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Abstract—This paper describes a method for chord recognition
from audio signals. Our method provides a coherent and relevant
probabilistic framework for template-based transcription. The
only information needed for the transcription is the definition
of the chords : in particular neither annotated audio data nor
music theory knowledge is required. We extract from the signal a
succession of chroma vectors which are our model observations.
We propose a generative model for these observations from
chord distribution probabilities and fixed chord templates. The
parameters are evaluated through an EM algorithm. In order to
capture the temporal structure, we apply some post-processing
filtering methods before detecting the chords.

Our method is evaluated on two audio corpus. Results show
that our method outperforms state-of-the-art chord recognition
methods and also gives more relevant chord transcriptions.

I. INTRODUCTION

The description of musical signals with relevant and com-

pact representations has been one of the main fields of interest

in Musical Information Retrieval (MIR) for the last past years.

One of the most common representations used for pop songs is

the chord transcription, which consists in a sequence of chord

labels with their respective lengths. This representation can be

used in several applications such as song identification, query

by similarity or structure analysis.

The features used in chord transcription may differ from a

method to another but are in most cases variants of the Pitch

Class Profiles introduced by Fujishima [1]. These features,

also called chroma vectors, are 12-dimensional vectors. Every

component represents the spectral energy of a semi-tone on

the chromatic scale regardless of the octave on either a fixed-

length or a beat-synchronous frame. The succession of these

chroma vectors over time is called chromagram.

The chord recognition methods can be divided into 4 main

categories : template-based, music-driven, data-driven and

hybrid (combining the music- and data-driven approaches).

Template-based chord recognition methods are based on the

hypothesis that only the definitions of the chords are needed

in order to extract the chord labels from the musical piece. A

chord template is a 12-dimensional vector representing the 12
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semi-tone (or chroma) of the chromatic scale. Each component

of the pattern is the theoretical amplitude of the chroma within

the chord.

These templates can easily be defined for every chord : the

detected chord on one given frame is the one whose template

fits the best the chroma vector calculated for the frame. Many

matching methods have been used : Euclidean distance [1],

[2], [3], dot product [1], [4], correlation [5], Kullback-Leibler

and Itakura-Saito divergences [2], [3]... The temporal structure

is taken into account with post-processing filtering applied

either on the chromagram [1], [4], [5] or on the calculated

fit measures [2], [3].

These template-based methods often have difficulties to

capture the long-term variations of the chord sequences, as

well as giving harmonically-coherent sequences of chords.

Complex probabilistic methods have been build in order to

incorporate musical information such as key, chord transitions

models, beats, structure, etc. This higher level information is

either extracted from music theory [6], [7], [8], from training

with audio data [9], [10], [11], [12] or combining these two

approaches [13], [14], [15].

The method presented in this paper builds on the template-

based method described in [2], [3] but gives a probabilistic

framework by modeling the chord distribution probabilities

of the song. Our model explicitly infers the probability of

appearance of every chord in a given song. The introduction

of this probabilistic approach allows to implicitly take into

account the harmony and to extract for every song a rele-

vant chord vocabulary1. Contrary to other probabilistic chord

recognition methods, our method can still be classified within

the template-based methods, since the only needed information

is the definition of the chord templates.

Section II describes our system by introducing the notion of

chord template, our probabilistic model and the algorithm used

for the chord recognition. Section III presents the corpus used

for evaluation and a qualitative and quantitative comparison

of our method with the state-of-the-art.

1We mean by vocabulary a subset of the user-defined chord dictionary,
which is expected to be representative of the harmonic content of the song.
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Fig. 1. Chord templates for C major and C minor.

II. SYSTEM

A. Chord templates

Our chord templates are simple binary masks : an amplitude

of 1 is given to the chromas present in the chord and an

amplitude of 0 is given to the other chromas.2 For example a

C major chord will be given an amplitude of 1 to the chromas

C, E and G while the other chromas will have an amplitude

of 0. By convention in our system, the chord templates are

normalized so that the sum of the amplitudes is 1 but any other

normalization could be employed. Examples for C major and

C minor chord are presented on Figure 1.

Extensive works have been done with other types of chord

templates by taking into account higher harmonics for the

notes of the chord [16], [14] but they did not seem to

significantly improve the results for our system. We therefore

decided to use only binary chord templates in this paper.

B. Generative model for the chroma vectors

Let C be a 12 × N chromagram, composed of N M -

dimensional (in practice M=12) successive chroma vectors cn.

The chroma vectors are calculated from the music signal with

the same method as Bello & Pickens [6], where the frame

length is set to 753 ms and the hop size is set to 93 ms.

