
Private Interrogation of Devices via

Identification Codes�

Julien Bringer1, Hervé Chabanne1,2, Gérard Cohen2, and Bruno Kindarji1,2

1 Sagem Sécurité
2 Télécom ParisTech

Abstract. Consider a device that wants to communicate with another
device (for instance a contactless one). We focus on how to withstand
privacy threats in such a situation, and we here describe how to query the
device and then identify it, with a new identification protocol solution.
The interrogation step uses the concept of identification codes introduced
by Ahlswede and Dueck. We show that this probabilistic coding scheme
indeed protects the device against an eavesdropper who wants to track
it. In particular, when using a special class of identification codes due
to Moulin and Koetter that are based on Reed-Solomon codes, we di-
rectly depend on the hardness of a cryptographic assumption known as
the Polynomial Reconstruction problem. We analyse the security and
privacy properties of our proposal in the privacy model for contactless
devices introduced by Vaudenay at ASIACRYPT 2007. We finally ex-
plain how to apply our scheme with very low-cost devices.

Keywords: Identification, Privacy, Polynomial Reconstruction Problem.

1 Introduction

In the field of contactless communication, a verifier (often called a sensor or
reader of devices) is used to identify the objects by verifying the validity of
the attached contactless devices. This is the case for Radio Frequency IDenti-
fication (RFID) systems, where devices are attached to physical objects. The
verification is realized through an authentication protocol between a device and
the verifier. Once authenticated, the verifier manages the object and allows the
owner of the object to access some service. Applications examples include in
stock management application for real-time item identification and inventory
tracking, e-passport applications, etc. Devices can also be part of a sensor net-
work that gives information on the related infrastructure around a geographical
zone.

In this context, a verifier has often to manage many devices at the same
time in the same area. Main issues are then efficiency, security and cost, and,
of course, the problem very specific to the field of contactless communication:
privacy. Many schemes to handle the latter problem have been proposed so far

� This work was partially funded by the ANR T2TIT project.

R. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 272–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Private Interrogation of Devices via Identification Codes 273

(e.g. [17,20,30,28,22,19,11,7,27,24,26,21,3]; see [8] for a more exhaustive list),
but finding an efficient solution enabling privacy of devices is still an active field
of research.

Contactless devices are generally assumed to respond automatically to any
verifier scan. We follow, in this work, an idea [23] that suggests that the verifier
directly addresses the device with which it wants to communicate. To this aim,
the verifier broadcasts the device identifier and then the corresponding device
responds accordingly. However, the emission of the device identifier enables an
eavesdropper to track it. We here look for a solution which does not require many
computations and many communications efforts, while preventing an eavesdrop-
per to be able to track a particular device. Changing the paradigm from the
situation where a device initiates the protocol to a situation where the device
identifies first the interrogation request enables to envisage new solutions.

We show that Identification Codes [1] perfectly fit to our needs. They were
introduced by Ahlswede and Dueck to enable the identification of an element
out of {1, . . . , n} by only conveying log log n bits. While transmission codes en-
able to correct messages under some noise tolerance property – i.e. to answer
the question What is the received message?, an identification code detects if a
particular message m has been transmitted – i.e. answers the question Is it the
message m?. We show that such a probabilistic coding scheme increases a lot
the job of the eavesdropper as the same identifying bit string is not used twice
except with a small probability. In particular, for the class of identification codes
of [18], a reduction to the cryptographic assumption of [15] is possible.

Our introduction of Identification Codes for authenticating devices can be
viewed in the more general context of challenge-response protocols. Each device
has an identifier m and the prover broadcasts a challenge associated to m. Here
our scheme does not rely neither on hash functions nor on a random generator
on the device side. Moreover, our work shows that our solution is very efficient
in terms of channel usage.

We first describe a general scheme based on these identification codes and
show that our scheme satisfies good security and privacy properties by analysing
it in the privacy model defined in [28]. We then explain how the scheme is suited
to very low-cost devices.

Note that the problematic of this article is not limited to interrogation of low-
cost devices; in fact, we focus on interrogation protocols and any independent
component that communicates over a noisy broadcasting channel is a potential
target (as e.g. in [4]).

2 Identification Codes

We wish to communicate mainly with contactless devices, which means that all
the communications are to pass through radio waves. As a direct consequence, a
message that is sent over the channel is publicly available to any eavesdropper.
In a realistic model where a verifier sequentially communicates with wireless
devices, it is the verifier that will initiate the communication. To that purpose,

274 J. Bringer et al.

the verifier first beckons the device with which it wants to communicate. The
most efficient way for doing so is to use an identification code.

2.1 General Definition

Let X ,Y be two alphabets, and W η a channel from X η to Yη. W η is defined
as the probability to receive a message yη ∈ Yη given a transmitted message
xη ∈ X η. By extension, for a given subset E ⊂ Yη, W η(E|xη) is the probability
to receive a message belonging to E when xη has been transmitted.

Definition 1 (Identification Code, [1]). A (η, N, λ1, λ2)-identification code
from X to Y is given by a family {(Q(·|i),Di)}i with i ∈ {1, . . . , N} where:

– Q(·|i) is a probability distribution over X η, that encodes i,
– Di ⊂ Yη is the decoding set,
– λ1 and λ2 are the first-kind and second-kind error rates, with

λ1 ≥
∑

xη∈X η

Q(xη|i)W η(Di|xη)

and
λ2 ≥

∑
xη∈X η

Q(xη|j)W η(Di|xη)

(where W η(Di|xη) is the probability to be in the decoding set Di given a
transmitted message xη and W η(Di|xη) the probability to be outside the de-
coding set)

for all i, j ∈ {1, . . . , N} such that i �= j.

