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ABSTRACT 
This past few years, avionics platform conception changed to 

integrated architecture, permitting one processor to host some 
applications, in order to reduce weight and space. But this 
method entails more complexity, especially in safety domain, 
while time to market tends to decrease, so new development 
processes are needed. Model-based approaches are now mature 
enough to design embedded critical systems and perform 
architecture exploration. 

In this paper we present a new modeling approach allowing 
avionics platform description and dynamic simulation. This 
method aim at dimensioning the architecture according to the 
applications it has to process, and to achieve early platform 
validation. 
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Keywords 
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1. INTRODUCTION  
Avionics systems are critical real time systems, i.e. timing 

constraints have to be strictly respected at the risk of 
catastrophic issue. They are composed of applications, real-time 
operating system and hardware modules. Initially, avionics 
platform (hardware and operating system) were implemented as 
federated architectures, where one processing unit hosted one 
function. This relatively simple architecture was however costly 
in terms of space, weight and power consumption, but offers a 
simple approach regarding the certification.  
In order to reduce these parameters, and also to reduce costs, the 
Integrated Modular Avionics (IMA) concept was developed in 
the 2000s. It defines integrated architectures, where one 
processor can host  some applications, and so reduces the 
number of modules used in avionics platform. Following this 
evolution, suppliers developed network architectures, in which 

modules are interconnected and communicate through a 
deterministic network. However, aggregating applications in a 
few modules, and gathering communications in a central 
network entails an increase of complexity in avionics platform 
design, verification and certification processes. In the same time, 
time to market tends to decrease. These developments require an 
early modeling of the system to validate and maximize the use of 
the future platform, while ensuring the critical level required by 
current standards in aviation (DO-178B, DO-254, MILS-CC…).  

To model this IMA platform and perform early validation, 
Model-Driven Engineering (MDE) approaches are now suitable 
to describe system high-level functionalities. Many projects aim 
at modeling these platform with Architectural Description 
Languages (ADL) as AADL [1] or MARTE [2], or with 
synchronous languages such Lustre or Signal [3,4]. However, 
they often focus on the applications description, model the 
hardware as connected blackbox components with a few 
properties, and perform static simulation. Moreover, there 
actually is no automated process for complete platform modeling 
and simulation.  

We define a new modeling method, that aims at designing a 
complete avionics platform (hardware, operating system and the 
applications). It is a component-based approach, relying on two 
languages and taking advantages of both: AADL and systemC. 
AADL [5] is, as MARTE, an ADL particularly adapted for 
software architecture description [6,7], enabling the modeling of 
ARINC 653 embedded real-time system [8]. In view of the 
experience of partners who developed the ARINC 653 AADL 
annex, the ARINC 653 compliant runtime for AADL called 
POK, the Ocarina tool suite etc., we choose the AADL rather 
than MARTE. SystemC [9] is an IEEE standard widely used in 
industry for hardware platform description, and containing a 
simulation kernel for architecture simulation and exploration. 

In this paper we present our new modeling approach. We first 
introduce IMA concept, then we detail our method, before 
concluding with perspectives of our work.  

 

2. Integrated Modular Avionics platform  
IMA concept introduced integrated architecture, allowing 

to reduce the number of different modules used for platform 
design. As illustrated in figure 2, an IMA platform is composed 
of avionics applications, embedded operating system and the 
underlying hardware. This latter is composed of several 
processing modules communicating through a deterministic 
network, the AFDX (Avionics Full DupleX). 
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Figure 1. IMA platform 

 

A processing module can host one or some applications at 
different criticality levels, it is then necessary to respect safety 
constraints. That's why OS ARINC 653 standard was defined, 
which specifies space and time partitioning. Figure 2 gives an 
overview of an IMA module embedding an ARINC 653 
operating system. To ensure space partitioning, each application 
is enclosed in one or some partitions, isolating it from each 
other. Each partition is bound to a part of memory, so it only 
access its memory area. This partitioning prevents from failure 
propagation. Intra and inter-partitions communications are also 
defined by the standard to prevent failure propagation. To 
ensure time partitioning, each partition has its own execution 
time window, during which the application has access to all 
resources dedicated (processing, memory, dedicated I/O etc. ). 

 
 

 
 

Figure 2. ARINC 653 spatial partitioning 

 

3. IMA platform modeling 

3.1 Overview 
Model-Driven Engineering approaches are now mature 

enough to serve as a basis for building embedded systems and 
perform early validation. They are especially suitable for 
modeling the high-level architecture, that are the functional 
architecture (description of the functionalities offered by the 

system) and logical architecture (description of how the system 
is structured into logical components cooperating by 
communications) [10,11]. But at platform architecture level, 
these approaches describe both hardware and software as static 
blackbox elements with some properties. 
 Some projects [1,2,3] aim at building more accurate platform 
models, but they mainly focus on the software behavior, and 
model hardware as one or a few blackbox components without 
behavior information. They  after simulate this latter statically. 
There is so no method to retrieve dynamic performances from 
the hardware to validate it according to the applications 
requirements.  
Our method develops a new approach for avionics platform 
modeling. It aims at refining architecture description at platform 
decomposition level, specially the hardware. In order to refine 
this latter, our approach models and sizes it according to 
applications requirements. As we can see in figure 3, this 
approach consists of different tasks:   

- system modeling; 

- applications characteristics  extraction; 

- platform generation according to requirements; 

- platform simulation with simulation scenario made with 
extracted stimuli; 

- platform performances analyses.  

 
 

Figure 3. Modeling approach. 

3.2 Application modeling 
The description of the application consists of a set of 

characteristics (parallel code percentage, hit cache rate etc.), that 
will give the future platform requirements, and a set of 
instructions which will be translated into hardware stimuli. 
Figure 5 shows the two ways we can use to extract these 
characteristics from the application, and build a simulation 
scenario to simulate the platform.  



