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PERMUTATION CAPACITIES OF FAMILIES OF ORIENTED
INFINITE PATHS∗

GRAHAM BRIGHTWELL† , GÉRARD COHEN‡ , EMANUELA FACHINI§ , MARIANNE

FAIRTHORNE† , JÁNOS KÖRNER§ , GÁBOR SIMONYI¶, AND ÁGNES TÓTH‖

Abstract. Körner and Malvenuto asked whether one can find
( n
�n/2�

)
linear orderings (i.e.,

permutations) of the first n natural numbers such that any pair of them places two consecutive
integers somewhere in the same position. This led to the notion of graph-different permutations.
We extend this concept to directed graphs, focusing on orientations of the semi-infinite path whose
edges connect consecutive natural numbers. Our main result shows that the maximum number of
permutations satisfying all the pairwise conditions associated with all of the various orientations of
this path is exponentially smaller, for any single orientation, than the maximum number of those
permutations which satisfy the corresponding pairwise relationship. This is in sharp contrast to
a result of Gargano, Körner, and Vaccaro concerning the analogous notion of Sperner capacity of
families of finite graphs. We improve the exponential lower bound for the original problem and list
a number of open questions.
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1. Introduction. Let N denote the set of natural numbers, and let D be an
arbitrary loopless directed graph (digraph) with vertex set N. We will say that two
permutations σ and τ of the first n natural numbers are D-different if there is an
i ∈ [n] = {1, . . . , n} such that the ordered couple of its images under these two per-
mutations satisfies (σ(i), τ(i)) ∈ E(D). We write N(D,n) for the largest cardinality
of a set of pairwise D-different permutations of [n]. (In such a set every couple is
meant to be D-different in both orders.) Our main concern in this paper will be the
behavior of N(D,n) in the special cases when D is an orientation of the semi-infinite
path L containing as edges the pairs of consecutive positive integers.

The above definitions naturally extend the notion of graph-different permutations
investigated in [13, 14, 17] in the undirected case to digraphs. In fact, if we identify (as
we will) undirected graphs with their symmetrically directed equivalent, i.e., with di-
graphs having two oppositely oriented edges in place of all of their undirected edges,
then the undirected notion becomes a special case of the directed one. This rela-
tionship is analogous to that between the Shannon capacity of graphs [21] and its
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generalization to digraphs, called the Sperner capacity (cf. [10, 16] for its origins and
[1, 4, 6, 11, 12, 15, 18, 19] for some further results about Sperner capacity). The
close connection of Shannon capacity and the notion of graph-different permutations
for undirected graphs is explored on a quantitative level in [17], and one could easily
formulate a similar statement for the directed case.

To make these notions more intuitive, it is useful to think about (undirected or
symmetrically directed) edges as signs of distinguishability. That is, an edge connect-
ing natural numbers i and j would mean that i and j are distinguishable. Thinking
about permutations of [n] as n-length sequences containing each element of [n] ex-
actly once, pairs of permutations that are D-different with respect to a symmetrically
directed graph D are exactly those that are distinguishable (with respect to D) as
sequences if we consider two sequences distinguishable if and only if they contain a
position where their elements are distinguishable. The extension to directed graphs
can be justified by the usefulness of a similar extension in case of finite graphs and
sequences over their vertex set. This latter extension gave rise to the notion of Sperner
capacity that we already mentioned above.

The motivating example for introducing graph-different permutations was the
puzzle presented in [13] that asks for the value of N(L, n), i.e., the maximum size
of a set of permutations of the elements in [n] satisfying that if σ and τ are two
distinct permutations in this set, then there is some i ∈ [n] for which |σ(i)− τ(i)| = 1,
i.e., {σ(i), τ(i)} ∈ E(L). (Note that we use our convention of identifying undirected
graphs with their symmetrically directed equivalent. This way the meaning ofN(L, n)
is consistent with the general definition of N(D,n) above.) The natural upper bound
N(L, n) ≤ (

n
�n/2�

)
was presented, and conjectured to be sharp, in [13]. It is still an

open problem whether N(L, n) is always equal to this upper bound. Indeed, even the
weaker conjecture that R(L) := limn→∞ 1

n logN(L, n) = limn→∞ 1
n log

(
n

�n/2�
)
= 1

remains open; later in the paper we show that R(L) ≥ 0.8604. The base of logarithms
is always taken to be 2.