Given Q(·|i), the encoding set of i is defined as the set of messages xη for which
Q(xη|i) > 0.

Informally, an identification code is given by a set of (probabilistic) coding
functions, along with (deterministic) decoding sets. The error rate λ1 gives the
probability of a false-negative, and λ2, of a false-positive identification. We stress
that the use of an identification code in our case is more interesting than using
a transmission code for the following reasons:

– The efficiency in terms of information rate: the rate of such a code is defined
as R = 1

η log log N and can (see [1, Theorem 1]) be made arbitrary close
to the (Shannon) capacity of the channel. This means that it is possible to
identify N = 22Rη

devices with a message of length η, with constant error
rates (λ1, λ2). A regular transmission code permits only to identify 2Rη

devices.
– The transmission of an element of Di to identify the device i permits its iden-

tification without completely giving away the identity i. Indeed, an eaves-
dropper only gets the message sent xη ∈ Y η, not the associated index i. The
use of an identification code is thus a good way to enhance privacy in the
beckoning of wireless devices. This notion is formalized in Section 3.

Private Interrogation of Devices via Identification Codes 275

The proof of the result stated in [1, Theorem 1] is based on a generic construction,
exhibited hereafter. Let A1, . . . , AN ⊂ Xη be N subsets such that each Ai has
cardinal n and each intersection Ai ∩Aj for i �= j contains at most λn elements.
The encoding distribution Q(·|i) is defined as the uniform distribution over Ai;
in the noiseless case (the channel W η is the identity function) the decoding sets
are also the Ai’s. Note that in that case the false-negative rate λ1 is equal to 0
and the false-positive rate λ2 is λ.

This theoretical construction gives way to multiple practical identification
codes based on constant-weight codes, such as [16, 29, 6]. We focus on [18]
which provides a simple though efficient identification code well suited to our
application.

2.2 Moulin and Koetter Identification Codes Family

We here recall a simple construction of identification codes proposed by Moulin
and Koetter [18].

The identification code detailed in [18] is based on an Error-Correcting Code
C of length n, size N = |C| and minimum distance d over some alphabet. For
a word ci = (c(1)

i , . . . c
(n)
i) ∈ C, the corresponding set Ai is the collection of all

(u, c
(u)
i), for u ∈ {1, . . . , n}. Note that we indeed have sets Ai of constant size n;

moreover, the intersection of two different sets Ai ∩ Aj contains at most n − d
elements, which induces λ2 = n−d

n = 1 − d
n .

A Reed-Solomon code over a finite field A = Fq, of length n < q − 1, and
dimension k, is the set of the evaluations of all polynomials P ∈ Fq[X] of degree
less than k−1, over a subset F ⊂ Fq of size n (F = {α1, . . . , αn}). In other words,
for each k-tuple (x0, . . . , xk−1) ∈ F

k
q , the corresponding Reed-Solomon word is

the n-tuple (y1, . . . , yn) where yi =
∑k−1

j=0 xjα
j
i . In the sequel, we identify a source

word (x0, . . . , xk−1) ∈ F
k
q with the corresponding polynomial P =

∑k−1
j=0 xjX

j ∈
Fq[X].

Definition 2 (Moulin-Koetter RS-Identification Codes). Let Fq be a fi-
nite field of size q, k ≤ n ≤ q− 1 and an evaluation domain F = {α1, . . . , αn} ∈
Fq. Set AP = {(j, P (αj))| j ∈ {1, . . . , n}} for P any polynomial on Fq of degree
at most k − 1.

The Moulin-Koetter RS-Identification Codes is defined by the family of encod-
ing and decoding sets {(AP , AP)}P∈Fq [X],deg P<k.

This leads to a (log2 n + log2 q, qk, 0, k−1
n)-identification code from {0, 1} to

{0, 1}.
Using a Reed-Solomon code of dimension k, this gives λ2 = k−1

n since d = n−k+1
(Reed-Solomon codes are Maximum Distance Separable).

2.3 Application to Our Setting

Back to our original problem of devices interrogation, here comes a brief descrip-
tion of a set-up that enables the use of identification codes to initiate a protocol
between a verifier and a device. A more formal description is given in Section 4.

276 J. Bringer et al.

A set of M < qk devices is constructed, and each of them is associated with a
different random polynomial pl ∈ Fq[X] of degree less than k − 1. The memory
of these devices is then filled with a set of pl(αj), for αj ∈ F , with F a public
subset of Fq, i.e. the devices contain the evaluation of pl over a subset of Fq.
The verifier is given the polynomial pl.

When the verifier wants to initiate communication with the device number l
associated with the identifier pl, it selects a random αj ∈ F and sends (j, pl(αj))
over the wireless channel. A device that receives this message checks whether the
value stored in its memory at the corresponding address is equal to pl(αj), i.e.
computes an equality test of two bit strings. If the test is successful, it replies
and goes through the authentication protocol described in Section 4. Otherwise,
it remains silent.

Consequently, only a legitimate verifier can interrogate a specific device. Next
sections emphasize the security properties reached thanks to this principle.

3 Vaudenay’s Model for Privacy

We briefly recall in this section the model for privacy, correctness and soundness
described in [28]. Our main concern is interrogation of devices, but it can be
easily seen as an authentication protocol, so we use almost the same model.

Following [28], we consider that provers are equipped with ContactLess Device
(CLD) to identify themselves. CLDs are transponders identified by a unique
Serial Number (SN). During the identification phase, a random virtual serial
number (vSN) is used to address them.

An identification protocol is defined as algorithms: First to setup the system
made of a verifier and several CLDs, secondly to run a protocol between CLDs
and verifiers. Note that we need an authority who publishes a mathematical
structure.

