
A Model for the Delivery of Interactive Applications

over Broadcast Channels
Jean-Claude Moissinac Cyril Concolato

Institut Télécom ; Télécom ParisTech ; CNRS LTCI
39 rue Dareau

75014 Paris - France
{jean-claude.moissinac, cyril.concolato}@telecom-paristech.fr

ABSTRACT

A good way to deliver video and multimedia services to mobile

terminals is to broadcast them. But, methods to broadcast

interactive applications are very crude. In current broadcasting

systems, the available bandwidth for interactive applications is

and will remain heavily constrained by the associated video and

audio streams. To overcome these constraints, traditional

techniques rely on carrousels to deliver the application in

fragments, with some implied latency. The application starts when

the base fragments have been received and the whole application

is available when all the fragments have been delivered. It is

crucial for broadcasters to control how an application is

fragmented. Such fragmentation is in general made by hand,

specifically for each application and differently for each broadcast

technology. In this paper, we analyzed some typical interactive

applications and derive a model, close to the application level,

that can drive the broadcasting of the application independently

from the type of application and from the broadcast technology.

We also present a piece of software developed based on this

model that validates the concepts on some applications.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]:

Hypertext/Hypermedia – Architectures; I.7.2 [Document and

Text Processing]: Document Preparation –

Hypertext/hypermedia, Languages and systems, Multi/mixed

media, Scripting languages, Standards.

General Terms

Algorithms, Design.

Keywords

Broadcast, Carousel, Interactive Applications, Interactive TV,

Mutimedia systems.

1. INTRODUCTION
Delivery of interactive applications together with audio-video

streams is a key feature of many multimedia systems. In broadcast

environments, the delivery of interactive application is heavily

constrained. The application must be delivered so that new

comers can tune in at any time and view the application as quickly

as possible, or with a reasonable latency. A typical solution is to

use the concept of carousel, as defined in DVB [3], in which the

application is delivered periodically. The carousel period should

therefore be as short as possible. However, interactive

applications are delivered together with audio/video streams and

these streams require most of the bandwidth. Given an available

bit rate, it is often impossible to deliver the application both as a

whole and at the given carrousel period. Hence, application

developers or broadcasters have to design the application so that it

can be delivered within the constraints.

Interactive applications can be designed in two ways. They can be

described using programming languages such as Java, as in DVB-

MHP applications. They can also rely on declarative languages

such as HTML, CSS or SVG, together with some ECMAScript

code, as in the upcoming HBBTV standard1. For both cases, we

can consider that an application, also called interactive document,

is a structured set of elements. These elements may be files (e.g.

Java files, XML or HTML files) or parts of files (e.g. XML

elements or sub-trees). Additionally, a key feature of an

interactive application is that its content is usually dynamic and

changes over time. Changes can be insertion, deletion, or

replacement of application elements. Therefore, such applications

or documents can usually be fragmented (into separate files or

into separate updates to files or trees). The fragments can be

delivered and presented progressively to the user, with a different

carrousel period, depending on the nature and importance of each

fragment. For example, in an application displaying an electronic

TV program guide, the application should enable the user to

browse all programs for all channels at all time, but it is

acceptable, if at first, only the running programs are displayed and

if the additional programs arrive a bit later.

In general, the fragmentation process is constrained by the

programming or declarative language used to describe the

application. It is also affected by the underlying protocol used to

deliver the application. This makes it difficult and costly to

manage the delivery of the application independently from the

language and network used. In this paper, we present our work in

the delivery of interactive applications in a broadcast or multicast

context. We propose to model the properties of interactive

applications relevant for their broadcasting. This model enables

the separation of the application design from the preparation of

the delivery, still allowing the efficient delivery of the application

1 http://www.hbbtv.org

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MoViD’10, October 25, 2010, Firenze, Italy.

Copyright 2010 ACM 978-1-4503-0165-7/10/10...$10.00.

given bandwidth constraints, and independently from the

representation of the application (Java, HTML, MPEG-4 BIFS)

and from the delivery mechanism (DSM-CC, FLUTE, T-DMB).

The rest of this paper is organized as follows: Section 2 surveys

related works; Section 3 presents the model and associated

broadcasting algorithm; Section 4 discusses the implementation

and results of our proposal. Finally, Section 5 concludes this

paper and presents future work.

2. RELATED WORKS
In related works, we can first describe the many standards that

exist to broadcast interactive applications. Among most of them,

the MPEG-2 Transport Stream standard is the core. There are two

mechanisms in MPEG-2 transport streams that allow the

broadcasting of interactive applications. The first is called

Sections. Sections are transport units that provide some important

low level features for broadcast delivery. Sections are coded with

a checksum which allows detecting errors not corrected or

detected at the physical level. This feature is important because

interactive application data does not contain much redundancy

compared to audio or video signals and is therefore very sensitive

to errors. Then, Sections also enable versioning of the broadcasted

data. This is in particular important for receivers already tuned-in

to detect changes in the version of the data being broadcasted or

to ignore data already received. Sections are used in many

systems, either as a basis for low level signaling (e.g. PMT) or for

delivery of raw data (e.g. EIT), of files (as in most systems in

DVB systems) or of application streams (as in the T-DMB

standard).