In this paper we will mainly focus on the various orientations of L. Our main result
exhibits an exponential gap between the maximum size of a set of permutations that
are pairwise �L-different for any fixed orientation �L of L and the maximum size of a set
of such permutations that are pairwise �L-different simultaneously for all orientations
�L of L. This is in sharp contrast to one of the main results about Sperner capacity
proven in [11].

2. Fixed orientations: A lower bound. Given an undirected graph G, an
orientation of G is a digraph obtained from G by replacing each edge {x, y} with one
directed edge, either from x to y or from y to x.

Let �L be any fixed orientation of the semi-infinite path L; i.e., the edge set of �L
contains, for every i ∈ N, exactly one of the ordered pairs (i, i+ 1) and (i + 1, i).

We define the permutation capacity of �L to be

R(�L) = lim sup
n→∞

1

n
logN(�L, n),

i.e., the asymptotic exponent of N(�L, n). (It is easy to see that N(�L, n) has exponen-

tial growth in n for any oriented version �L of L; thus the definition of R(�L) provides
a natural normalization.)

Denoting by L the set of all orientations of L, we also define

Rmin(L) = inf
�L∈L

R(�L) and Rmax(L) = sup
�L∈L

R(�L).
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It is clear from these definitions that Rmin(L) ≤ Rmax(L) ≤ R(L) ≤ 1. The last
inequality follows from the bound N(L, n) ≤ (

n
�n/2�

)
(see [13]) that one obtains by

noting that, for two L-different permutations, the set of positions of odd (even) num-
bers must differ. (Here we use the notion of being L-different again in the sense of our
definitions, identifying L with the symmetrically directed equivalent of its originally
undirected version.)

Our first result is the following lower bound.

Theorem 1.

Rmin(L) ≥ log
1 +

√
5

2
≈ 0.694.

An improved lower bound will also be given for Rmin(L) in section 5; the above
statement is included here because it has a simpler proof, and the lower bound is
already large enough for our main conclusion in the next section.

To prove Theorem 1 we need some preparation. For an arbitrary digraph D on N

let ΓD(n) (the “Γ-graph” corresponding toD and n) be the digraph defined as follows.
The vertex set of ΓD(n) consists of all the different permutations of the elements of
[n]. An ordered pair (σ, τ) of permutations is an edge of ΓD(n) if there exists an
i ∈ [n] for which (σ(i), τ(i)) ∈ E(D). We denote by ΓD(j)

(n) the similarly defined
graph on the permutations of numbers j, j + 1, . . . , j + n− 1.

Figure 1 shows pictures of the six-vertex graph ΓD(3) in the two cases when
D = L1 and D = L2, respectively, where L1 is an oriented version of the semi-infinite
path L starting with the two edges (1, 2) and (2, 3), while L2 starts with the two edges
(2, 1) and (2, 3). (With slight abuse of the notation we also think about L1 and L2 as
just the three-vertex paths themselves containing the said edges.)

L1:
1 2 3

ΓL1(3):

312 321

213 231

123 132

L2:
1 2 3

ΓL2(3):

312 321

213 231

123 132

Fig. 1. The digraphs ΓD(3) for D = L1 and D = L2.

For an arbitrary digraph D, its symmetric clique number ωs(D) is the maximum
number of vertices of D that form a symmetric clique, i.e., a subgraph in which
every ordered pair of distinct nodes forms an edge. In particular, it follows from
the definitions that N(D,n) = ωs(ΓD(n)). The transitive clique number ωtr(D) of a
digraph D is the largest number of vertices in D that form a transitive clique, i.e., a
subgraph in which the vertices could be labeled by numbers 1, 2, . . . , k so that each
label appears only once and all ordered pairs (u, v) form edges where u is labeled with
a smaller number than v. Clearly, ωs(D) ≤ ωtr(D) holds for every digraph D. For
the clique number of an undirected graph G we use the usual notation ω(G).
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The reader can easily check from Figure 1 that ωs(ΓL1(3)) = 2 and ωs(ΓL2(3)) =
3; thus the orientation matters in this respect. On the other hand, the transitive
clique number of both ΓL1(3) and ΓL2(3) is 3.

We need the following technical lemma relating the value

tL(n) := min
�L∈L

{ωtr(Γ�L(n))}

to the permutation capacity of graphs in L.
Lemma 2.

