objective
function

J(x) = D(V|WH) (17)

where function D was defined in (1), and involves the f-
divergence (2). The gradient of J w.r.t. w is decomposed
as the difference of two nonnegative functions p*(x) and
m® (x) whose coefficients have been defined in (5), and similar
notation is used for k [see (32)]. Vector p(x) is formed by
concatenating p®(x) and p”(x). The Hessian matrices of
function J w.r.t. x, w, and & are denoted VJZCXJ(x), Vzwa(x),
and V%hJ (x), respectively. Let

¢w(w,h) = Aw(x)”w (18)

¢"(w,h) = Au(x)"h (19)
where A, (x) = dia ("'“"x’) and Aj(x) = dia (’””m)
w - g p"’(x) h - g ph(x) .

A. Application to Supervised NMF

In the context of supervised NMF, vector w is kept un-
changed, and vector k only is updated according to A(P+D) =
¢ (w, h(p)), where mapping ¢" was defined in (19), which is
equivalent to the multiplicative update (8). The parameter 7
introduced in the following lemma will play the same role as
n* in Sections III-B and II-C.

Lemma 13: Given a constant vector w, let 2 be a local
minimum of the NMF objective function & — J(w, k) defined
in (17). Function h — J(w, h) satisfies Assumption 1, and we
assume that h satisfies Assumption 2. Following Notation 2,
let us define

. 2
=PI <0
where P (x) is the positive semidefinite matrix
P"(x) = D"(x)V3,J(x)D"(x) 1)
with
D" (x) = diag(h/p" (x))?. (22)
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Then, VB € R, we have 0 < 75 < 2, and if f € [1,2],
n, =2.

Proof: This lemma is proved by exhibiting an eigenvector
of the positive semidefinite matrix P (x), whose eigenvalue
is equal to 1. If, additionally, f € [1,2], the convexity of
function J w.r.t. b permits us to prove that all the eigenvalues
of P"(x) are lower than or equal to 1. ]

Following Lemma 13, Propositions 8 and 12 directly prove
the exponential or the asymptotic stability of the local minima
of function 2 — J(w, k) for all n €]0, 772[, under mild
conditions (numerical examples are presented in Section V-A).
Of course, the same result stands for the reciprocal algorithm,
where h is kept unchanged, and vector w only is updated

according to w?t) = ¢“(w®, k), where mapping ¢v
was defined in (18), which is equivalent to the multiplicative
update (7).

Lemma 14: Given a constant vector , let w be a local min-
imum of the NMF objective function w — J(w, k) defined
in (17). Function w — J(w, h) satisfies Assumption 1, and we
assume that w satisfies Assumption 2. Following Notation 2,
let us define

= 2 (23)
=P @IL
where P"(x) is the positive semidefinite matrix
PY(x) = D”(x)V2,J(x)D"(x); (24)
with 1
D" (x) = diag(w/p" (x))2. (25)

Then, VS € R, we have 0 < 7}, < 2, and if § € [1,2],
ny, = 2.
This lemma is proved in the same way as Lemma 13.

B. Application to Unsupervised NMF

Actually, analyzing the stability of the algorithm which
alternates multiplicative updates (7) and (8) is particularly
difficult for the following reasons.

1) It is well known that unsupervised NMF admits several
invariances (the problem of the uniqueness of unsuper-
vised NMF has been addressed in [37] for instance).
Indeed, the product W H is unchanged by replacing ma-
trices W and H by the nonnegative matrices W = WD
and H' = D~'H, where D is any diagonal matrix with
positive diagonal coefficients. For this simple reason,
the local minima of the objective function are never
isolated (any local minimum is reached on a continuum
of matrices W' and H' whose product is equal to W H).
The consequence is that Assumption (15) never stands.

2) Anyway, recursion (7) and (8) cannot be implemented
with a mapping of the form (10), since it switches
between updates for W and H.

