

A New Modeling Approach for IMA Platform Early
Validation

Michaël Lafaye, David Faura, Marc Gatti, Laurent Pautet

Telecom Paristech, LTCI
46 rue Barrault

75634 Paris Cedex 13, France

{lafaye,pautet}@telecom-paristech.fr

Thales Avionics, ACS/DTEA
18 avenue Maréchal Juin

92366 Meudon-la-Forêt Cedex, France

{david.faura,marc-j.gatti}@fr.thalesgroup.com

ABSTRACT
This past few years, avionics platform conception changed to

integrated architecture, permitting one processor to host some
applications, in order to reduce weight and space. But this
method entails more complexity, especially in safety domain,
while time to market tends to decrease, so new development
processes are needed. Model-based approaches are now mature
enough to design embedded critical systems and perform
architecture exploration.

In this paper we present a new modeling approach allowing
avionics platform description and dynamic simulation. This
method aim at dimensioning the architecture according to the
applications it has to process, and to achieve early platform
validation.

General Terms
Performance, Design, Verification.

Keywords
modeling, avionics systems, real-time, simulation, AADL,
systemC

1. INTRODUCTION
Avionics systems are critical real time systems, i.e. timing

constraints have to be strictly respected at the risk of
catastrophic issue. They are composed of applications, real-time
operating system and hardware modules. Initially, avionics
platform (hardware and operating system) were implemented as
federated architectures, where one processing unit hosted one
function. This relatively simple architecture was however costly
in terms of space, weight and power consumption, but offers a
simple approach regarding the certification.
In order to reduce these parameters, and also to reduce costs, the
Integrated Modular Avionics (IMA) concept was developed in
the 2000s. It defines integrated architectures, where one
processor can host some applications, and so reduces the
number of modules used in avionics platform. Following this
evolution, suppliers developed network architectures, in which

modules are interconnected and communicate through a
deterministic network. However, aggregating applications in a
few modules, and gathering communications in a central
network entails an increase of complexity in avionics platform
design, verification and certification processes. In the same time,
time to market tends to decrease. These developments require an
early modeling of the system to validate and maximize the use of
the future platform, while ensuring the critical level required by
current standards in aviation (DO-178B, DO-254, MILS-CC…).

To model this IMA platform and perform early validation,
Model-Driven Engineering (MDE) approaches are now suitable
to describe system high-level functionalities. Many projects aim
at modeling these platform with Architectural Description
Languages (ADL) as AADL [1] or MARTE [2], or with
synchronous languages such Lustre or Signal [3,4]. However,
they often focus on the applications description, model the
hardware as connected blackbox components with a few
properties, and perform static simulation. Moreover, there
actually is no automated process for complete platform modeling
and simulation.

We define a new modeling method, that aims at designing a
complete avionics platform (hardware, operating system and the
applications). It is a component-based approach, relying on two
languages and taking advantages of both: AADL and systemC.
AADL [5] is, as MARTE, an ADL particularly adapted for
software architecture description [6,7], enabling the modeling of
ARINC 653 embedded real-time system [8]. In view of the
experience of partners who developed the ARINC 653 AADL
annex, the ARINC 653 compliant runtime for AADL called
POK, the Ocarina tool suite etc., we choose the AADL rather
than MARTE. SystemC [9] is an IEEE standard widely used in
industry for hardware platform description, and containing a
simulation kernel for architecture simulation and exploration.

In this paper we present our new modeling approach. We first
introduce IMA concept, then we detail our method, before
concluding with perspectives of our work.

2. Integrated Modular Avionics platform
IMA concept introduced integrated architecture, allowing

to reduce the number of different modules used for platform
design. As illustrated in figure 2, an IMA platform is composed
of avionics applications, embedded operating system and the
underlying hardware. This latter is composed of several
processing modules communicating through a deterministic
network, the AFDX (Avionics Full DupleX).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MONPES’10, September 20, 2010, Antwerp, Belgium.
Copyright © 2010 ACM 978-1-4503-0123-7/10/09…$10.00.

Figure 1. IMA platform

A processing module can host one or some applications at
different criticality levels, it is then necessary to respect safety
constraints. That's why OS ARINC 653 standard was defined,
which specifies space and time partitioning. Figure 2 gives an
overview of an IMA module embedding an ARINC 653
operating system. To ensure space partitioning, each application
is enclosed in one or some partitions, isolating it from each
other. Each partition is bound to a part of memory, so it only
access its memory area. This partitioning prevents from failure
propagation. Intra and inter-partitions communications are also
defined by the standard to prevent failure propagation. To
ensure time partitioning, each partition has its own execution
time window, during which the application has access to all
resources dedicated (processing, memory, dedicated I/O etc.).