R(�L) ≥ 1

n
log tL(n)

for any fixed orientation �L of the semi-infinite path L and any natural number n.
Proof. Fix n ∈ N and �L ∈ L. For every j ∈ N, let L(j) denote the n-vertex path

with the orientation induced by �L on the vertices (j − 1)n + 1, (j − 1)n + 2, . . . , jn.
(Recall that the corresponding Γ-graph is denoted by Γ�L((j−1)n+1)

(n).) It follows from

the definition of t := tL(n) that, for every j, there exist t permutations of the vertices
of L(j) which form a transitive clique in Γ�L((j−1)n+1)

(n), i.e., they can be labeled

by σj,1, . . . , σj,t so that for every k < � there is a 1 ≤ r ≤ n for which we have
(σj,k(r), σj,�(r)) ∈ E(L(j)). Fix such a set of permutations Mj together with the
above type of labeling for every j < h, where h is some appropriately large natural
number. Now consider all permutations in Shn that can be written in the form of
σ1,i1σ2,i2 . . . σh,ih , where σj,ij ∈ Mj for each j. There are th such permutations,
and there is an edge from σ1,i1σ2,i2 . . . σh,ih to σ1,j1σ2,j2 . . . σh,jh in Γ�L(hn) whenever
ik < jk for some index k. Therefore, the subset SK of all these permutations for
which the sum

∑h
j=1 ij is a fixed number K forms a symmetric clique in Γ�L(hn).

Since the above sum can take fewer than h · t different values, this implies that

N(�L, hn) = ωs(Γ�L(hn)) ≥ th

h·t . Taking the (hn)th root, the logarithm, and the limit
in h, we arrive at the stated inequality.

Lemma 3. We have

tL(n) ≥ Fn+1,

where Fn denotes the nth element of the Fibonacci sequence defined by F1 = F2 = 1,
Fn+1 = Fn + Fn−1 for n ≥ 3.

Proof. We use induction on n. We obviously have tL(1) = 1 = F2 and tL(2) =
2 = F3. Assuming the validity of the stated inequality for all n ≤ k, we show it for
n = k+1. Fix an arbitrary orientation �L ∈ L. For i = k−1 and i = k, let Mi be a set
of permutations of 1, . . . , i forming a transitive clique of size Fi+1 in Γ�L(i). Extend
the permutations in Mk−1 to permutations of [k+1] by putting k in the last position
and k + 1 in the next to last position, thus obtaining the set

Mk−1(k + 1)k = {σ(1) . . . σ(k − 1)(k + 1)k : σ ∈ Mk−1}.

Similarly, define the set

Mk(k + 1) = {σ(1) . . . σ(k)(k + 1) : σ ∈ Mk}.

The set Mk+1 := (Mk−1(k + 1)k) ∪ (Mk(k + 1)) then forms a transitive clique in
Γ�L(k+ 1) (depending on the orientation of the edge {k, (k+ 1)}, we have the first or
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the second set dominating the other) and has size Fk−1 +Fk = Fk+1. Since �L was an
arbitrary orientation of L, this implies the statement.

Proof of Theorem 1. Combining Lemma 2 with Lemma 3 gives us R(�L) ≥
lim supn→∞

1
n logFn+1; thus the well-known explicit form of the Fibonacci numbers

implies the statement.

3. Robust capacity: An upper bound. One of the main results about Sperner
capacity is a “bottleneck theorem” [11] concerning digraph families; see also the dis-
cussion in the next section. In this section, we prove that an analogous statement
does not hold for the permutation capacity of the infinite family of graphs formed by
all orientations of the semi-infinite path L.

Let ΓL(n) denote the following graph on the common vertex set of the graphs

Γ�L(n) with
�L ∈ L. The edge set of ΓL(n) is

E(ΓL(n)) := ∩�L∈LE(Γ�L(n)).