For these reasons, the results presented in Section III cannot
be straightforwardly applied to recursion (7) and (8), and
the local minima of the objective function can never be
exponentially stable (the Jacobian matrix always admits A = 1
as an eigenvalue). Thus Lyapunov’s first method will not
permit us to conclude on the stability of multiplicative updates.
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Nevertheless, this approach still provides an interesting insight
into the stability properties of the algorithm. We summarize
below the main results that we obtained by applying this
approach.

Recursion (7) and (8) is rewritten in the form

WPt = g (,,,(p),h(p)

RPHD = gh (w(l’“), h(p)) 26)

where mappings ¢ and ¢" were defined in (18) and (19).
Equivalently, we can write x(?*D = ¢(x(?)), with

$(x) = 8" (w, h): ¢" @" (w, ), )|

The parameter #} introduced in the following lemma will
play the same role as #* in Sections III-B and III-C.

Lemma 15: Let x be a local minimum of the NMF objec-
tive function J defined in (17). Function J satisfies Assump-
tion 1, and we assume that x satisfies Assumption 2. Let us
define

27)

7y = min (17, 1) (28)

where 7 and 77, were defined in (20) and (23). Then V§ € R,
we have 0 < 55 <2, and if § € [1,2], f = 2.

This lemma is a corollary of Lemmas 13 and 14. Note
that the definition of #% does not follow the same scheme
as the definitions of #; and 7}, in (20) and (23). Indeed in
Proposition 16, which characterizes the eigenvalues of the
Jacobian matrix V¢! (x), the upper bound 7y is not equal
to (2/[|P(x)|l2) [with P(x) defined in (29)].

Proposition 16: Let x be a local minimum of function J
defined in (17). Function J satisfies Assumption 1, and we
assume that x satisfies Assumption 2. Consider the mapping
¢ defined in (27), which is continuously differentiable in a
neighborhood of x.

Then, if # = 0, all the eigenvalues of the Jacobian matrix
VT (x) are equal to 1. Otherwise, . = 1 is always an
eigenvalue of V¢! (x). Following Notations 1 and 2, its
multiplicity is greater than or equal to the dimension of the
kernel of matrix [P(x)]+, where

P(x) = D(x)V3,J(x)D(x) (29)

and D(x) = diag(x/ p(x))%. Moreover, the other eigenvalues
of V¢ (x) are as follows.

1) If 5 ¢ [0, 2], there is at least one eigenvalue greater
than 1.

2) If 5 €]0, %[ (where x} was defined in (28)), the multi-
plicity of the eigenvalue 1 is equal to the dimension of
the kernel of matrix [P (x)]+, and all other eigenvalues
have a magnitude lower than 1.

Proof: The proof of Proposition 16 follows the same
outline as that of Proposition 7. It additionally relies on the
observation that . = 1 and A = (1—#)? are always eigenvalues
of the Jacobian matrix V¢’ (x) (which is proved by exhibiting
the corresponding eigenvectors). [ ]

As mentioned above, Proposition 16 does not permit us to

conclude on the stability of multiplicative updates. Neverthe-
less, it enables a formal proof of the first and second assertions
in the following proposition (the third one is trivial).
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Fig. 1. Example of sublinear convergence speed. (a) Decrease of the objective
function J (7 = 1). (b) V/JH?) — H||p — VHP+D — H|lp (5 = 1).

Proposition 17: Let x be a local minimum of function J
defined in (17). Function J satisfies Assumption 1, and we
assume that x satisfies Assumption 2. Consider the mapping
¢ defined in (27), which is continuously differentiable in a
neighborhood of x.

Then:

1) Vn € R, x is not an exponentially stable fixed point;

2) if 5 ¢ [0, 2], x is an unstable fixed point;

3) if # =0, x is a marginally stable fixed point.