The upper level construct of MPEG-2 TS for broadcasting

applications is DSM-CC. Based on DSM-CC, two carousel

mechanisms are derived: the low level Data Carousel and the high

level Object Carousel. The Data Carousel provides means to

deliver data in so-called modules with a versioning mechanism.

The Object Carousel, which is built on top of the Data Carousel,

enables the transmission of a virtual file system, using modules,

with the possibility to add, update, and delete files. These

mechanisms are used in many (if not all) television systems such

as MHP, ACAP, OCAP, DASE as described in [4]. Interested

readers can manipulate these technologies and create MPEG-2

Transport streams with sections and carousels using the Open

Source software framework described in [1].

For IP-based broadcast or multicast systems, used in mobile or

mixed mobile satellite systems such as DVB-H or DVB-SH, the

file delivery protocol FLUTE is the well-known technology. It has

similar characteristics to the MPEG-2 based systems in the sense

that they provide error detection mechanisms or versioning.

Finally, we can cite the MPEG-4 Systems standard which defines

a carousel mechanism with additional features compared to

MPEG-2 or FLUTE, enabling the detection of crucial/non-crucial

errors reducing the number of times receivers enter an invalid

state and need to recover the full carrousel.

Among the academic research work, several papers focus on

server issues related to the scheduling of data, the multiplexing of

streams to minimize the latency or energy [5] or related to

improving the existing carousel protocols [8]. Other types of work

focus on the receiver, in order to improve the response time and

reduce the latency for the viewer. For example, in [2], the authors

discuss the notion of Hypermedia Temporal Graph to enable

receivers to derive structures that will help retrieve the media

required by the interactive application at the right time; while in

[6], the authors discuss caching strategies.

To the best of our knowledge, up to now, there has not been any

work on the formalization of the properties of interactive

applications that are required for their delivery in broadcast.

3. MODEL AND ARCHITECTURE
The goal of this work is to enable the separation between the

design of the application, its delivery preparation and its actual

delivery, as depicted in Figure 1. In a broadcast production chain,

once the application has been created with an Authoring Tool

(AT), depending on the application, there are several

characteristics that should be provided to the Broadcasting Tool

(BT) to enable adequate delivery of the application. We consider

that the Broadcast Preparation Tool (BPT) is there to mark the

elements of the interactive application or document according to

the properties defined the model below. The BT uses the markers

to deliver the elements on channels with appropriate signaling

according to the protocol and provides feedback to the BPT.

Interactive

Application

Authoring Tool

Broadcast

Preparation

Tool

Broadcasting

Tool

Interactive Application

marked with

broadcasting properties

End Users

Updates marked with

broadcasting properties

Feedback

Figure 1 Interactive application production chain

3.1 Broadcast properties
We define here the abstract characteristics of an interactive

application that are needed to best fragment and deliver it. As

indicated in the introduction, we consider an interactive

application or document as a set of elements to be delivered.

The first characteristic of these elements is synchronization.

When preparing the delivery of the application, one has to

indicate for each element if it must be synchronized with the

associated audio/video streams or not.

Then, for application elements that do not need to be

synchronized, an important characteristic is the periodicity of the

data to be sent, i.e. if it needs to be sent periodically and in this

case what is the carousel period. The carousel period is the upper

bound for the acceptable latency in the display of an element. This

upper bound can also be constrained by its lifetime.

Interactive application elements may also be delivered differently

based on their necessity. Among the elements that compose an

application, some elements form the basis of this application and

are required. Other elements that provide additional information

can be considered as enhancement elements and are not strictly

required to access the application. This notion of displaying

enhancement elements of an interactive application after the base

element can be put in parallel with the scalable coding of video

streams or progressive loading techniques for web pages.

3.2 Broadcasting tool architecture
According to the previous section, there are 3 binary markers that

correspond to the questions: should an element be delivered

periodically or not, should it be delivered synchronously with the

video and is it a mandatory element for the application to work.

These 3 markers actually define 8 types of channels that the BT

will process differently. However, if we assume that a periodic

element cannot be delivered synchronously with the video, we end

up with the following 6 types of channels:

C1 Channels from which mandatory elements must be delivered

periodically (without synchronization with the video). The base

document or class representing the application is typically

received on this type of channel.

C2 Channels from which elements are optional and should be

delivered periodically. Typically, enhancement elements to the

base elements are received on this type of channel.

