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On Bounded Weight Codes
Christine Bachoc, Venkat Chandar, Gérard Cohen, Patrick Solé, and Aslan Tchamkerten

Abstract—The maximum size of a binary code is studied as a
function of its length �, minimum distance �, and minimum code-
word weight . This function ���� �� � is first characterized in
terms of its exponential growth rate in the limit � � � for fixed
� � ��� and � � ��. The exponential growth rate of ���� �� �
is shown to be equal to the exponential growth rate of ���� ��
for � � � � ���, and equal to the exponential growth rate of
���� �� � for ��� 	 � � �. Second, analytic and numerical upper
bounds on ���� �� � are derived using the semidefinite program-
ming (SDP) method. These bounds yield a nonasymptotic improve-
ment of the second Johnson bound and are tight for certain values
of the parameters.

Index Terms—Constant weight codes, Johnson bounds, semidef-
inite programming.

I. INTRODUCTION

T WO classical functions in combinatorial coding theory
are , the largest size of a binary code of length

and minimum distance , and , the largest size
of a binary code of length , minimum distance , and con-
stant weight . A closely related function is ,
obtained from by relaxing the weight constraint
to only require that the weight of each codeword is at least

. Codes satisfying a minimum weight constraint are called
heavy weight codes in [7], where they are motivated by certain
asynchronous communication problems. The other relaxation
where codewords are required to have weight at most defines
the function . Complementation immediately shows
that . The function naturally
occurs in the proof of the Elias bound [16, Lemma 2.5.1]. It
also occurs in the problem of list decoding when bounding
the size of the list as a function of the decoding radius . In
this problem, represents the largest size of a list
of codewords at distance at most from the received vector,
given a binary code of length and minimum distance . This
function is denoted by in [14], where the Elias
Lemma [15, Lemma 2.5.1] is referred to as the Johnson bound,
and is used to prove upper bounds on the list size.

In the present paper we first characterize the asymptotic
exponent of as a function of those of and
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(Theorem 1). This result is based on the asymp-
totic unimodality of , which was conjectured in [7,
Conjecture 2]. Note that, the non asymptotic analogue of this
result (posed as a research problem in [16, p.674]) is false as

[19].
Second, we provide upper bounds on obtained

by the semidefinite programming method. From these bounds,
we derive a non asymptotic improvement of the Elias/Johnson
Lemma in a certain range of , , and (Theorem 3) as well as
numerical tables.

The material is organized as follows. Section II contains
elementary bounds and some tables of derived there-
from. Section III contains the asymptotic results. Section IV is
dedicated to the SDP method. Section V explores three heavy
weight codes construction techniques. Section VI provides
some concluding remarks.

II. ELEMENTARY BOUNDS

In this section we establish a few basic relations between
and .

Note first that is increasing in , and decreasing
in and . Further, by definition of , we have

(1)

By taking weight classes sufficiently far apart so that they do
not overlap, we get

(2)

where denotes the largest integer not exceeding .
Since any code is a disjoint union of constant weight codes,

we have

(3)

Removing the weight constraint can only improve the size,
hence

(4)

The following result is analogous to the first half of the first
Johnson bound [6, (3a)]:1

1Whether or not the analogue of the second half of the first Johnson bound,
i.e., [6, (3b)], holds as well remains an open question. Specifically, it is unclear
at this point whether the inequality

���� �� � �
�

��
���� �� �� �

is valid.
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Proposition 1: For , we have

Proof: Let be a code realizing , and consider
the matrix whose rows are its codewords. Since the average
weight of a column, which we denote by , is given by the
total number of 1’s in the matrix divided by , we get

(5)

Now, say column has weight at least (one such column
clearly exists). Pick the subcode of given by the codewords
of that have a 1 in the -th position. Modify this subcode by
deleting the -th component of each codeword. If we denote by

the resulting code, we conclude that
. Using this together with (5) yields the desired result.

Finally, the following Gilbert type lower bound is immediate:

Proposition 2: For all , , and

We conclude this section with tables derived from the pre-
ceding bounds. Some trivial entries are when-
ever . We limited and to the values where

and are known exactly (for all ) in [5], [6].
Entries of the tables where are left blank.

III. ASYMPTOTICS

For fixed , , we denote by the exponential
growth rate of with respect to with

and , i.e.,

where logarithms are taken to the base 2 throughout the paper.
The asymptotic exponents of and are de-
fined similarly and are denoted by and , respec-
tively. Thus

and

Proposition 3: For any and , we have
.

Proof: The Elias-Bassalygo bound [18, equation (2.8)]

(6)

together with the trivial inequality shows
that the asymptotic exponents of and are
the same. The result then follows by combining the bounds (1)
and (4) to obtain

for .