Proposition 17 does not tell us what happens if # €]0, 2].
This is because 1 is always an eigenvalue of the Jacobian
matrix V@ (x), as shown in Proposition 16. If 5 €]0, il its
multiplicity is equal to the dimension of the kernel of matrix
[P(x)]+, which we suppose accounts for the invariances of
the factorization.!?

V. SIMULATION RESULTS

In this section, we propose some numerical simulations
which will illustrate the theoretical results presented in Sec-
tions III and IV. We first focus on supervised NMF, and then
investigate the case of unsupervised NMF.

A. Supervised NMF

First, we study the stability of the multiplicative up-
date (8) applied to matrix H, while keeping matrix W
unchanged.

1) Example of Sublinear Convergence Speed: In this first
experiment, the dimensions are F = 3, T = 3, and K = 2.
The multiplicative update (8) is applied to the KL divergence
(f = 1) with a step size # = 1 (which corresponds to the stan-
dard multiplicative update). The matrix V to be decomposed
is defined as a square nonnegative Hankel matrix:

10Actually the invariances of the factorization imply some conditions on
the first-order and second-order derivatives of the objective function J.
We managed to prove that, if all the hypotheses in Proposition 17 and
property (14) are satisfied, then the dimensionality of such conditions is equal
to the dimension of the kernel of matrix [P (x)]+.
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4 | and the matrix W is defined as
5

11
w=| 21 (30)
3

1

It can be noticed that V is singular, and that it can be exactly

factorized as the product V = WH, where
1 1 1
i= [ 01 2 }

Thus we readily know that the lowest value of D(V|W H)
w.rt. H is 0, and that this global minimum is reached for
H defined in (31). This particular example was chosen so
that V = V, thus ph = m", as can be noticed in (32).
Consequently, property (14) does not stand, since hy; = 0
and 0J /0hy1 = 0. Therefore, Proposition 8, which would have
proven the exponential stability of the global minimum, cannot
be applied. Nevertheless, all the hypotheses in Proposition 12
and Lemma 13 are satisfied, which proves the asymptotic
stability. Thus the speed of convergence of the multiplicative
update (8) may be sublinear, which will be confirmed by the
following simulation results.

Fig. 1 shows the results obtained by initializing (8) with
a matrix H having all coefficients equal to 2. As can be
noticed in Fig. 1(a), the objective function J monotoni-
cally converges to 0O (its global decrease was proven in
Proposition 1). Besides, Fig. 1(b) represents the sequence
(1/I|HP —H| )~ (1/|H?™) — H| r) [where |.|lF denotes
the Frobenius norm, HP) is the matrix computed at iteration
p, and H is the matrix defined in (31)] as a solid blue line. It
can be noticed that this sequence converges to a finite negative
value (represented by the dashed red line), which shows that
|H® — H||r = O(1/p). As predicted by the theoretical

analysis, the convergence speed happens to be sublinear (at
least for the proposed initialization).

€19

2) Example of Linear Convergence Speed: In this second
experiment, all variables are defined as in Section V-A, ex-
cept that the top left coefficient of V is replaced by 0.9.
Consequently, this matrix is no longer singular; thus the global
minimum of the objective function w.r.t. H cannot be zero.
Instead, a local (possibly global) minimum w.r.t. H can be
computed by means of multiplicative update (8), initialized
as in Section V-A.!l Numerically, we observed that the local
minimum x is still such that hy; = 0, but 6J/0h>; > 0; thus
property (14) now stands, and Proposition 8 and Lemma 13
prove the exponential stability of this local minimum, with a
convergence rate equal to the spectral radius p(Vh(th(x)),
which will be confirmed by the following simulation results.