We use the code kindly provided by the authors. Let W be

our 12×K chord dictionary, composed of K M -dimensional

chord templates wk.

Let us make the assumption that on frame n, the present

chord γn is the one verifying :

cn ≈ hγn,nwγn
(1)

where hγn,n is a scale parameter.

The likelihood p (cn|hk,n,wk) therefore describes the noise

corrupting hk,nwk in the observation cn. Let us assume a

2In practice a small value is used instead of 0, to avoid numerical
instabilities that may arise.

Gamma multiplicative noise ǫ, that is to say :

cn = (hk,nwk) · ǫ (2)

Then, the observation model becomes :

p (cn|hk,n,wk) =

M
∏

m=1

1

hk,nwm,k

G

(

cm,n

hk,nwm,k

; β, β

)

(3)

where G is the Gamma distribution defined as :

G (x; a, b) =
ba

Γ (a)
e−bx (4)

and Γ is the Gamma function.

Let us denote γn ∈ [1, . . . ,K] the discrete random state

indicating the chord present on frame n and αk the probability

for the chord k to appear in the song. We consider the

following state-model
{

p (cn|α,hn, γn = k) = p (cn|hk,n,wk)
p (γn = k) = αk

, (5)

which can equivalently be written as the following mixture

model

p (cn|α,hn) =

K
∑

k=1

αk p (cn|hk,n,wk) . (6)

Under this model, a chromagram frame is in essence assumed

to be generated by 1) randomly choosing chord k (with tem-

plate wk) with probability αk, 2) scaling wk with parameter

hk,n (to account for amplitude variations), and 3) generating

cn according to the assumed noise model and hk,nwk.

Given parameters α = [α1, . . . , αK ] and H = {hk,n}kn,

we choose for frame n the chord with highest state posterior

probability :

γ̂n = argmax
k

λ
post
k,n (7)

where λ
post
k,n = p (γn = k|cn,α,hn).

C. EM algorithm

Let us summarize the notations :

• C = [c1, . . . , cN ] is the M × N matrix containing the

chromagram observations,

• Θ = (α,H) is the set of parameters,

• γ = [γ1, . . . , γN ] is the vector of dimension N containing

the chord state variables.

The log-likelihood log p (C|Θ) can typically be maximized

using an EM algorithm based on missing data γ, where the

following functional needs to be iteratively computed (E-step)

and maximized (M-step) :

Q (Θ|Θ′) =
∑

γ

log p (C,γ|Θ) p (γ|C,Θ′) (8)

For sake of conciseness, calculations are not displayed on

this paper. One of the main results of the algorithm derivation

is that the parameter H does not need to be updated during the



EM iterations and can therefore be precomputed by calculating

hk,n such as :
[

d log p (cn|h,wk)

dh

]

h=hk,n

= 0, (9)

The resulting EM algorithm is summarized below.

Algorithm 1: EM algorithm for probabilistic template-

based chord recognition

Input: chromagram C = [c1, . . . , cN ], chord templates

W = [w1, . . . ,wK ] and hk,n such that
d log p(cn|h,wk)

dh
= 0

Output: a posteriori probability λ
post
k,n and

α = [α1, . . . , αK ]

Initialise α

for i = 1 : niter do
[

λ
post
k,n

](i−1)

=
p(cn|hk,n,wk) α

(i−1)
k

∑

K

k′=1
p(cn|hk′,n,wk′) α

(i−1)

k′

// E-Step

α
(i)
k =

∑

N
n=1[λ

post

k,n ]
(i−1)

∑

K

k′=1

∑

N
n=1

[

λ
post

k′,n

](i−1) // M-Step

end

D. Chord recognition with the probabilistic model

The matrix λ
post
k,n represents the state posterior probabilities

of every chord k of the dictionary for every frame n. Let us

assume that the matrix has been calculated with the algorithm

previously presented. As seen in II-B, the detected chord γ̂n
for frame n is finally :

γ̂n = argmax
k

λ
post
k,n . (10)

This frame-to-frame chord recognition system can be im-

proved by taking into account the temporal context. Most of

the methods using HMM assume an exponentially temporal

distribution, which does not suit well the rhythmic structure

of pop songs. We therefore propose to use a low-pass filtering

process as an ad hoc processing which implicitly inform the

system of the appropriate durations of the expected chords.

The post-processing filtering method is applied to λ
post
k,n in

order to take into account the time persistence.