The next result provides the main ingredient for proving that
when .

Theorem 1: For fixed , is unimodal in
with a maximum at .

Corollary 1: For any and , we have
.

Proof of Corollary 1: We have

(7)

by (1) for the first inequality and by (3) for the second inequality.
Letting and , we get

(8)

and, therefore, from (7), we have

for any and . Assuming that ,
the theorem then follows from Theorem 1.

Proof of Theorem 1: We establish that is nonde-
creasing over . This, by complementation, shows that

is nonincreasing over , proving the claim.
Fix and let , be such that .

Throughout the proof we disregard discrepancies due to the
rounding of noninteger quantities as they play no role asymp-
totically. Thus, for instance, we shall always treat as if it is
an integer.

We show that from a given constant weight code with pa-
rameters such that ,
it is possible to construct a constant weight code with param-
eters , of size at least equal to multiplied
by . This shows that . The code

is obtained from via translation.
For a given fixed codeword , let us construct a length
binary vector of weight

as follows. Consider first the positions of that form the support
of ( of them). Pick of these positions arbitrarily and
assign them 1’s. Similarly, assign 1’s to an arbitrary selection
of the positions that lie outside the support of . The
remaining positions of are filled with 0’s. Note that, by of our
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choice of , the vector (component wise modulo 2
sum of and ) has weight .

Now observe that because the selections made to construct
are arbitrary, for any given there are

ways of choosing for which has weight . Therefore, if
we now pick randomly and uniformly among all possible se-
quences of weight , the probability that this sequence trans-
lates a given to a sequence of weight is given by

This implies that a vector that is randomly and uniformly
chosen among all possible sequences of weight translates on
average

codewords from into codewords of weight (and minimum
distance ). Therefore

Finally, using the following standard bounds on binomial coef-
ficients2

(see, e.g., [11, Example 11.1.3, p. 353]) shows that

Therefore, we obtain

from which the theorem follows.

IV. UPPER BOUNDS ON FROM

SEMIDEFINITE PROGRAMMING

The semidefinite programming method is a far reaching gen-
eralization of Delsarte linear programming method to obtain
bounds for extremal problems in coding theory. In the present
situation, we aim at upper bounding , which is the
maximal number of elements of a code contained in the ball

centered at the all-zero word with radius of the binary
Hamming space . We obtain numerical bounds
for small values of the parameters , which improve the
elementary bounds for given in
Section II. We also obtain a new bound, which is an explicit
function of , and improves on the Elias/Johnson bound
for some values of these parameters.

2���� denotes the binary entropy �� ��� �� ��� �� ������ ��.

TABLE I
���� �� �

TABLE II
���� �� �

TABLE III
���� 	� �

The numerical bounds are obtained by a straightforward ap-
plication of the SDP method. We refer to [2] for a survey of this
method and its applications to the binary Hamming space, in-
cluding the case of codes in balls. See also [3] for a survey on
the more general subject of symmetry reduction of semidefinite
programs, with applications to coding theory. In a few words,

can be interpreted as the independence number of
a certain graph with vertex set , thus is upper bounded by
the so-called Lovász theta number of this graph (or rather by
its strengthening ), which is the optimal value of a certain
semidefinite program. This SDP has exponential size, but can
be reduced to polynomial size by the action of the symmetry
group of the graph, which is the symmetry group of , i.e.,
the group of permutations of the coordinates.

Let us recall that a function is said to be posi-
tive definite (or positive semidefinite) if the matrix in-
dexed by is positive semidefinite. This property is denoted

. In the symmetrization process discussed above, a de-
scription of the -invariant positive definite functions on
is required. This description is in fact provided in [20], under the
name of block diagonalization of the Terwilliger algebra of the
Hamming space, and in the framework of group representations
in [22]. Numerical upper bounds for obtained in this
way are displayed in Tables IV–VI.

For the announced explicit bound, we use a slightly different
(and self contained) formulation of the SDP bound, which is
given in Theorem 2. We shall recover the Elias/Johnson bound
as a special case, and obtain a new bound in Theorem 3. There,
we follow the same line for Hamming balls as the one followed
for spherical caps in [4]. In the latter, the SDP method has led
to numerical bounds and also to explicit bounds of degree up to
two.
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TABLE IV
� � �

TABLE V
� � �

A. Improving the Johnson Bound

We start with a more handy restatement of the SDP bound,
which is essentially the dual form of the SDP defining the theta
number . The notations are as follows: the space of functions
on is denoted and is endowed with
the standard inner product .
We shall consider the decomposition of this space under the ac-
tion of the full automorphism group of the Hamming
space and under the action of the symmetric group . Since
the irreducible components are indeed real, we can restrict to
the real valued functions.