Setup Algorithms

– SetupAuthority(1k) �→ (KAs, KAp) generates the system parameters de-
fined by an authority (KAs stands for the private parameters and KAp for
the parameters publicly available).

– SetupVerifierKAp initializes a verifier. It may generate a private/public
set of parameters (KVs, KVp), associated to the verifier.

– SetupCLDb
KAp,KVp

(SN) generates the parameters of the CLD identified by
SN. This algorithm outputs a couple (s, I) where s denotes the secret (if
any) parameters of the CLD, I its identity within the system. It enables to
initialize the internal state of the CLD, which may be updated afterwards
during an execution of the protocol. If b = 1, it also stores the pair (I,SN)
in a database which may be made available to the verifier. If b = 0 it is a
illegitimate device.

Communication Protocol P. Along with these setup algorithms, the identifica-
tion protocol between a CLD and a verifier consists of messages sent by the two
parties. Protocol instances are hereafter denoted by π.

Private Interrogation of Devices via Identification Codes 277

Oracles. To formalize possible actions of an adversary, different oracles are de-
fined to represent ways for him to interact with verifiers or CLDs, or to eavesdrop
communications. The use of different oracles leads to different privacy levels.

Given a public set of parameters KVp, the adversary has access to:

– CreateCLDb(SN): creates a CLD with serial number SN initialized via
SetupCLDb. At this point, it is a free CLD, i.e. not yet in the system.

– DrawCLD(distr)�→((vSN1,b1),...,(vSNn,bn)): this oracle moves a random
subset of n CLDs according to a given distribution from the set of free CLDs
into the set of drawn CLDs in the system. Virtual serial numbers vSNi can
be used to refer to these CLDs. If bi is one, this indicates whether a CLD is
legitimate. This oracle creates and keeps a table of correspondences T where
T (vSN)=SN. Adversary has no knowledge of this table T .

– Free(vSN): moves the drawn CLD vSN to the set of free CLDs, i.e. vSN
cannot be used any more to query the CLD.

– Launch �→ π: makes the verifier launch a new protocol instance π.
– SendVerifier(m, π) �→ m′: sends the message m for the protocol instance

π to the verifier who may respond m′.
– SendCLD(m′, π) �→ m: sends the message m′ to the CLD who may respond

m.
– Result(π) �→ x: when π is a complete instance of P , it returns 1 if the

verifier succeeds in identifying a CLD from π and 0 otherwise.
– Corrupt(vSN)�→ S: returns the internal state S of the CLD vSN.

Types of Adversary

– Strong adversary is allowed to use all of the above oracles.
– Destructive adversary cannot use a corrupted CLD another time.
– Forward adversary cannot use any oracle after one Corrupt query, i.e.

destroys the system when he corrupts one CLD.
– Weak adversary is not allowed to use the Corrupt oracle.
– Narrow adversary is not allowed to use the Result oracle.

This defines 8 kinds of adversaries because a narrow adversary may also have
restrictions on the use of the Corrupt oracle. For instance, an adversary can
be narrow and forward, he is then denoted by narrow-forward.

Remark 1. The notion of destructive adversary is an intermediate notion be-
tween strong and forward adversaries. As explained in [19], destructive no-
tion is different from forward notion only when the system enables the intro-
duction of some correlated secrets between CLDs. This is not our case in the
sequel, so we will no further distinguish these two notions.

Three security notions are defined in this model: correctness, resistance against
impersonation and privacy.

Definition 3. A scheme is correct if the identification of a legitimate CLD
fails only with negligible probability.

278 J. Bringer et al.

Resistance against Impersonation Attacks. The definition of resistance against
impersonation attacks (Definition 4) deals with active adversaries. Active ad-
versaries may impersonate verifiers and CLDs, and eavesdrop and modify com-
munications. This property of resistance against impersonation attacks has also
repercussions regarding privacy properties (cf. Lemma 1).

Definition 4. A scheme is resistant against Impersonation Attacks if any
polynomially bounded strong adversary is not identified by a verifier except with
a negligible probability. Adversaries are authorized to use different devices at the
same time while they communicate with the verifier. Nevertheless, the resulting
protocol transcript must neither be equal to an outputted one between a legitimate
CLD and the verifier nor lead to the identification of a corrupted CLD.

Remark 2. Obviously this means that a scheme is not resistant against imper-
sonation attacks if an adversary is able to modify on the fly outputs from a
prover without affecting the identification result.

In addition to this definition, in order to mitigate replay attacks, a legiti-
mate verifier should not output twice the same values in two complete protocol
instances, except with a negligible probability.

Note that following Remark 1, the Corrupt oracle will be useless for im-
personation attacks against our scheme (as secret are not correlated between
devices).

Similarly, and as in [22], we introduce the resistance against impersonation
of verifier where an adversary should not be able to be identified as a legitimate
verifier by a non-corrupted CLD except by replaying an eavesdropped transcript.
This is related to the notion of verifier authentication. Note that we introduce a
slight restriction in Section 5.3 as our scheme aims only at ensuring validity of
the verifier against a pre-fixed CLD.

Privacy. Privacy is defined as an advantage of an adversary over the system. To
formalize this, [28] proposes to challenge the adversary once with the legitimate
oracles and a second time with simulated oracles. In this setting, the adversary is
free to define a game and an algorithm A to solve his game. If the two challenges
results are distinguishable, i.e. if the system cannot be simulated, then there is a
privacy leakage. A game with three phases is imposed. In the first phase, A has
access to the whole system using oracles. In a second phase, the hidden table T
of correspondences is transmitted to A (note that this table is never learned by
the simulator). In a third phase, A, who is no longer allowed to use the oracles,
outputs its result. A scheme is defined as private if for any game, all adversaries
are trivial (the formal definition is given in Appendix A, Definition 7).