C3 Channels from which elements are mandatory for the

application and must be delivered synchronously. Typically,

updates to the base document that must happen at precise instants

in the video are received on this type of channel.

C4 Channels from which non-mandatory elements are received

that must be delivered synchronously. Typically, temporary

modifications to the base application are received on this type of

channel.

C5 Channels from which mandatory but non periodic and non

synchronized elements are received.

C6 Channels from which optional elements are received.

Typically, low priority enhancement updates are received on this

type of channels and are delivered only if the bandwidth allows.

However, we can group these types of channels and consider that

the BT conceptually uses two types of input channels:

- Channels on which the data is sent periodically and for which

versioning is important. In an application, there must be at

least one channel of this type (C1 and C2).

- Channels on which the data is made of updates, which are not

sent periodically, but are placed in a queue and sent

depending on their mandatory and synchronized properties

(C3 to C6). These updates typically modify elements that are

sent periodically.

So the BT maintains a link between the channels of type C3-C6

and of type C1/C2. When an update is received, it is dealt with in

the following manner:

- U1 It is only applied to the carouseled elements and will

be sent as part of the next carousel delivery,

- U2 It is applied to the carouseled element and delivered

both in the carousel and in a non-carouseled channels

(with a proper signaling) for non- and already-connected

clients,

- U3 It is only delivered and not applied to the carouseled

elements.

Interactive

Application

Updates

Carousel

Generator

Update

Queue

Carousel

Signaling

Multiplexer

C1

C2

C3

C4

C5 A/V

and

other data

Update

Signaling

C6

Figure 2 Architecture of the broadcasting tool

The BT uses queues for processing synchronized updates: one for

mandatory (C3) and one for non-mandatory (C4), in which the

updates are ordered according to their timestamps. Additionally,

each update has an expiration date, after which its content is not

needed anymore and can be removed from the queue.

3.3 Broadcasting algorithm
We describe here a possible algorithm for the BT based on the

architecture described before. We assume that the available

bandwidth for the output channel is constant or at least has a

known minimum.

Each channel of type C1 and C2 has an associated carousel period

PI. We consider that the BT will accumulate data from the input

channels during a period of time PB and will then produce the

output. This creates some latency in the process but is necessary

for the ordering of the input data. The algorithm is as follows.

First, the updates that remain in the queues of channels of type C3

are added to the output and removed from the queue, An

exception is raised if some updates are late or expired.

Then, elements from channels of type C1 are processed. If the

data was not fully sent during the previous period PB, the left over

is processed again. If no data from this channel has been added to

the output since a period PI, a new carousel delivery is started and

the corresponding elements are processed. The processing

consists in sending the element in the output channel added until

either it is full or until all elements are sent.

Then, updates from channels of type C4 are processed, expired

updates are removed from the queue, and updates whose

timestamp fit in the current period are added to the output

channel.

Finally, updates from channels of type C5 and C6, and carousels

from channels of type C2 are processed.

This algorithm defines a possible priority between input channels,

but there may be other possible configurations for the priority.

This is a possible extension of our model. Additionally, the

priority could also be determined dynamically based on the

feedback provided by the BT to the BPT.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation
Based on the principles described above, we have implemented a

BT within the GPAC open source framework [7]. It is capable of

managing interactive applications developed using the MPEG-4

BIFS standard and of broadcasting them according to the T-DMB

standard. It first receives a configuration which signals the

number of input channels to be set up. For each input channel, a

carousel period can be provided indicating channels of type C1 or

C2. The tool currently assumes that only the first periodic channel

is of type C1 and the others are of type C2. Other channels, for

which a period is not provided, are assumed to be of type C3 and

C5. The distinction between the two types is made by the use of

timestamps on the data given on the channel. This tool currently

also assumes that the data provided will fit in the available output

bitrate.

It therefore does not handle the priority or the (non-)mandatory

property of channels. It rather focuses on applying the data

received on C3 and C5 channels in the C1 and C2 carousel

channels. For that purpose, each received data on a channel C3

and C5 is marked with an update type (U1 to U3).

4.2 Results
Using this implementation, we have applied the above algorithm

on the following example of a cycling race. The program is

composed of live audio/video of the race and of an interactive

application. This latter provides access to two pages of

information: one is the overall standing and the second one is a

personalized page showing the standings of the viewer’s favorites

cyclists. This application can be designed as follows:

- C1: the elements that form the structure of the application, the

basis of the two pages, the name of all cyclists and all the

elements needed for interactions (e.g. buttons). These

elements are periodic and mandatory. Their lifetime is the

duration of the application. The carousel period of these

elements define the access time to the application.

- C1: the elements that provide the ranking for all cyclists. They

are mandatory for the application to be meaningful. These

elements should be sent periodically and since the lifetime of

these elements is short, the carousel period should be short.

