A New Modeling Approach for IMA Platform Early

Validation
Michaél Lafaye, David Faura, Marc Gatti, Laurent Pautet

Telecom Paristech, LTCI
46 rue Barrault
75634 Paris Cedex 13, France

{lafaye,pautet}@telecom-paristech.fr

ABSTRACT

This past few years, avionics platform conceptibanged to
integrated architecture, permitting one processohdst some
applications, in order to reduce weight and spdat this
method entails more complexity, especially in saf@dmain,
while time to market tends to decrease, so new |ldprent
processes are needed. Model-based approachesvammatare
enough to design embedded critical systems andonperf
architecture exploration.

In this paper we present a new modeling approdohialg
avionics platform description and dynamic simulatiorhis
method aim at dimensioning the architecture aceogrdo the
applications it has to process, and to achievey galdtform
validation.

General Terms
Performance, Design, Verification.

Keywords
modeling, avionics systems, real-time, simulatiohADL,
systemC

1. INTRODUCTION

Avionics systems are critical real time systems, fiming
constraints have to be strictly respected at thek rof
catastrophic issue. They are composed of applitsiticeal-time
operating system and hardware modules. Initiallyiordcs
platform (hardware and operating system) were implgted as
federated architectures, where one processing hasted one
function. This relatively simple architecture wasaever costly
in terms of space, weight and power consumption,offfers a
simple approach regarding the certification.

In order to reduce these parameters, and alsa@teecosts, the
Integrated Modular Avionics (IMA) concept was demtd in
the 2000s. It defines integrated architectures, revhene
processor can host some applications, and so esdtle
number of modules used in avionics platform. Foiltawthis
evolution, suppliers developed network architectpia which

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, to republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

MONPES’10 September 20, 2010, Antwerp, Belgium.

Copyright © 2010 ACM 978-1-4503-0123-7/10/09...$10.00

Thales Avionics, ACS/DTEA
18 avenue Maréchal Juin
92366 Meudon-la-Forét Cedex, France

{david.faura,marc-j.gatti}@fr.thalesgroup.com

modules are
deterministic network. However, aggregating appice in a

interconnected and communicate throagh

few modules, and gathering communications in a raknt

network entails an increase of complexity in avesnplatform
design, verification and certification processesthle same time,
time to market tends to decrease. These developmenire an
early modeling of the system to validate and mazénthe use of
the future platform, while ensuring the criticavdé required by
current standards in aviation (DO-178B, DO-254, BHCC...).

To model this IMA platform and perform early valiibm,

Model-Driven Engineering (MDE) approaches are noitable

to describe system high-level functionalities. Mamgjects aim
at modeling these platform with Architectural Ddgtion

Languages (ADL) as AADL [1] or MARTE [2], or with
synchronous languages such Lustre or Signal [#éjvever,
they often focus on the applications descriptiompdet the
hardware as connected blackbox components with va

properties, and perform static simulation. Moreopvérere
actually is no automated process for complete glatfmodeling
and simulation.

We define a new modeling method, that aims at désiga
complete avionics platform (hardware, operatingesysand the
applications). It is a component-based approadhingeon two
languages and taking advantages of both: AADL arstesnC.
AADL [5] is, as MARTE, an ADL particularly adaptefbr
software architecture description [6,7], enabling modeling of
ARINC 653 embedded real-time system [8]. In view thé
experience of partners who developed the ARINC BBBL
annex, the ARINC 653 compliant runtime for AADL leal
POK, the Ocarina tool suite etc., we choose the BABther
than MARTE. SystemC [9] is an IEEE standard widebgd in
industry for hardware platform description, and tedmng a
simulation kernel for architecture simulation axgleration.

In this paper we present our new modeling appros.first
introduce IMA concept, then we detail our methoejfobe
concluding with perspectives of our work.

2. Integrated Modular Avionics platform

IMA concept introduced integrated architecturepwlhg
to reduce the number of different modules usedplatform
design. As illustrated in figure 2, an IMA platforisicomposed
of avionics applications, embedded operating systewh the
underlying hardware. This latter is composed of esalv
processing modules communicating through a detéstian
network, the AFDX (Avionics Full DupleX).

fe

=]
s Os
]]
-] |
=] —
|
ications R C =
O|S:| AFDX O|S:|
==t =i
L | :
Qs

oS
]
P==tike

Figure 1. IMA platform

A processing module can host one or some applitaié
different criticality levels, it is then necessdoyrespect safety
constraints. That's why OS ARINC 653 standard wefined,
which specifies space and time partitioning. FigRrgives an
overview of an IMA module embedding an ARINC 653
operating system. To ensure space partitionind) application
is enclosed in one or some partitions, isolatindrom each
other. Each partition is bound to a part of memeaxy,it only
access its memory area. This partitioning prevéots failure
propagation. Intra and inter-partitions communimasi are also
defined by the standard to prevent failure progegatTo
ensure time partitioning, each partition has itshnoexecution
time window, during which the application has ascés all
resources dedicated (processing, memory, dedit@eetc.).