The following lemma established by Vaudenay in [28] emphasizes the link
between impersonation resistance and privacy:

Lemma 1. A scheme secure against impersonation attacks and narrow-weak
(resp. narrow-forward) private is weak (resp. forward) private.

The proof relies on the fact that an adversary is not able to simulate any CLD
if the scheme is sound. This implies that the Result oracle is easily simulated.

Private Interrogation of Devices via Identification Codes 279

Remark 3. Our model aims at dealing with identification of multiple devices. It
is therefore reasonable to amend the privacy model by stating that the Send-
CLD(m′, π) oracle cannot communicate with a single CLD, but broadcasts the
message m′ to all the CLDs in the vicinity. Moreover, as it was shown in D’Arco et
al. [5], no privacy is possible if the adversary can deactivate a CLD, which is
possible if we allow the adversary to manipulate the CLDs one by one.

[28] proves also that narrow-strong privacy implies the use of public key cryptog-
raphy and that strong privacy is impossible in this model. In the sequel we stick
to symmetric cryptography, and that is why we do not analyse the narrow-strong
privacy any further. Furthermore, as explained in the previous remark, we ex-
clude from our model of threats the situation where the adversary communicates
with one isolated device.

4 Our Protocol for Interrogation

Our aim is for a CLD to recognize itself into a verifier request, but authentication
of the CLD toward the verifier is handled as well. That is how we set-up the
system:

– SetupAuthority(1�) generates a set of parameters KAp defining two in-
tegers η, N , two alphabets X , Y, and two error rates λ1, λ2. No private
parameter is defined.

– SetupVerifierKAp constructs an (η, N, λ1, λ2)-identification code from X
to Y following Definition 1, IC = {(Q(·|i),Di)}i∈{1,...,N}, and sets KVp =
IC. IC is based on the Moulin-Koetter construction [18] (cf. Definition 2).

– SetupCLDKVp(SN) first returns randomly chosen (i, j) ∈ {1, . . . , N}, i �= j
as the parameters of the CLD identified by SN. It then initializes the CLD
with the storage of a description of the decoding set Di of the identifier i and
the description of Q(·|j), the encoding probability mass function for index
j. It also stores (i, j, SN) in the verifier database.

A verifier and a set of devices are set-up as above and the following steps are
then processed to interrogate and authenticate a specific CLD.

– The verifier, who wants to interrogate the CLD of identifier SN, recovers its
identifier i in the database and encodes it via Q(·|i) into a message x ∈ X η.
The verifier broadcasts the message (ACK, x), where ACK is an acknowl-
edgement number which will help the verifier to sort the received answers
when it emits simultaneously several such messages.

– Any listening CLD that receives the message (ACK, y) uses its own decoding
set DiCLD to determine whether y encodes iCLD.

– If a CLD identifies y as an encoding of its identifier iCLD, then it sends the
message (ACK, x′) to the verifier, where ACK is the incoming acknowledge-
ment number and x′ is an encoding of jCLD obtained via Q(·|jCLD).

280 J. Bringer et al.

– Upon receiving this message, the verifier then checks whether the received
message y′ is a member of the decoding set Dj of the aimed CLD. If so, then
the CLD is declared as authenticated.

Note that here x′ has to be chosen in relation with the value of y so that imper-
sonation of a CLD is not easy.

Remark 4. As a practical assumption, our interrogation protocol works as a
broadcast channel and we assume that a legitimate verifier is interrogating sev-
eral CLDs during the same period. Although it might look restrictive, recall
that our goal is to address applications where a verifier has to manage effi-
ciently a cloud of CLDs. More formally, we assume that a cloud of M CLDs is
present in the broadcast area of the verifier and that the verifier interrogates
them uniformly in a random order. In particular, an adversary is not able to a
priori distinguish the devices without trying to exploit the content of messages
exchanged.

4.1 Specifications Using Reed-Solomon Based Identification Codes

We now consider only the Moulin-Koetter setting, in particular for the security
analysis in the next sections. The description is given below (see also Fig. 1).

In this setting, a set of CLDs is constructed where each of them – say CLDl

– is associated with two different random polynomial identifiers pl, p′l ∈ Fq[X]
of degree at most k − 1. Here pl and p′l are good descriptions of the associated
encoding functions and the decoding sets; they are both stored on the CLD side
and on the verifier database.

When the verifier wants to initiate communication with CLDl (with identifiers
pl, p′l), it selects a random αj ∈ F ⊂ Fq[X] and broadcasts (ACK, j, pl(αj))
over the wireless channel. A CLD with identifiers p, p′ that receives this message
checks whether the polynomial p stored in its memory evaluated in αj is equal
to pl(αj). If the test is successful, it responds with the value (ACK, p′(αj)).
Otherwise, it remains silent. The verifier authenticates the CLD if the received
value p′(αj) is equal to p′l(αj).

Remark 5. For privacy purposes, we do not want replay attacks to be possible at
all. In order to avoid them, we add to each devices a flag bit that tells if the αj

CLD parameters Verifier
identifiers p, p′

Fq, (α1, . . . , αn) (l, pl, p
′
l)

(ACK, j, a=pl(αj))←−−−−−−−−−−−−−−−−−− Pick j

If p(αj) = a
(ACK, b=p′(αj))−−−−−−−−−−−−−−−−−−−−→ Check whether p′

l(αj) = b

Fig. 1. CLD identification via Moulin-Koetter identification codes

Private Interrogation of Devices via Identification Codes 281

was already used or not; this bit is flipped on at the reception of (j, p(αj)); after
that, a device no longer accepts such a message. This can be seen as coupons
enabling a limited number of interrogations by a legitimate verifier.