The orbit of under the action of is deter-
mined uniquely by the values of , and

. Thus the elements of which are -in-
variant, i.e., which satisfy for all ,

, are of the form . With this notation,
stands for: .

Theorem 2: Let

Let be a polynomial symmetric in .
If satisfies the following conditions:

1) for some ;
2) for all ;
3) for all

then

Proof: For , let
. We consider for a code

with minimal distance at least equal to , the sum

From property (1) of , we have . On the other hand,
where is the sum over pairs with

and is the sum over the non equal pairs ,
. Condition 2) on insures that and condition 3)

on that . Altogether we obtain .

In order to apply the above theorem with specific polynomials
, we need an explicit description of those who are posi-

tive definite. Such a description is indeed obtained in [20], and in
[22] in terms of orthogonal polynomials (Hahn polynomials to
be precise). As we shall see, for our purpose, we need a slightly
different expression.

A general method is explained in [1]–[3], involving group
representation. The space can be decomposed into the
direct sum of -irreducible subspaces. The sum of those sub-
spaces which are isomorphic to a given irreducible represen-
tation of is called an isotypic subspace. We recall that cer-
tain matrices are associated to the isotypic components

of under the action of . Here ,
corresponds to the irreducible representation of the
symmetric group , and has multiplicity . More-
over, is -invariant, thus can be expressed in terms of

, namely . Then we have the fol-
lowing characterization (we use the standard notation

for matrices):

Proposition 4: For all , symmetric in ,
if and only if

(9)

where for , , ,
and . More precisely, is computed from a de-
composition of into irreducible subspaces

. If for all , is an orthonormal
basis of in which the action of is expressed by the same
matrices (i.e., not depending on ), then

The decomposition of with irreducible submodules is not
unique but changes to for an invertible
matrix , see [1, Lemma 4.2]. Note that such a change does
not affect the above characterization of being positive definite
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TABLE VI
� � �

since and if
and only if .

There are essentially two strategies to obtain such a decom-
position. One can start from the decomposition of into
orbits under the action of , namely , with

, which leads to a decomposi-
tion of the functional space
and then decompose each -space , following [12]. It
is the method adopted in [22] where the corresponding ma-
trices are obtained in terms of Hahn polynomials. An-
other approach starts from the decomposition of under
the full , namely
where , , then decom-
poses each under the action of the subgroup . Because we
want to work with polynomials in of low degree, this
last decomposition is better suited. Indeed, if ,
then belongs to

if and only if the total degree of in the vari-
ables is at most equal to .

An isomorphism of -modules between and is
given by

so we have exactly the same picture for the decomposition of
when replaces , namely the irreducible decom-

position of under the action of that is for ,
we have

(10)

and the isotypic components of , i.e.,

Since , as a function of , is invariant under , and
is of degree 1, the isotypic subspace can also be decomposed
as

Moreover, starting from an orthonormal basis of ,
we obtain an orthonormal basis of in which the
action of is expressed by the same matrices; thus, we can use

it to compute the corresponding matrix the coefficients
of which will be equal to

In other words, it is enough to compute
, which is the zonal function associ-

ated to , in terms of . We obtain:

Proposition 5: We have the following expressions for , up
to a positive multiplicative constant:

• ;
• ;
•

.
Proof: We take the following notations: if , and

, we let . Let

Following [12], and the isomorphism defined above,
where is defined by:

where the sum is over the words of weight
, and of support contained in the support

of . We set to specify the variable under consideration
and when applied to a function on .
Then, is uniquely determined up to a multiplicative constant
by the properties:

1) , is symmetric in ;
2) belongs to ;
3) .

According to the decomposition (10) with pairwise non iso-
morphic irreducible subspaces, the space of functions satisfying
conditions (1) and (2) below is of dimension . In the vari-
able , and belong to , and it is easy to check that ,

, , belong to . Thus a basis for the space of
functions satisfying (1) and (2) is given by
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The assertion is then trivial. In order to compute and
, we need formulas for the image under of the monomials

in . We compute the following:

With the above we obtain that is proportional to .
Similarly, we obtain

and turns to be proportional to

From the identity , we have that
which determines the sign of the multiplica-

tive factor. We obtain the announced formulas.

Remark: The method used to calculate the polynomials
for outlines an algorithmic way to compute for
general . It would be more satisfactory to have an expression
of these polynomials in terms of orthogonal polynomials.