application 1 |application 1 |application 2 |application 3

no effect

failure

s =

O%rating Syst&%
ARINC 653 com@i@gt”o effect™
—__= (I}

hardware

Figure 2. ARINC 653 spatial partitioning

3. IMA platform modeling

3.1 Overview

Model-Driven Engineering approaches are now mature
enough to serve as a basis for building embeddsmg and
perform early validation. They are especially <hlia for
modeling the high-level architecture, that are fbactional
architecture (description of the functionalitiefeoéd by the

system) and logical architecture (description ofvithe system
is structured into logical components cooperating b
communications) [10,11]. But at platform architeetuevel,
these approaches describe both hardware and sefagastatic
blackbox elements with some properties.
Some projects [1,2,3] aim at building more acaunalatform
models, but they mainly focus on the software b&hawand
model hardware as one or a few blackbox componeitt®ut
behavior information. They after simulate thigdatstatically.
There is so no method to retrieve dynamic perfooearfrom
the hardware to validate it according to the appilims
requirements.
Our method develops a new approach for avionicsfopia
modeling. It aims at refining architecture desdoiptat platform
decomposition level, specially the hardware. Ineortb refine
this latter, our approach models and sizes it aliogr to
applications requirements. As we can see in figBrethis
approach consists of different tasks:

- system modeling;

- applications characteristics extraction;
- platform generation according to requirements;

- platform simulation with simulation scenario magli¢h
extracted stimuli;

- platform performances analyses.

ﬂ system modeling

high-level model

/ \ platform generation

systemC platform

simulation scenario
elaboration

applications I
haracteristics

translator

imulation
scenario

\ simulation kernel

Figure 3. Modeling approach.

performances analysis

3.2 Application modeling
The description of the application consists of & ek
characteristics (parallel code percentage, hiteaate etc.), that

will give the future platform requirements, and at f

instructions which will be translated into hardwasgmuli.
Figure 5 shows the two ways we can use to extiaeset
characteristics from the application, and build ienuation
scenario to simulate the platform.

application
characteristics

!
I

AADL application description

source source !
code code !

h.

AADL application model compliant
with characteristics

B

al
W

charact. charact.
4 i i !
translator | (= scheduling policy = translator
2 | B

systemC
simulation

system
simulation
scenarii

scenario

Figure 4. application modeling.

In the first way, -left path in the figure 4-, wave access to the
application source code. In this case, the apjpdicas modeled
with the AADL threads, which represent the ARINC365
processes of the application. They are configuemming to
this processes (deadline, priority etc.). Threagskound to a
processor (or partition) and a memory (or part efrmary), and
ordered according to the scheduling policy defifed the
application. Each thread as a reference to a pattenosource
code, from which we extract characteristics givirige
requirements the platform has to match.

To elaborate the simulation scenario, we use a qudfling
and application decomposition method. The figurgivies an
overview of an application decomposition: it is deposed into
a logical function sequence (encoder, decoder..fine@ into
basic functions instructions (FFT, FIR...). Each bdsnction is
composed of simple instructions (operator and opHg), that
can be simple operations (add, div etc.) or menaggess. The
code attached to the AADL thread is parsed anduosbns are
extracted. We translate these latter into corredipgnsystemC
instructions. For example, a "load" gives a systemC
READ_COMMAND instruction.

application

application
application i l
components{ 0os] [decoder J encoder]
basic i i
functions [FFT J { FIR J { glue J

I

1
basic instructions ! ' v

{ add J { shift [load]

Figure 5. Application decomposition example

On the other way -right path on the figure 4-, vewérnot the
source code of the application, so we can not extb@asic
instructions. However, some main application charistics

(sequential code percentage, scheduling policy &te)given,
and allow the elaboration of several constraintoan

simulation scenario which fulfill application regements. This
method allows a hardware platform early validatieithout

access to the application, but only with represama
characteristics. It is less accurate than the fiest, but is easier
and faster.

3.3 High level system modeling with AADL

As we saw in the previous section, the applicatisn
described with AADL threads.
The real-time operating system is defined by somopgrties
dispatched in the different hardware components.example,
scheduling policy is set in the processor modulattiton
security level is defined in the virtual processetic. To model
an ARINC 653 operating system, we use the AADL 6&BBex,
and the method described in this article [8].

Each hardware component is modeled with the AADL
corresponding component, or with the device elem8oime
components more complex, like network, are modeaked sub-
system containing some components. We model haedwar
component as a pseudo blackbox element, where toehiawot
defined. We define interface information (portssbaquired if
needed) and a few properties (memory size, busfaafatency
etc.). In order to refine those hardware propgrtiee created
DRAM and cache component (that inherit memory eleint®
refine their read and write latencies, and we aefinor
completed some AADL property sets. We introducetlavéor
and specific properties, like cache hit rate fotheamodule, or
refresh time for DRAM component.