When communicating with an isolated device, it may enable an adversary to
track the device via a replay attack by listening whether the device responses.
In our situation, this does not lead to a privacy threat as the adversary is only
able to interrogate a cloud of devices which is continuously evolving.

5 Security Analysis

Remark first that the scheme is correct: In the Moulin-Koetter construction (cf.
Section 2.2) the false-negative error rate (λ1) is zero, thus the correct CLD will
always answer and be authenticated.

5.1 Assumptions

Part of our results are directly linked to solving the problem of polynomial
reconstruction (PR) [15, 14, 13, 12]:

Definition 5 ([15]). Given n, k, t such that n ≥ t ≥ 1, n ≥ k and z, y ∈ F
n
q ,

with zi �= zj for i �= j, output all (p, I) where p ∈ Fq[X], deg(P) < k, I ⊂
{1, . . . , n}, |I| ≥ t, and ∀i ∈ I, p(zi) = yi. Such an instance of this problem is
noted PRz

n,k,t.

The Guruswami-Sudan algorithm [10] for the list decoding of Reed-Solomon
codes gives a way to solve the polynomial reconstruction problem when t ≥√

kn. However, no efficient solution to this problem exists when t <
√

kn and
it is reputed hard. If t < k, PR is unconditionally secure (in the information-
theoretical meaning).

Based on the assumed intractability of PR, [15] derives the Decisional PR
(DPR) problem which consists, given an instance y of PRz

n,k,t for which there
exists a solution (p, I), in determining whether a given i ∈ {1, . . . , n} is in I.
Thanks to the DPR assumption (hardness of the DPR problem), it is shown [15]
that PR instances are pseudo-random and that they do not leak any partial
information on the polynomial values.

Remark 6. In the sequel we assume that the PR and DPR problems remain hard
(with respect to the security parameter �) even in our setting – where the noise
is generated by the other queries and responses. M will be chosen so that the
DPR assumption holds when the noise is assumed to be random. To justify this
choice, we can refer to [9] which explains the link between Reed-Solomon list
decoding and the previous works on polynomial reconstruction in the mixture
model. An algorithm to reconstruct polynomials from mixed values is designed
in [2]. When considering mixed evaluations of M polynomials of degree at most
k− 1, it enables to reconstruct one of these polynomials when at least M(k− 1)
related values are available in the mixture. In the sequel, we set M greater than√

n
k so that M(k − 1) is approximately greater than

√
nk, i.e. that we obtain

282 J. Bringer et al.

the same bound as for the solvability of PR instances. This algorithm is the
basis – although a bit simpler – of the list decoding algorithm [10] and this fact
suggests that when we get less than M(k−1) values for each polynomial with M
large, the problem of reconstructing one polynomial remains hard even without
a perfectly random noise.

5.2 Effect of Passive Eavesdropping

When listening on the channel to the queries made by a legitimate verifier and
the replies produced by legitimate CLDs, an eavesdropper sees messages of this
kind: (ACKi, ji, plji

(αji)), (ACKi, p
′
l′ji

(αji)) (for l′j such that pl′j(αj) = plj (αj)),

for some number of i’s (say i ∈ {1, . . . , T}). Note that we may also have collisions
on the αj used (i.e. ji = ji′ may occur for some i �= i′). This means that the
adversary obtains a set S of several PR instances of length less or equal to n (the
length of the overall code, see Section 2.2). Targeting a specific CLD, of identifier
p and p′, then there are at least two corresponding PR instances, PRz1

n1,k,t1
and

PRz2
n2,k,t2

where p is one solution of the first one and p′ a solution of the latter,
among the set S of all those PR instances. One difficulty for the adversary is
to sort the different messages and to deal with the collisions to extract such
instances. If we assume that there is no collision (then necessarily T ≤ n) and
that the verifier queries uniformly the M CLDs (cf. Remark 4), then it implies
that the adversary can recover these instances, but with ti ≈ ni

M . So if M is
greater than

√
n
k then the PR instances are hard.

Moreover, when the number of received messages is large, the ti’s above may
be greater than

√
kn but the adversary has to deal with the collisions and to

try all the different instances until the recovery of a solvable instance. Another
strategy is to see the problem as one longer PR instance. This is related to the
list recovery problem which is analysed in [25]. This is hard as well given some
restriction on the number of eavesdropped messages. In the sequel, we assume
that the list recovery problem in the mixture model is hard when t <

√
nk × l

with l the maximum number of collisions per zi.

Proposition 1. Assume that the number M of devices simultaneously queried
by the verifier is such that

√
q ≥ M ≥ e

√
n
k (with e = exp(1)). Then a passive

adversary, who eavesdrops at most T requests with T < M2k, cannot reconstruct
the polynomial identifiers, except with a negligible probability.

Proof. Assume that the adversary has eavesdropped T different requests with
T/M ≥

√
kn, then there may exist solvable PR instances. Now he has to find

these solvable instances among all possible instances. Following Remark 4 on
uniformity of the queries made by a verifier, we assume that the number of
different requests to each device is exactly t = T/M . (Due to the false-positive
error rate of the underlying identification code, one request will address several
additional devices and imply as many replies. In fact, as the polynomials are
chosen independently and uniformly, the number of devices addressed by one
query is strictly greater than 1 only if there is a collision during the evaluation

Private Interrogation of Devices via Identification Codes 283

of several polynomials. The assumption M ≤ √
q enables us to neglect this point,

but the result is easily generalizable to the case M >
√

q.)
Let M ≥ γ

√
n
k where γ will be determined later. Note that if T/M < k then

it is unconditionally secure and if T < γn then T/M <
√

nk so that the PR
instances are hard. Assume that T ≥ γn, thus the number of collisions per αj

is expected to be about T/n (note that T/M ≤ n as each device is linked to
at most n different requests). To make computation more tractable, we assume
below that the number of collisions per αj is exactly T/n.