Now we apply Theorem 2 in order to obtain upper bounds for
. We start with a polynomial of degree one

and recover Elias bound: Let

With , we have . If ,
the maximum over of equals

, and is attained for . Thus for
, and . Thus we obtain that

if and , then

(11)

It is unclear in general how to design a good polynomial of
degree . A possible strategy is to start from a polynomial
optimizing the bound for and disturb it with a polyno-
mial , i.e., take . Since ,
condition (1) of Theorem 2, is equivalent to . In
order to fulfill condition (2), it is enough to have for

so one can take
or where is
a sum of squares. For the degree 1, if one follows this line and
takes with , one finds that

the optimal choice of is and obtains again the
Elias bound (11). For the degree 2, we consider accordingly a
polynomial of the form

with . The matrix associated to is equal to

Let . The lower left 2 2 corner of
is positive semidefinite so the matrix is positive
semidefinite if and only if its determinant is non negative, which
amounts to the condition

On the other hand

so we obtain the bound . It remains to find
the maximum of , which is a polynomial of degree 2 in

The maximum is attained for
, if , and is equal to

This last value is positive if and only if

Altogether, we obtain:

Theorem 3: Assume and

Then

Example: With the above we obtain
. It is an almost sharp bound in view of

for values of for which an Hadamard matrix of order
exists [6, Theorem 10]. Note that adding the all zero codeword
to such an Hadamard code yields .
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Example: For the degree 1
bound does not apply. The degree 2 gives a bound if

which equals

B. Tables

The Tables IV–VI give upper bounds of em-
ploying the SDP method. They always improve on the bound
(4) (Cf right most column) and sometimes on (3) when the
latter is stronger than the former. This situation is indicated by
a star exponent.

In some cases they allow us to derive exact values of
by using the expurgation technique of Section V.

These cases are indicated by bold face numbers. To do that we
collect the weight enumerators of some special binary codes in
the notation of [16].

The weight enumerator of the dual of the
is computed by MacWilliams transform [16, Ch. 5,

Th. 1] as

This shows by expurgation that

The weight enumerator of the Nordstrom Robinson code is

This shows by expurgation

The weight enumerator of the extended Golay code is

Shortening we obtained the dual of the perfect Golay code.

This shows by expurgation

and

V. CONSTRUCTIONS

Three well studied code construction techniques are expur-
gation, translation, and concatenation. In the context of heavy
weight codes, the first is perhaps mostly of theoretical interest
as a good decoding algorithm needs not, in general, provide a

good decoding algorithm for a subcode. In contrast, the other
two techniques also provide practical decoding algorithms.

A. Expurgation

The following result shows that, for ,
and are essentially the same (recall that

).

Proposition 6: For , we have

Proof: Let be a code achieving . By first trans-
lating this code so as to include the all-zero codeword, then
removing the all-zero codeword, we get a new code of size

, with minimum distance and weight both at least
equal to . The proposition follows.

Theorem 4: For all large enough and even , all ,
and all ,3 we have

Proof: Pick a self dual code above the Gilbert bound [17].
This code being binary self-dual, contains the all-one codeword
and is, therefore, self-complementary. Hence, half of its code-
words at least have weight at least .

B. Translation

We assume that the reader has some familiarity with the cov-
ering radius concept [10]. Recall that the covering radius of a
code is the smallest integer such that Hamming balls of ra-
dius centered on the codewords cover the ambient space. De-
fine as the largest covering radius of a code achieving

. Since the covering radius exceeds , we get
with equality iff the code that achieves

is perfect. A sharper bound on for non perfect
codes is obtained as a direct consequence of the sphere covering
bound

The motivation for taking “largest” rather than “smallest” in
the definition of is to have the best upper bound on in
the next Proposition, which sharpens, in certain cases, Proposi-
tion 6.

Proposition 7: Fix two integers and . If
then

Proof: Pick a code realizing . There exists a
translate of of weight as long as is less than or equal
to the covering radius of . This gives .
The reverse inequality is (4).

3� ��� denotes the inverse function of the binary entropy over the range
��� ����.
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C. Concatenation

Consider an heavy weight code of length , size , min-
imum weight , and distance . If we concatenate this code
with a code of length , size , and minimum distance
over , we get a binary code of length , weight at
least , size and minimum distance . Hence, provided

, we see that

where denotes the largest size of a code of length
and minimum distance , over . Efficient decoding

algorithms for concatenated codes can be found in [13].

VI. CONCLUDING REMARKS

We investigated , defined as the largest number
of codewords of weight at least and minimum distance .
The asymptotic exponent of is reduced to those of

or , depending on . For finite values of the
parameters, we obtained bounds on partly using the
SDP method. As future research, it might be possible to find
new exact values of by special constructions. In this
direction, one possibility is to investigate defined in
Section V.
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