The user models with the AADL the system corresjpondo
the platform, and choose which viewpoint(s) will et when
analyzing the platform. Viewpoints can be for exéngiming
performance, power consumption or safety, and enabé
platform investigation under different angles. Wiert extract
the main characteristics of the application, andgg@#his AADL
platform to retrieve properties, connections anglaganent
information, that will serve for systemC platforrargeration.

3.4 Platform integration by generation

In order to generate the systemC platfomndeveloped a
database of configurable systemC components. These
component have three parts: behavior, main praserénd
interface. For each of them, we identified the main
characteristics and defined a configurable automataeach
state of this one are attached parameters corrdspgprio
viewpoints and/or global parameters. Figure 6 shawexample
of DRAM automata with some timing parameters (tBifr,
tRDC etc.) and one global parameters (burst_cpt).

For each platform element of the AADL model, weieste its
information (properties, connections etc.) and wmpme the
corresponding systemC behavioral model. Then, ammect all
the modules to elaborate the refined systemC ptatfo

Irefresh & ! active
Irefresh & active idle : refrash

burst_cpt=0

burst_cpt I=

tRP

Figure 6. DRAM automata example with timing annotation

3.5 Platform simulation and results

Currently, this is a work in progress. However, have
already encouraging results. The AADL part of thecpss has
been specified and is under development, whileegySt main
hardware components (processing unit, cache mentyam
and bus) have been developed (behavior, main pgrepeand
communication interface). In order to test and nefithese
elements, we implemented a minimum hardware platfaith
one or some instance of each of them. We also dpedl a
systemC frame generator that simulates the plaffemwe can
observe the elements behavior and the platform
communications.
Otherwise, to test our future platform, we defiredimulation
and performances analysis method: to see if thelwesae
platform built is compliant with the applicationquarements,
we perform a simulation using systemC kernel. kKetathe
platform generated, the viewpoint(s) set, and a&gplihe
simulation scenario. As we can see in the figurth&,user can
analyze the platform performances by examiningquernces
graphs or simulation traces. Then, we can seeeifpatform
matches the requirements corresponding to the ami(s) set.
If the hardware is not compliant with the applioas
requirements, we can investigate what is the propénd try to
refine or modify one or more components implemeéoat

e)
SystemC

simulation
_|scenario

systemC
platform

l

simulation kernel

refinement or
modification

| viewpoints | —

/ko = where 7 ¢
[0k

Figure 7. Platform simulation and performances analysis.

4. Conclusion

Current early platform validation methods center on
software modeling, regarding the hardware as biaxckb
components which can't be dynamically simulated.

We have presented a new early validation appraaehaims at
modeling a complete avionics platform, software aaddware
(i.e. IMA modules and their interconnections as AJDOur
method automatically generates hardware and simonolat
scenario to simulate it. It enables a dynamic satiomh of the
platform, and analyzes its performances accordiifterent
viewpoints (timing, power consumption or safety). thkes
advantages from the AADL, particularly adapted $oftware
architecture modeling, and from systemC, indusgtahdard for
hardware architecture description.

To validate the accuracy of our modelling methodglave
first model electronic evaluation boards. We wifteavards
model a complete IMA platform to compare the model
performances with the experimental resu@herwise, we will
connect with existing model-driven engineering roethand
improve the platform development process.

5. REFERENCES

[1] Support for Predictable Integration of missi@ritical
Embedded Systems project (SPICES), 2009
http://www.spices-itea.org

[2] Model-Based Approach for Real-Time Embedded&ys
development project (MARTES), 2007.
http://www.martes-itea.org/

[3] C. Brunette, R. Delamare, A. Gamatié, T. GautikP.
Talpin, "A Modeling Paradigm for Integrated Modular
Avionics Design”, IRISA report, 2005.

[4] Y. Ma, J-P. Talpin, T. Gautier, "Virtual protgiing
AADL architectures in a polychronous model of
computation”, IRISA research report, 2007.

[5] AADL Portal at Telecom Paristech : http://aselecom-
paristech.fr/

[6] J. Hughes, F. Singhoff, "Développement det&apes a
I'aide d'Ocarina et ChedddETR09 2009.

[7] P. Dissaux, F. Signhoff, "the AADL as a Pivoariguage
for Analyzing Performances of Real Time Architeeslt;
4th European Congress ERTS Embedded Real Time
Software 2008.

[8] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F.
Singhoff, F. Kordon, "Validate, Simulate and Impkamh
ARINC 653 systems using the AADLCM SIGAda Ada
Letters 2009.

[9] Open SystemC Initiative. IEEE 1666: systemC duzage
Reference Manual, 2005. www.systemC.org.

[10] J.A. Estefan. "Survey of model-based systenmgineering
(MBSE) methodologies". Technical reporiNCOSE
MBSE Focus Groupmay 2007

[11 Bernhard Schétz, Manfred Broy, Franz Huber, Bhitipps,
Wolfgang Prenninger, Alexander Pretschner, Bernhard
Rumpe, "Model-Based Software and Systems
Development — a white paper"”, 2004