  

 

Figure 4. application modeling. 

In the first way, -left path in the figure 4-, we have access to the 
application source code. In this case, the application is modeled 
with the AADL threads, which represent the ARINC 653 
processes of the application. They are configured according to 
this processes (deadline, priority etc.). Threads are bound to a 
processor (or partition) and a memory (or part of memory), and 
ordered according to the scheduling policy defined for the 
application. Each thread as a reference to a part of the source 
code, from which we extract characteristics giving the 
requirements the platform has to match.  

To elaborate the simulation scenario, we use a code profiling 
and application decomposition method. The figure 5 gives an 
overview of an application decomposition: it is decomposed into 
a logical function sequence (encoder, decoder…), refined into 
basic functions instructions (FFT, FIR…). Each basic function is 
composed of simple instructions (operator and operand(s)), that 
can be simple operations (add, div etc.) or memory access. The 
code attached to the AADL thread is parsed and instructions are 
extracted. We translate these latter into corresponding systemC 
instructions. For example, a "load" gives a systemC 
READ_COMMAND instruction. 

 

 
 

Figure 5. Application decomposition example 

 

 

On the other way -right path on the figure 4-, we have not the 
source code of the application, so we can not extract basic 
instructions. However, some main application characteristics 
(sequential code percentage, scheduling policy etc) are given, 
and allow the elaboration of several constraint-random 
simulation scenario which fulfill application requirements. This 
method allows a hardware platform early validation without 
access to the application, but only with representative 
characteristics. It is less accurate than the first way, but is easier 
and faster. 
 

3.3 High level system modeling with AADL 
As we saw in the previous section, the application is 

described with AADL threads.  
The real-time operating system is defined by some properties 
dispatched in the different hardware components. For example, 
scheduling policy is set in the processor module, partition 
security level is defined in the virtual processor, etc. To model 
an ARINC 653 operating system, we use the AADL  653 annex, 
and the method described in this article [8]. 

Each hardware component is modeled with the AADL 
corresponding component, or with the device element. Some 
components more complex, like network, are modeled as a sub-
system containing some components. We model hardware 
component as a pseudo blackbox element, where behavior is not 
defined. We define interface information (ports, bus required if 
needed) and a few properties (memory size, bus transfer latency 
etc.).  In order to refine those hardware properties, we created 
DRAM and cache component (that inherit memory element) to 
refine their read and write latencies, and we defined or 
completed some AADL property sets. We introduced behavior 
and specific properties, like cache hit rate for cache module, or 
refresh time for DRAM component. 

The user models with the AADL the system corresponding to 
the platform, and choose which viewpoint(s) will be set when 
analyzing the platform. Viewpoints can be for example timing 
performance, power consumption or safety, and enable the 
platform investigation under different angles. We then extract 
the main characteristics of the application, and parse this AADL 
platform to retrieve properties, connections and deployment 
information, that will serve for systemC platform generation. 
 

3.4 Platform integration by generation 
         In order to generate the systemC platform, we developed a 
database of configurable systemC components. These 
component have three parts: behavior, main properties and 
interface. For each of them, we identified the main 
characteristics and defined a configurable automata. At each 
state of this one are attached parameters corresponding to 
viewpoints and/or global parameters. Figure 6 shows an example 
of DRAM automata with some timing parameters (tRefresh, 
tRDC etc.) and one global parameters (burst_cpt).  

For each platform element of the AADL model, we retrieve its 
information (properties, connections etc.) and configure the 
corresponding  systemC behavioral model. Then, we connect all 
the modules to elaborate the refined systemC platform. 



  

 

 Figure 6. DRAM automata example with timing annotation 

 

3.5 Platform simulation and results 
Currently, this is a work in progress. However, we have 

already encouraging results. The AADL part of the process has 
been specified and is under development, while systemC main 
hardware components (processing unit, cache memory, dram 
and bus) have been developed (behavior, main properties and 
communication interface). In order to test and refine these 
elements, we implemented a minimum hardware platform with 
one or some instance of each of them. We also developed a 
systemC frame generator that simulates the platform, so we can 
observe the elements behavior and the platform 
communications. 
Otherwise, to test our future platform, we defined a simulation 
and performances analysis method:  to see if the hardware 
platform built is compliant with the application requirements, 
we perform a simulation using systemC kernel. It takes the 
platform generated, the viewpoint(s) set, and applies the 
simulation scenario. As we can see in the figure 7, the user can 
analyze the platform performances by examining performances 
graphs or simulation traces. Then, we can see if the platform 
matches the requirements corresponding to the viewpoint(s) set. 
If the hardware is not compliant with the applications 
requirements, we can investigate what is the problem, and try to 
refine or modify one or more components implementation. 

 

Figure 7. Platform simulation and performances analysis. 

4.  Conclusion 
Current early platform validation methods center on  

software modeling, regarding the hardware as blackbox 
components which can't be dynamically simulated.  
We have presented a new early validation approach, that aims at 
modeling a complete avionics platform, software and hardware 
(i.e. IMA modules and their interconnections as AFDX). Our 
method automatically generates hardware and simulation 
scenario to simulate it. It enables a dynamic simulation of the 
platform, and analyzes its performances according different 
viewpoints (timing, power consumption or safety). It takes 
advantages from the AADL, particularly adapted for software 
architecture modeling, and from systemC, industrial standard for 
hardware architecture description. 

To validate the accuracy of our modelling methodology, we 
first model electronic evaluation boards. We will afterwards 
model a complete IMA platform to compare the model 
performances with the experimental results. Otherwise, we will 
connect with existing model-driven engineering methods and 
improve the platform development process. 
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