Figure 2. ARINC 653 spatial partitioning

3. IMA platform modeling

3.1 Overview
Model-Driven Engineering approaches are now mature

enough to serve as a basis for building embedded systems and
perform early validation. They are especially suitable for
modeling the high-level architecture, that are the functional
architecture (description of the functionalities offered by the

system) and logical architecture (description of how the system
is structured into logical components cooperating by
communications) [10,11]. But at platform architecture level,
these approaches describe both hardware and software as static
blackbox elements with some properties.
 Some projects [1,2,3] aim at building more accurate platform
models, but they mainly focus on the software behavior, and
model hardware as one or a few blackbox components without
behavior information. They after simulate this latter statically.
There is so no method to retrieve dynamic performances from
the hardware to validate it according to the applications
requirements.
Our method develops a new approach for avionics platform
modeling. It aims at refining architecture description at platform
decomposition level, specially the hardware. In order to refine
this latter, our approach models and sizes it according to
applications requirements. As we can see in figure 3, this
approach consists of different tasks:

- system modeling;

- applications characteristics extraction;

- platform generation according to requirements;

- platform simulation with simulation scenario made with
extracted stimuli;

- platform performances analyses.

Figure 3. Modeling approach.

3.2 Application modeling
The description of the application consists of a set of

characteristics (parallel code percentage, hit cache rate etc.), that
will give the future platform requirements, and a set of
instructions which will be translated into hardware stimuli.
Figure 5 shows the two ways we can use to extract these
characteristics from the application, and build a simulation
scenario to simulate the platform.

Figure 4. application modeling.

In the first way, -left path in the figure 4-, we have access to the
application source code. In this case, the application is modeled
with the AADL threads, which represent the ARINC 653
processes of the application. They are configured according to
this processes (deadline, priority etc.). Threads are bound to a
processor (or partition) and a memory (or part of memory), and
ordered according to the scheduling policy defined for the
application. Each thread as a reference to a part of the source
code, from which we extract characteristics giving the
requirements the platform has to match.

To elaborate the simulation scenario, we use a code profiling
and application decomposition method. The figure 5 gives an
overview of an application decomposition: it is decomposed into
a logical function sequence (encoder, decoder…), refined into
basic functions instructions (FFT, FIR…). Each basic function is
composed of simple instructions (operator and operand(s)), that
can be simple operations (add, div etc.) or memory access. The
code attached to the AADL thread is parsed and instructions are
extracted. We translate these latter into corresponding systemC
instructions. For example, a "load" gives a systemC
READ_COMMAND instruction.

Figure 5. Application decomposition example

On the other way -right path on the figure 4-, we have not the
source code of the application, so we can not extract basic
instructions. However, some main application characteristics
(sequential code percentage, scheduling policy etc) are given,
and allow the elaboration of several constraint-random
simulation scenario which fulfill application requirements. This
method allows a hardware platform early validation without
access to the application, but only with representative
characteristics. It is less accurate than the first way, but is easier
and faster.

3.3 High level system modeling with AADL
As we saw in the previous section, the application is

described with AADL threads.
The real-time operating system is defined by some properties
dispatched in the different hardware components. For example,
scheduling policy is set in the processor module, partition
security level is defined in the virtual processor, etc. To model
an ARINC 653 operating system, we use the AADL 653 annex,
and the method described in this article [8].

Each hardware component is modeled with the AADL
corresponding component, or with the device element. Some
components more complex, like network, are modeled as a sub-
system containing some components. We model hardware
component as a pseudo blackbox element, where behavior is not
defined. We define interface information (ports, bus required if
needed) and a few properties (memory size, bus transfer latency
etc.). In order to refine those hardware properties, we created
DRAM and cache component (that inherit memory element) to
refine their read and write latencies, and we defined or
completed some AADL property sets. We introduced behavior
and specific properties, like cache hit rate for cache module, or
refresh time for DRAM component.

The user models with the AADL the system corresponding to
the platform, and choose which viewpoint(s) will be set when
analyzing the platform. Viewpoints can be for example timing
performance, power consumption or safety, and enable the
platform investigation under different angles. We then extract
the main characteristics of the application, and parse this AADL
platform to retrieve properties, connections and deployment
information, that will serve for systemC platform generation.