The adversary has to reconstruct one polynomial corresponding to some part
of the eavesdropped values.

The first strategy for the adversary is to find a solvable PR instance in the
classical meaning, i.e. without any collision. The number of possible PR instances
is then expected to be B =

(
T
n

)n
whereas the number of solvable instances is

A = M ×
(T/M

√kn�
) (

T
n

)n−
√kn�. If the ratio ρ = A
B of the number of solvable

instances over the number of all possible instances is negligible then the adversary
would not find a solvable instance in polynomial time. In fact ρ is equal to

M

(
T/M

√

kn�

) (
T

n

)−
√nk�
.

To approximate ρ, note R = k
n the rate of the Reed-Solomon code as eaves-

dropped by the adversary. We also introduce θ > 1 such as T
M = θ

√
kn. The

notations give M = γ√
R

and T
n = θγ. A good approximation of

(T/M

�√kn�
)

is, for

θ > 2, 2
T
M h2

(
M

√
kn

T

)
= 2n

√
Rθh2(

1
θ) where h2 is the binary entropy function. This

shows that ρ can be fairly approximated by

ρ ≈ γ√
R

2n
√

R(θh2(
1
θ)−log2(θγ)).

Taking a closer look at the exponent, we see that θh2(1
θ) − log2(θγ) = (θ −

1) log2(
θ

θ−1)− log2(γ) is negative only if γ >
(
1 + 1

θ−1

)θ−1

. As ∀x ∈ R
�, log(1+

1
x) < 1

x , we deduce that if γ ≥ e, then θh2(1
θ) − log2(θγ) < 0. Thus, ρ ≤

M2−n
√

R log2(
γ
e) is negligible.

This gives a negligible probability for the adversary to find a solvable instance.
This conclusion can be generalized to non-constant number of collisions as soon
as the j picked by the verifier is chosen uniformly and independently among the
different requests.

The general strategy is to apply the list recovery technique [25] derived from
the list decoding algorithm [10]. This becomes tractable as soon as T/M is
greater than

√
nk × l with l the maximum number of collisions per αj (roughly,

this corresponds to solving a PR instance of length nl). Here l = T/n and the
condition T/M ≥

√
nkl =

√
Tk is equivalent to the condition T ≥ M2k. Due to

our hypothesis on the number of eavesdropped messages, the algorithm cannot

284 J. Bringer et al.

be applied. Finally if there exists an adversary able to reconstruct a polynomial
with any other strategy, then we can exploit it to simplify the list recovery
problem within the mixture model. This would contradict its difficulty when
T/M <

√
nk × l. ��

Note that in practice, the cloud of devices is dynamic, some devices may exit or
enter the cloud around a verifier, so that the difficulty for the attacker can only
increase.

Following this proposition and via the DPR problem, then a passive adversary
cannot distinguish the answers as soon as the same interrogation request does
not appear twice. The proofs of the following results are in Appendix B.

Proposition 2. Assume
√

q ≥ M ≥ e
√

n
k and T < M2k. A passive adversary

cannot determine whether two requests correspond to the same CLD except if
there is a collision, that happens only with probability 1/

√
n.

5.3 Security against Impersonation

In our protocol, a CLD replies to the verifier only if it believes that the verifier is
legitimate. It is thus close to mutual authentication – although here the authen-
tication of the verifier is only probabilistic with respect to the false-positive error
rate of an identification code. It is a weaker result than general verifier authen-
tication: a verifier cannot be impersonated in order to interrogate a pre-fixed
CLD.

Proposition 3. Assume
√

q ≥ M ≥ e
√

n
k and T < M2k. In our scheme, given

a non-corrupted CLD, an adversary cannot impersonate a verifier to interro-
gate this specific CLD, without replaying an eavesdropped transcript, except with
probability 1

q .

Of course, if no specific CLD is fixed, then impersonation of an interrogation
towards a member of a large set of CLDs is easier. With M CLDs, the probability
to reach one of them correctly is M

q .
Given this difficulty of impersonating a verifier against a chosen CLD and

the uselessness of eavesdropping (cf. Proposition 1), we deduce the resistance of
CLDs against impersonation attacks.

Proposition 4. Assume
√

q ≥ M ≥ e
√

n
k and T < M2k. Our scheme is secure

against impersonation of a CLD, i.e. an adversary will fail with probability 1− 1
q .

Replay attacks on the verifier side are not important from a security point of
view as replaying a query does not give additional information to the adversary.
However, they are prevented in the scheme to maintain privacy (with replay
attacks, an adversary could track a device).

5.4 Privacy

Proposition 5. If
√

q ≥ M ≥ e
√

n
k and T < M2k, then our scheme is weak

private.

Private Interrogation of Devices via Identification Codes 285

See the proofs in Appendix B.
Moreover, even if not forward private, as the identifiers are independently

chosen among devices, the corruption of one device directly affects only this
device. Although, this level of privacy could seem low, it is exactly what we
intended to achieve and it is important to notice that contrary to the protocols
described in [28], devices do not need the use of any internal random number
generator to implement the protocol.

6 Advantages for Very Low-Cost Devices

For low-cost devices, instead of storing the two polynomial identifiers p, p′, we
store directly the values p(α1), . . . , p(αn) and p′(α1), . . . , p′(αn) within the de-
vice. So doing, no computation is needed on the device side. Depending on
the amount of memory available per device, we can also limit the number of
such values by restricting ourselves to a basis of evaluation of size L < n, e.g.
(α1, . . . , αL).