Fig. 2(a) shows that the objective function J is monoton-
ically decreasing. Besides, Fig. 2(b) represents the sequence
|H®*) — H||p/|H"P — H|F as a solid blue line, and the

U Note that in this second experiment, the value of matrix W defined in (30),
which remains unchanged throughout the iterations, does no longer correspond
to a local minimum of the objective function w.r.t. W.
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Fig. 2. Example of linear convergence speed. (a) Decrease of the objective
function J(7 = 1). () [HP+D— H||p/|HP) — H|lg (5 = 1). (c) Spectral
radius p (VT (x)).

value p(thShT(x)) as a dashed red line.!2 It can be noticed
that this sequence converges to p(Vh(th(x)), which shows
that |[H®) — H||p = O(p(thShT(x))p). As predicted by the
theoretical analysis, the convergence speed is linear, with a
convergence rate equal to p(thShT(x)).

3) Optimal Step Size: In this third experiment, all variables
are defined as in Section V-A, and we are looking for
an optimal step size 5. Since f = 1, Proposition 8 and
Lemma 13 prove that the local minimum is exponentially
stable if and only if 0 < # < 2. In Fig. 2(c), the solid red line
presents the spectral radius p(Vh(bh (x)) as a function of 7,
for all n €] — 0.1, 2.1[. This simulation result confirms that
p(Vae"" (x)) < 1if and only if O < 5 < 2, and it shows that
there is an optimal value of parameter # for which the rate of
convergence is optimal. In particular, we note that the standard
step size # = 1 is not optimal. Besides, we observed that a
value of 7 outside the range [0, 2] results in a divergence of
the objective function J (for # = O the objective function is
constant, and for # = 2 it oscillates between two values).

B. Unsupervised NMF

We now study the case of unsupervised NMF, which alter-
nates multiplicative updates (7) and (8) for W and H. In this
fourth experiment, all variables are defined as in Section V-A
and the algorithm is initialized in the same way.

12The spectral radius p(Vh¢hT(x)) was computed from the closed-form

expression of matrix Vh¢h (x) presented in (52) in the supporting docu-
ment [32].
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Fig. 3. Unsupervised NMF. (a) Decrease of the objective function J(y = 1).
(b) Spectral radius p(V@T(x)).

Fig. 3(a) shows that the objective function J is monoton-
ically decreasing (to a nonzero value). As in Section V-A,
the solid red line in Fig. 3(b) represents the spectral radius
p(VeT (x)) as a function of the step size 5, for all # €
1—0.1,2.1[. 13 As proved in Lemma 15 and Proposition 16,
p(VoT (x)) > 1if ¢ [0,2], and p(Vé! (x)) = 1 in the
range 1 = |0, 2[, which confirms that the local minimum is not
exponentially stable, as stated in Proposition 17. Finally, the
solid blue line represents the maximum among the magnitudes
of the eigenvalues of matrix V¢! (x) which are different from
1. % This suggests an optimal value 7 ~ 1.875, which is again
different from the standard step size # = 1. Indeed, it can be
verified that the lowest value of the objective function J (after
100 iterations) is reached when the algorithm is run with this
optimal value of 7.

VI. CONCLUSION

In this paper, we analyzed the convergence properties of
general multiplicative update algorithms that are designed to
solve optimization problems with nonnegativity constraints,
where we introduced an exponent step size 7. We have applied
Lyapunov’s first and second methods to find some criteria
that guarantee the exponential or asymptotic stability of the
local minima of the objective function, either by analyzing
the eigenvalues of the Jacobian matrix of the mapping or
by introducing a suitable Lyapunov function. We noticed
that exponential stability ensures a linear convergence speed,
whereas asymptotic stability generally leads to a sublinear
convergence speed (depending on the initialization). In both
cases, we provided the closed-form expression of an upper
bound #* such that the exponential or asymptotic stabil-
ity is guaranteed for  €]0, *[. This paper was straight-
forwardly applied to supervised NMF algorithms based on

13The spectral radius p(V¢T(x)) was computed from the closed-form ex-
pression of matrix V¢T(x) presented in (55) in the supporting document [32].