- C5: instant messages like messages about the fall of a

competitor…

- C2: elements providing enhancements for the application such

as the flags of the country of each cyclist. These elements are

not mandatory for the application. They should be sent

periodically, with a long period, only if the bandwidth allows.

As a sample, let us look at the result for two scenarios with the

same data: one with a simple carousel; and another one, where a

carousel is set up for several data types. Here we consider three

types: a base scene (type C1), a periodic update of the base scene

(type C1) and data for amelioration (type C2). For simplicity, we

suppose here that the cost of the protocol doesn’t affect

significantly the relative cost of the transport of each type of data.

The table below shows the data for this scenario.

Available bandwidth (kb/s) 10

Base scene (kB) 50

Race data (kB) 0,5

Improvement data (kB) 80

If used with a simple carousel with the same duration for all the

data, the result is illustrated by the table below.

Total bandwidth (kb/s) 17,4

Base scene (kb/s) 6,67

Race data (kb/s) 0,07

Improvement data (kb/s) 10,67

If we adjust the carouselling by data type, the table below shows

the result.

Total bandwidth (kb/s) 9,6

Main carousel cycle (s) 60

Base scene (kb/s) 6,67

Carousel for race data (s) 5

Race data (kb/s) 0,8

Carousel for improvement data (s) 300

Improvement data (kb/s) 2,13

In the first case, we need nearly twice the available bandwidth to

transport the scene; the periodic update of the main information is

not very short (60s). In the second case, a user needs to wait at

most 60s to get the scene; each user has an updated information

each 5s; an available bandwidth of 0,4 kb/s remains available for

instant messaging.

A demonstration of this example can be viewed on this video2.

5. CONCLUSION
In this paper, we have presented our proposal to separate the

design of an interactive application from its adaptation to the

delivery on broadcast channels. Our proposal is based on the use

2 http://vimeo.com/9323680

http://vimeo.com/9323680

of an intermediary tool, on a model describing the properties of

the application and on the use of such description by the

broadcasting tool. Our experiment, with a static definition of the

priority between the channels, shows us the pertinence of the

model. It validates the fact that building of the dynamic

interactive application is simplified by this new tool between the

source of the data to broadcast and the broadcasting tool. The data

source only has to be aware of the separation of channels of data

and a choice of the period of each periodic channel to fit the

available bandwidth. In future work, we want to address more

complex scenarios where a dynamic control of the channels based

on feedback from the broadcast tool is possible.

6. REFERENCES
[1] Berger, A., Pallara, L., and Schatz, R. 2008. An open source

software framework for DVB-* transmission. In Proc. of the

16th ACM international Conference on Multimedia

(Vancouver, British Columbia, Canada, October 26 - 31,

2008). MM '08. ACM, New York, NY, 1093-1096.

[2] Costa, R. M., Moreno, M. F., and Gomes Soares, L. F. 2008.

Intermedia synchronization management in DTV systems. In

Proc. of the 8th ACM Symposium on Document Engineering

(Sao Paulo, Brazil, September 16 - 19, 2008). DocEng '08.

ACM, New York, NY, 289-297.

[3] Digital Video Broadcasting (DVB); DVB specification for

data broadcasting. ETSI EN 301 192 V1.4.1 (2004-11).

[4] Saleemi, M. M., Björkqvist, J., and Lilius, J. 2008. System

architecture and interactivity model for mobile TV

applications. In Proc. of the 3rd international Conference on

Digital interactive Media in Entertainment and Arts (Athens,

Greece, September 10 - 12, 2008). DIMEA '08, vol. 349.

ACM, New York, NY, 407-414.

[5] Hsu, C. and Hefeeda, M. 2009. On statistical multiplexing of

variable-bit-rate video streams in mobile systems. In Proc. of

the 17th ACM international Conference on Multimedia

(Beijing, China, October 19 - 24, 2009). MM '09. ACM,

New York, NY, 411-420.

[6] Park, D., Ku, T., and Moon, K. 2005. Data Broadcasting

Software Architecture supporting Real-Time Caching and

Monitoring in Interactive TV. In Proc. of the 4th Annual

ACIS international Conference on Computer and

information Science (July 14 - 16, 2005). IEEE Computer

Society, Washington, DC, 593-597.

[7] Le Feuvre, J., Concolato, C., and Moissinac, J. 2007. GPAC:

open source multimedia framework. In Proceedings of the

15th international Conference on Multimedia (Augsburg,

Germany, September 25 - 29, 2007). MULTIMEDIA '07.

ACM, New York, NY, 1009-1012. DOI=

http://doi.acm.org/10.1145/1291233.1291452

[8] Lin F.; Sun J. 2007. An Interactive Service Platform Solution

Based On Enhanced Data Carousel Scheme. In IEEE T.

Consum. Electr. 53, 2 (May 2007), 675-682.