An additional advantage is that the scheme can be adapted simply to work
over a noisy channel by storing encoded versions – through some error-correcting
code – of these values p(α1), . . . , p(αL) and p′(α1), . . . , p′(αL) and the corre-
sponding index 1, . . . , L. The devices will only have to compute the distance
between the received message and the stored one.

7 Practical Parameters

For real-life low-cost CLDs, we can imagine a non-volatile memory of about
218 = 256k bits. We aim at a field size q = 264, which permits to store 212 =
4096 fields elements in the memory, i.e. 2048 evaluations of the two polynomials
pl, p′l (which implies that the length n ≤ q − 1 of the corresponding code is
n = 211).

With these parameters, we suggest the use of polynomials of dimension k = 28.
Using such a dimension permits to define qk = 264×256 possible polynomials; the
number M of devices needed in the cloud around a verifier has then to be greater
than e×

√
n
k , i.e. at least 8. With M = 256, this leads to the restriction T < 224,

which is automatically satisfied here as T ≤ Mn = 219.
These parameters enable 2048 interrogations of the same device without com-

promising the device identity - both in terms of impersonation and of weak
privacy.

Remark 7. We can suppress the identification-code structure, and replace it with
a random one (i.e. replace p(αi), p′(αi) by random βi, β

′
i ∈ {0, 1}log2 q). However,

instead of storing k · log2 q bits per device at the verifier’s side, we need to store
for each device the n · log2 q bits that are stored in it. With these parameters,
this implies a storage space 8 times larger.

286 J. Bringer et al.

8 Conclusion

Finally, it is possible to further extend the scheme toward reaching forward
privacy (equivalent to destructive privacy in this context of non-correlated iden-
tifiers): we store L < k values for each identifier p, p′ of degree at most k−1 and
erase the values p(αj) and p′(αj) after replying to the associated query. Because
we erase the values after, a corruption will not give direct access to these values
and because L < k, it is unconditionally impossible for an adversary to recover
the missing values by polynomial interpolation. Hence, the destructive privacy is
fulfilled. In this case, the false-positive rate should be quite small to avoid quick
waste of the coupons of the devices.

Acknowledgements. The authors thank the referees for their helpful com-
ments.

References

1. Ahlswede, R., Dueck, G.: Identification via channels. IEEE Transactions on Infor-
mation Theory 35(1), 15–29 (1989)

2. Ar, S., Lipton, R.J., Rubinfeld, R., Sudan, M.: Reconstructing algebraic functions
from mixed data. SIAM J. Comput. 28(2), 487–510 (1998)

3. Bringer, J., Chabanne, H., Icart, T.: Improved Privacy of the Tree-Based Hash
Protocols Using Physically Unclonable Function. In: Ostrovsky, R., De Prisco, R.,
Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 77–91. Springer, Heidelberg
(2008)

4. Bringer, J., Chabanne, H., Icart, T.: Efficient Zero-Knowledge Identification
Schemes which respect Privacy. In: ACM Symposium on Information, Computer
and Communication Security – ASIACCS 2009, Sydney, Australia (March 2009)

5. Arco, P.D., Scafuro, A., Visconti, I.: Semi-destructive privacy in RFID systems.
In: Workshop on RFID Security (2009)

6. Eswaran, K.: Identification via channels and constant-weight codes,
http://www.eecs.berkeley.edu/ ananth/229BSpr05/Reports/

KrishEswaran.pdf

7. Fung, B., Al-Hussaeni, K., Cao, M.: Preserving RFID Data Privacy. In: IEEE
International Conference on RFID – RFID 2009, Orlando, Florida, USA (April
2009)

8. Information Security Group. RFID security & privacy lounge,
http://www.avoine.net/rfid/

9. Guruswami, V., Sudan, M.: Reflections on improved decoding of reed-solomon
andalgebraic-geometric codes (2002)

10. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767
(1999)

11. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: PERCOMW, pp. 342–
347. IEEE Computer Society, Los Alamitos (2007)

12. Kiayias, A., Yung, M.: Polynomial reconstruction based cryptography. In: Vaude-
nay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 129–133. Springer,
Heidelberg (2001)

http://www.eecs.berkeley.edu/~ananth/229BSpr05/Reports/KrishEswaran.pdf
http://www.eecs.berkeley.edu/~ananth/229BSpr05/Reports/KrishEswaran.pdf
http://www.avoine.net/rfid/

Private Interrogation of Devices via Identification Codes 287

13. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-
solomon codes. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 232–243. Springer,
Heidelberg (2002)

14. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-
solomon codes with applications. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 017 (2002)

15. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-
solomon codes. IEEE Transactions on Information Theory 54(6), 2752–2769 (2008)

16. Kurosawa, K., Yoshida, T.: Strongly universal hashing and identification codes via
channels. IEEE Transactions on Information Theory 45(6), 2091–2095 (1999)

17. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices,
and architectures. In: CCS, pp. 210–219. ACM, New York (2004)

18. Moulin, P., Koetter, R.: A framework for the design of good watermark identifica-
tion codes. In: Delp III, E.J., Wong, P.W. (eds.) SPIE, vol. 6072, p. 60721H. SPIE,
San Jose (2006)

19. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID privacy models revisited.
In: Jajodia, S., López, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266.
Springer, Heidelberg (2008)

20. Ohkubo, M., Suzuki, K., Kinoshita, S.: RFID privacy issues and technical chal-
lenges 48(9), 66–71 (2005)

21. Ouafi, K., Phan, R.C.-W.: Traceable Privacy of Recent Provably-Secure RFID
Protocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 479–489. Springer, Heidelberg (2008)