14This maximum value discards the eigenvalues equal to 1, which are due
to the invariances of the factorization.
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f-divergences, which update all variables at once, instead
of switching between two multiplicative updates. We have
thus presented some criteria that guarantee the exponential
or asymptotic stability of NMF multiplicative updates, and
proved that the upper bound is such that Vf € R, »* €
10,2], and if B € [1,2], ¥ = 2 (note that in this last
case, Lee and Sung’s multiplicative updates correspond to
the particular case # = 1). We then applied the same
methodology to study the more complex case of unsupervised
NMF. Analyzing the stability properties of the multiplicative
updates happened to be particularly difficult because of the
invariances of the factorization, which make the local minima
of the objective function nonisolated, thus nonasymptotically
stable. Nevertheless, Lyapunov’s first method has provided
some interesting insights into the convergence properties of
those updates. In particular, we proved their unstability if
n ¢ [0, 2]. Finally, the theoretical results presented in this
paper were confirmed by numerical simulations involving both
supervised and unsupervised NMF. Those simulations showed
that the convergence rate depends on the value of #, and that
there exists an optimal value of 7 (generally different from
1) that provides the fastest convergence rate (thus faster than
that of Lee and Sung’s multiplicative updates). Finally, this
paper can also be applied to nonnegative tensor factorization
via unfolding [13].

A possible extension of this stability analysis would focus
on the hybrid case of constrained unsupervised NMF. If
the constraint is expressed via a modification of the under-
lying model like in [21], [24], and [27], the convergence
analysis may be similar to that of unconstrained NMF. If
the constraint is expressed via additional penalty terms in
the objective function like in [19], [20], [25], and [26], the
convergence analysis may paradoxically be simpler than in
unconstrained NMF, the algorithm still switches between two
multiplicative updates, but the modified objective function may
have isolated, thus asymptotically stable, local minima. In
other respects, an algorithmic outlook of this paper would
be the design of multiplicative update algorithms with an
optimal or an adaptive exponent step size. Similarly, since
functions p and m are not unique, it would be interesting
to investigate the impact of the choice of p and m onto the
convergence rate.

APPENDIX

A. Multiplicative Update Algorithms for NMF

Proof of Proposition 1: We remark that dg(x|y) defined
in (2) can be written in the form dg(x|y) = xﬁéﬁ(y/x), where

SR B Wy W

w0 = 551

dop g1 p2

du ’

2

U~ g e
u

Function dg is strictly convex in Ry if and only if Vu > 0,
a’zéﬁ/du2 > 0, which is equivalent to 1 < f < 2. Then we
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write -
)
DVIWH) = ">} 5 (l)
F=11=1 Uf1

where 0, was defined in (6). Because of the strict convexity

of dp, we have Vh, € RX
b feh)
w 2
Ufthkt

K
w rih,
5 kgl Tk _ iwfkhkt
p l)ft p =1 6ft
K ~ ’
< Z wj:khkz 5 (Ufthk,)
= Uft vfihie
with equality if and only if Yk € {1...K}, h}, = hy,.
Thus, VH' € RX*T D(VIWH') < GW-H(H'), where
GVH(H') = Zf:l ZtT:I Gl?t/ﬂ(h;a) and

5w Do
GVH ) = R S (—’ﬂ)
kt kt ]Z:l D1 F198 v st i
with equality if and only if H' = H. Then, let h;, (n) =
Nkt (mZt / p,}jt)n, where p,}zt and mZz are defined similar to p;’k
and m’;)k in (5)

F
h ~f—1
=D wpd,
7=l (32)

F
h ~p—2
my, = Z wfkvf,vﬁt .
=1

Here we assume p,i’t # 0. Define the function Fy (1) =
G M, (n)). Then (d Fye /d;y} = (dG " jan), \dh,, /dn) =
hk,p]i’t In (mzt/pzt)(mgt/pgt)” [1 - (mzt/p]i’t) ”] where we
assume mzt #0.If hgy # 0 and mZz #* p,}c’t, then:

1) Y <0 for all 7 €] — o0, 1[;

2) dd?’“:Ofornzl;

3) 4 > 0 for all 5 €]1, +o0l.