3.4 Platform integration by generation
 In order to generate the systemC platform, we developed a
database of configurable systemC components. These
component have three parts: behavior, main properties and
interface. For each of them, we identified the main
characteristics and defined a configurable automata. At each
state of this one are attached parameters corresponding to
viewpoints and/or global parameters. Figure 6 shows an example
of DRAM automata with some timing parameters (tRefresh,
tRDC etc.) and one global parameters (burst_cpt).

For each platform element of the AADL model, we retrieve its
information (properties, connections etc.) and configure the
corresponding systemC behavioral model. Then, we connect all
the modules to elaborate the refined systemC platform.

 Figure 6. DRAM automata example with timing annotation

3.5 Platform simulation and results
Currently, this is a work in progress. However, we have

already encouraging results. The AADL part of the process has
been specified and is under development, while systemC main
hardware components (processing unit, cache memory, dram
and bus) have been developed (behavior, main properties and
communication interface). In order to test and refine these
elements, we implemented a minimum hardware platform with
one or some instance of each of them. We also developed a
systemC frame generator that simulates the platform, so we can
observe the elements behavior and the platform
communications.
Otherwise, to test our future platform, we defined a simulation
and performances analysis method: to see if the hardware
platform built is compliant with the application requirements,
we perform a simulation using systemC kernel. It takes the
platform generated, the viewpoint(s) set, and applies the
simulation scenario. As we can see in the figure 7, the user can
analyze the platform performances by examining performances
graphs or simulation traces. Then, we can see if the platform
matches the requirements corresponding to the viewpoint(s) set.
If the hardware is not compliant with the applications
requirements, we can investigate what is the problem, and try to
refine or modify one or more components implementation.

Figure 7. Platform simulation and performances analysis.

4. Conclusion
Current early platform validation methods center on

software modeling, regarding the hardware as blackbox
components which can't be dynamically simulated.
We have presented a new early validation approach, that aims at
modeling a complete avionics platform, software and hardware
(i.e. IMA modules and their interconnections as AFDX). Our
method automatically generates hardware and simulation
scenario to simulate it. It enables a dynamic simulation of the
platform, and analyzes its performances according different
viewpoints (timing, power consumption or safety). It takes
advantages from the AADL, particularly adapted for software
architecture modeling, and from systemC, industrial standard for
hardware architecture description.

To validate the accuracy of our modelling methodology, we
first model electronic evaluation boards. We will afterwards
model a complete IMA platform to compare the model
performances with the experimental results. Otherwise, we will
connect with existing model-driven engineering methods and
improve the platform development process.

5. REFERENCES
[1] Support for Predictable Integration of mission Critical

Embedded Systems project (SPICES), 2009
 http://www.spices-itea.org
[2] Model-Based Approach for Real-Time Embedded Systems

development project (MARTES), 2007.
http://www.martes-itea.org/

[3] C. Brunette, R. Delamare, A. Gamatié, T. Gautier, J-P.
Talpin, "A Modeling Paradigm for Integrated Modular
Avionics Design", IRISA report, 2005.

[4] Y. Ma, J-P. Talpin, T. Gautier, "Virtual prototyping
AADL architectures in a polychronous model of
computation", IRISA research report, 2007.

[5] AADL Portal at Telecom Paristech : http://aadl.telecom-
paristech.fr/

[6] J. Hughes, F. Singhoff, "Développement de systèmes à
l'aide d'Ocarina et Cheddar" ETR09, 2009.

[7] P. Dissaux, F. Signhoff, "the AADL as a Pivot Language
for Analyzing Performances of Real Time Architectures",
4th European Congress ERTS Embedded Real Time
Software, 2008.

[8] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F.
Singhoff, F. Kordon, "Validate, Simulate and Implement
ARINC 653 systems using the AADL", CM SIGAda Ada
Letters, 2009.

[9] Open SystemC Initiative. IEEE 1666: systemC Language
Reference Manual, 2005. www.systemC.org.

[10] J.A. Estefan. "Survey of model-based systems engineering
(MBSE) methodologies". Technical report, INCOSE
MBSE Focus Group, may 2007

[11 Bernhard Schätz, Manfred Broy, Franz Huber, Jan Philipps,
Wolfgang Prenninger, Alexander Pretschner, Bernhard
Rumpe, "Model-Based Software and Systems
Development – a white paper", 2004