22. Paise, R.-I., Vaudenay, S.: Mutual authentication in RFID: security and privacy.
In: Abe, M., Gligor, V.D. (eds.) ASIACCS, pp. 292–299. ACM, New York (2008)

23. PEARS. Privacy Ensuring Affordable RFID System. European Project
24. Rieback, M.R.: Security and Privacy of Radio Frequency Identification. PhD thesis,

Vrije Universiteit, Amsterdam, The Netherlands (2008)
25. Rudra, A.: List Decoding and Property Testing of Error Correcting Codes. PhD

thesis, University of Washington (2007)
26. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: User Privacy in Transport Systems

Based on RFID E-Tickets. In: Workshop on Privacy in Location-Based Applica-
tions – PILBA 2008, Malaga, Spain (October 2008)

27. Spiekermann, S., Evdokimov, S.: Privacy Enhancing Technologies for RFID - A
Critical Investigation of State of the Art Research. In: IEEE Privacy and Security
(2009)

28. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

29. Verdu, S., Wei, V.K.: Explicit construction of optimal constant-weight codes for
identification via channels. IEEE Transactions on Information Theory 39(1), 30–36
(1993)

30. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp.
201–212. Springer, Heidelberg (2004)

288 J. Bringer et al.

A Formal Definition of Privacy

The definition given in [28] follows.

Definition 6. A blinded adversary uses simulated oracles instead of the ora-
cles Launch, SendVerifier, SendCLD and Result. Simulations are made
using an algorithm called a blinder denoted B.

To simulate oracles, a blinder has access neither to the provers secrets nor to the
secret parameters KVs. We denote AO the algorithm A when executed using
legitimate oracles and AB the algorithm A when executed using the blinder.

Definition 7. An adversary is trivial if there exists a blinder B such that the
difference ∣∣Pr

[
AO wins

]
− Pr

[
AB wins

]∣∣
is negligible.

Hence, to prove privacy, it suffices to prove that an adversary cannot distinguish
between the outputs of the blinder B and outputs made by legitimate oracles.
As stated in [28], this definition of privacy is more general than anonymity and
untraceability. To the different kinds of adversaries enumerated above correspond
accordingly as many notions of privacy.

Note that Corrupt queries are considered to always leak information on
the CLDs’ identity. For instance, an adversary can systematically open CLDs in
order to track them. In this model, such an adversary is considered as a trivial
one because a blinded adversary will succeed in the same way, as the Corrupt
oracle is not simulated. Strong privacy is defined only to ensure that CLDs
cannot be tracked using their outputs even if their secrets are known.

B Security Proofs

B.1 Security against Impersonation

Proposition 3. Assume
√

q ≥ M ≥ e
√

n
k and T < M2k. In our scheme, given

a non-corrupted CLD, an adversary cannot impersonate a verifier to interro-
gate this specific CLD, without replaying an eavesdropped transcript, except with
probability 1

q .

Proof. To interrogate a CLD, the only useful information for an adversary are
the requests made by the verifier. Proposition 1 implies that this does not give
an efficient solution to the adversary for obtaining information on one identifier.

Hence, the remaining solution to interrogate a CLD is to try at random to
initiate a communication without prior knowledge of its identifier. The question
is what is the probability to succeed out of a random couple (j, a)? If a specific
CLD with identifier p is targeted, this probability is equal to Pr [p(αj) = a] = 1

q .
��

Private Interrogation of Devices via Identification Codes 289

Proposition 4. Assume
√

q ≥ M ≥ e
√

n
k and T < M2k. Our scheme is secure

against impersonation of a CLD, i.e. an adversary will fail with probability 1− 1
q .

Proof. As stated in the previous proposition, impersonation of a verifier is not
possible except with probability 1

q and an adversary would need to succeed at
least k times to reconstruct the p′ polynomial of a CLD. Moreover, eavesdropping
the devices responses does not give a solution to reconstruct an identifier or to
obtain information on an identifier, as stated in Proposition 1. Furthermore
corruption is not useful here as identifiers are not correlated between CLDs
(following Definition 4, the adversary is not allowed to impersonate a corrupted
CLD). The best choice for an adversary is thus to try at random. ��

B.2 Privacy

Proposition 5. Assume
√

q ≥ M ≥ e
√

n
k and T < M2k, then our scheme is

weak private.

Proof. We first prove the narrow-weak privacy; then, Lemma 1 together with
Proposition 4 enables us to conclude. It is clear that all oracles are easy to
simulate except SendCLD and SendVerifier (Result is not simulated in
the narrow case). Concerning the latter, SendVerifier is used to generate an
interrogation request; it is simulated simply by sending a random value. As PR
instances are not distinguishable from random sequences (cf. [15]), an adversary
cannot distinguish the requests from non-simulated ones.

Concerning SendCLD, the simulator needs to simulate the output of a CLD.
For this, it can answer only on average to one request over M with a random
value. As the adversary cannot impersonate a verifier, he cannot determine if
a CLD is answering when beckoned or not. He cannot either distinguish the
answered values from PR instances as above. ��

	Private Interrogation of Devices via Identification Codes
	Introduction
	Identification Codes
	General Definition
	Moulin and Koetter Identification Codes Family
	Application to Our Setting

	Vaudenay's Model for Privacy
	Our Protocol for Interrogation
	Specifications Using Reed-Solomon Based Identification Codes

	Security Analysis
	Assumptions
	Effect of Passive Eavesdropping
	Security against Impersonation
	Privacy

	Advantages for Very Low-Cost Devices
	Practical Parameters
	Conclusion
	Formal Definition of Privacy
	Security Proofs
	Security against Impersonation
	Privacy

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