In particular, Vi €]0,1], Fi;(n) < Fy(0). Finally, let
Fl) = S Xy Fuln = GVHH (). If H () #
H, then Vi €]0,1], F(y) < F(0). Consequently, V4 €
10, 11, D(VIWH'(n)) < F(y) < F(0) = D(VIWH). Thus
H () #H = D(V|WH'(y)) < D(V|WH).

The same proof can be applied to the update of W. |

B. Lyapunov’s First Method

Proof of Proposition 7: By differentiating (10), we obtain
the expression of the Jacobian matrix Vg’ (x)

Vo' (x) = A(x)"+

1 (VmT (0)diag(ls) — VT (¥)diag(5y)) diag(@(x)).
(33)

If x is a local minimum of the objective function J,

Lemma 5 proves that it is a fixed point of ¢, and thus (33)
yields

Vo' (x) = A(x)" — nV?J (x) diag(x/p(x)).  (34)
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Now let us have a look at the eigenvalues of matrix V¢! (x).

1) For all i such that x; = 0, it is easy to see that the
i™ column of the identity matrix, which we denote
by u;, is a right eigenvector of V¢! (x), associated to
the eigenvalue 1; = (m;(x)/pi(x))" (since the product
of the last term in (34) and vector u; is zero). We
can conclude that, if V;J(x) = 0 or n = 0, then
Ai = 1; otherwise 4; € [0,1[ if > 0, and 4; > 1
if n <O0.

2) Let u be a right eigenvector of V@ (x) which does not
belong to the subspace spanned by the previous ones,
associated to an eigenvalue 4. Then

A@)"u — nV2J (x)diag(x/p(x))u = Ju. (35)

Let v = D(x)u. This vector is nonzero; otherwise, u

would belong the subspace spanned by the previous set

of eigenvectors u;. Left multiplying (35) by D(x) yields

A(x)"v—nP(x)v = v, where the positive semidefinite

matrix P(x) was defined in (12). Then, noting that

A(x)"v = v (since for any index i, either A;(x) = 1

or v; = 0), we obtain (I, — 5y P(x))v = lv, where I,

denotes the n x n identity matrix. This proves that A

is an eigenvalue of I,, — n P(x). It is easy to see that

the previous set of vectors u; are also eigenvectors of

P(x), associated with the eigenvalue 0, but they cannot

be colinear to v since v; = 0 for all { such that x; = 0.

Thus A = 1 — nu, where u is an eigenvalue of [P (x)]%

(with the use of Notation 1). We can conclude that, if

u = 0, then 1 = 1. Otherwise, we note that #* defined

in (13) is equal to 2/||[[P(x)]’ [l and moreover:

a) if # = 0, all the other eigenvalues are equal to 1;
b) if 0 < 5 < 5*, all the other eigenvalues belong to

I-1L1G
c) if # < 0, all the other eigenvalues are greater
than 1,
d) if # > #*, there is at least one eigenvalue A < —1;
e) if # = u*, there is at least one eigenvalue 1 = —1.

Finally, the total number of eigenvalues equal to 1 (if
n # 0) is the number of coefficients i such that x; = 0
and V;J(x) = 0, plus the dimension of the kernel of matrix
[P(x)]’.. In other words, it is equal to the dimension of the
kernel of [P (x)]+. ]

Proof of Proposition 9: Since x is an exponentially stable
fixed point of mapping ¢, all the eigenvalues of V¢! (x) have
magnitude lower than 1. Moreover, ¢(x) = x and Vi, either
xi = 0 or m;(x) = p;(x). Thus (33) still yields (34). Again,
let us have a look at the eigenvalues of matrix V¢ (x).