III. EVALUATION AND RESULTS

A. Corpus and evaluation

The evaluation method used in this paper corresponds to the

one used in MIREX 09 for the Audio Chord Detection task3.

Our evaluation database is constituted by 2 corpus :

• The Beatles corpus constituted by the 13 Beatles albums

(180 songs, PCM 44100 Hz, 16 bits, mono). The eval-

uation is realized thanks to the chord annotations of the

13 Beatles albums kindly provided by Harte and Sandler

[17]. In these annotation files, 17 types of chords and

3http://www.music-ir.org/mirex/2009/

one ’no chord’ label corresponding to silences or untuned

material are present. The 17 types of chords present in the

annotation files are mapped to the major and the minor

according rules already used by MIREX.

• The second corpus has been provided by the QUAERO

project. It contains 20 songs (PCM 22050 Hz, 16 bits,

mono) from various artists (Pink Floyd, Queen, Buenav-

ista Social Club, Justin Timberlake, Mariah Carey, Abba,

Cher, etc.) and various genres (pop, rock, electro, salsa,

disco,...). This corpus only contains major and minor

labels.

For each song an Overlap Score is calculated as the ratio

between the sum of the lengths of the well detected chords

and the total length of the song. The mean of the Overlap

Scores over all the songs of the corpus is then called Average

Overlap Score (AOS).

B. Results

For our new probabilistic method, two parameters are

to be set : the probability distribution parameters (β) and

the post-processing filtering parameters. Extensive simulations

have been done in order to find good probability distribution

parameters. These parameters are chosen in order to fit the

model to the chord recognition task, i.e. to model the type of

noise present in audio signals. The post-processing filtering

neighborhood sizes used here are chosen in order to optimize

the value of the Average Overlap Score on the Beatles corpus.

Nevertheless, there are not much differences between close

neighborhood sizes. The experimental parameters used for our

probabilistic methods are β = 3 and low-pass filtering on 15

frames.

Figure 2 presents an example of the results obtained with

two chord transcription methods on one Beatles song. The

new method is compared to the baseline method described in

[2], [3] detecting only major and minor chords, which was

submitted to MIREX 2009 as OGF1. The estimated chord

labels are in black while the ground-truth chord annotation

is in gray. The first observation is that the probabilistic

transcription seems here to give better quantitative results. The

transcription also seems to be more musically and temporally

relevant. These good results can be explained by at least two

hypothesis :

• The probabilistic transcription seems to detect longer

chords while the baseline method give very segmented

results.

• The chord vocabulary used by the probabilistic transcrip-

tion is sparser than the one used in the baseline method,

preventing the detection of off-key chords.

These good results are confirmed by the AOS calculated on

the two corpus. Table I presents the scores for our new method,

and several state-of-the art methods that entered MIREX in

2008 or 2009. All algorithms are tested with the author’s

implementations. The following methods are tested :

MIREX 2008 :

• BP : Bello & Pickens [6]
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Fig. 2. Examples of chord transcription on the Beatles song Run for your life. The estimated chord labels are in black while the ground-truth chord annotation
is in gray. At the top is represented the baseline method and at the bottom the new probabilistic method.

TABLE I
COMPARISON WITH THE STATE-OF-THE-ART : AVERAGE OVERLAP

SCORES ON THE BEATLES AND QUAERO CORPUS

Beatles corpus Quaero corpus
Our method 0.758 0.773

OGF1 0.718 0.706
OGF2 0.724 0.682

DE 0.738 0.719
BP 0.707 0.699
RK 0.705 0.730

• RK : Ryynänen & Klapuri [11]

MIREX 2009 :

• DE : Ellis [9]

• OGF1 & OGF2 : our baseline method [2], [3].

These results shows that our new method outperforms the

state-of-the-art, not only on the Beatles corpus, but also on

another corpus containing other types of music styles and

genres. This shows that while not using training data, our

model manages to capture the harmonic content of the songs.

The Friedman’s test for significant differences4 show that on

4This test has been for MIREX 2008 & 2009 : see http://www.music-
ir.org/mirex/2008/index.php/Audio Chord Detection Results for details

the Beatles corpus, our new method is significantly better that

OGF1, BP and RK.

IV. CONCLUSION

We have presented in this paper a new probabilistic frame-

work for the template-based chord recognition, which allows

to correct some of the issues caused by these types of methods.

In particular, by evaluating the chord vocabulary for every

song, our method can efficiently extract from the song the

harmonic context, and therefore gives more relevant chord

transcriptions. Furthermore, since our method does not need

any information on the song nor training, its performances do

not depend on the music genre.
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