1) For all i such that x; = 0, the eigenvalue A; =
(m;(x)/pi(x))" associated to the eigenvector u; is lower
than 1. Thus m;(x) < p;(x) and V;J(x) > O.

2) Previous developments in the proof of Proposition 7
show that the others eigenvalues A can be written in
the foorm A = 1 — nu, where u is an eigenvalue of
[P(x)]i. Since 4 < 1, we conclude that 4 > O,
thus [P(x)]% is a positive definite matrix, and so is
[V2J ()15 = [V2J ()]
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We have thus proved that properties (14) and (15) stand.
This proves that x is a local minimum of function J. |

C. Lyapunov’s Second Method

Proof of Proposition 12: Function V (x, y) defined in (16)
can be decomposed as follows:

Veey = Yy )
i/x;=0
L o pi®)+pi(y)

+i/§>:0§(yl X;) X+

= > yi(pix) + 0y —xI)
i/x;=0
+ > %(y,-—x,-)2 (@w(uy—xn)).

i/x;>0 !

(36)

Note that, since ¢(x) = x and ¢ is continuously differen-
tiable at x, ||¢(y) — x|l = O(|ly — x||). Therefore, replacing
y by ¢(y) in (36) yields

V¢ = D ¢ (pix)+ 0y —xI))

i/x;=0
1 ) N2 pi(x) _
+ iéoi(qs,(y) —xi) ( o T Oy x||)) :
(37)
Then, subtracting (36) from (37) yields
V(x’ ¢(y)) - V(x» y)
= D @i =) (pitx) + Olly — xII))
i/x;=0
+ 3 @i =0 (3 -+ 2=
i/x;>0
x (p,-x@ +0(ly - x||>). (38)
However, (10) proves that ¢;(y) — yi =

yi ((mi(y)/pi(y))T — 1), in particular:
1) if x; =0and V;J(x) >0

, n
¢i(y) — yi = =i (1 - (mf(x)) + O(ly — xll)) ;
pi(x)

2) if x; =0and V;J(x) =0

b1 () —yi=——2 IV () (y =)+ Oy — %)
pz(x)
3) if x; > 0 (and V;J(x) = 0)
$i(9) — i = =~ (V21 (x)(y — )i + O(lly — x1?).

pi(x)
Substituting these three equalities into (38) and a few
manipulations show that (with the notation [.Jop and [.]+
introduced in Notation 1)

V(x, () — V(x,y) = —[yld (v@x)o+ Oy — x))

—nly —x1TM@)ly — x14 + Oy —xI%)
(39)
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where [v(x)]o = [, — Ax)7]g[p(x)]o is a vector with
(strictly) positive coefficients since # > 0, and

[M(x)]+ = V2 ()]
X

— vy, [diag (—)} [V2J(x)l; (40)
2 p(x) +

is a positive definite matrix since 7 < 7* (see Lemma 18 be-

low). Equation (39) finally proves that there is a neighborhood

of x such that Vy # x, V(x,¢(y)) — V(x,y) <O. ]

Lemma 18: Let x € R, be a local minimum of a function

J satisfying Assumption 1, and suppose that Assumption 2 and

property (15) hold. Then the matrix [M (x)]+ defined in (40)

is positive definite if and only if # < #* [where #* was defined
in (13)].

Proof of Lemma 18: Matrix [M (x)]+ is positive definite if

and only if [1, ]y — (/2)[P’(x)] is positive definite, where

[P'(x)]} = ([vzf(xm)% [diag (ﬁ)] ([v21<x>]+)%
+

which is equivalent to # < 2/||[[P’(x)]+|l2. However, it is
easy to prove that the eigenvalues of [P’(x)]; are equal to
those of

[P(x)]4 = [D(x)]y [VZI (@)]4 [D()] -

Consequently, [[P'(x)]+[l2 = I[P (¥)]+ll2 = | P(x)]>. W
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