Note that though ΓL(n) is a directed graph, it does not depend on any particular
orientation of L, since it contains those edges that are present in all the digraphs Γ�L(n)

for �L ∈ L. Figure 2 below shows the digraph ΓL(3). It is the intersection of four graphs
ΓLi(n), (i = 1, . . . , 4), where L1, . . . , L4 denote the four different oriented 3-vertex
paths containing some orientation of the edges {1, 2} and {2, 3}. Two of these paths,
L1 and L2, were shown in (the top region of) Figure 1. The remaining two orientations,
L3 and L4, are just the reversed versions of L1 and L2, respectively. Similarly, ΓL3(3)
is just the reversed version of ΓL1(3), and ΓL4(3) is the reversed version of ΓL2(3).
(The latter two are in fact identical, as they happen to be symmetrically directed
graphs; cf. the second picture in Figure 1.) The intersection of these four graphs is
then just the intersection graph of ΓL1(3) and ΓL3(3) as these two are both subgraphs
of the other two graphs involved in the intersection.

Γ (3):

312 321

213 231

123 132

Fig. 2. The digraph ΓL(3).

We would like to understand the asymptotic behavior of ωs(ΓL(n)). In other
words, we are interested in the size of the largest set of permutations of [n], any two

elements σ and τ of which satisfy that, for any �L ∈ L, there is an i and a j such that
(σ(i), τ(i)) ∈ E(�L) and (τ(j), σ(j)) ∈ E(�L).

Assume now that two permutations, σ and τ , are in the above relation, i.e., for
any oriented version �L of L there are i, j ∈ N such that (σ(i), τ(i)) ∈ E(�L) and

(τ(j), σ(j)) ∈ E(�L). We claim that this implies that there must be a k and i 	= j such
that (σ(i), τ(i)) = (τ(j), σ(j)) = (k, k + 1). Assume the latter is not true. Then for
every k ∈ N only one of the ordered pairs (k, k+1) and (k+1, k) appears among the

ordered pairs (σ(i), τ(i)). Let �L be an orientation of L for which the edge {k, k + 1}
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is oriented from k to k+1 if the ordered pair (σ(i), τ(i)) = (k, k+1) for some i and is
oriented from k+1 to k if (σ(i), τ(i)) = (k+1, k) for some i ∈ N, while the rest of the
edges are oriented arbitrarily. Since our condition was that (σ(i), τ(i)) = (k, k + 1)

and (σ(j), τ(j)) = (k+1, k) cannot both occur, such an �L exists. But the construction

of �L implies that there is no j ∈ N for which (τ(j), σ(j)) ∈ E(�L), contradicting our
assumption. This contradiction proves that there must exist some k and i 	= j such
that (σ(i), τ(i)) = (τ(j), σ(j)) = (k, k + 1).

The above observation motivates the following definition.
Definition 4. Let G be an undirected graph with vertex set N. We will say that

the permutations σ and τ of [n] are robustly G-different if there are two elements
i ∈ [n] and j ∈ [n] such that (σ(i), τ(i)) = (τ(j), σ(j)) and {σ(i), τ(i)} ∈ E(G).

Let NN(G,n) be the maximum cardinality of a set of pairwise robustly G-different
permutations of [n]. We call

RR(G) = lim sup
n→∞

1

n
logNN(G,n)

the robust permutation capacity of G.
We are interested in the value of RR(L). It follows immediately from the defini-

tions that RR(L) ≤ Rmin(L); one of the main goals of our paper is to show that this
inequality is strict. To explore RR(L) we first prove the following easy fact.

Proposition 5. For the semi-infinite path L we have

NN(L, n) ≥ 2�
n
2 �,

implying

RR(L) ≥ 1

2
.

Proof. Consider the set of permutations that can be obtained as a product of
some or all of the inversions (2k − 1, 2k), where k ≤ n/2. It is straightforward to
check that these permutations are pairwise robustly L-different and their number is
2�

n
2 �, which implies the statement.
We conjecture that the above lower bound is tight. Our main result in this section

is a weaker upper bound on RR(L) which is nevertheless smaller than the lower bound
proven on Rmin(L) in Theorem 1.

Theorem 6.

RR(L) ≤ log
π

2
≈ 0.651.

For an undirected graph G, let Γ̂G(n) be the robust analogue of the graph ΓD(n)
defined for digraphs D: the vertex set of Γ̂G(n) is the set of permutations of [n], and
two vertices are adjacent in Γ̂G(n) if they are robustly G-different. It follows from the
definitions that NN(G,n) = ω(Γ̂G(n)). (The discussion preceding Definition 4 shows
that ωs(ΓL(n)) = ω(Γ̂L(n)). In fact, Γ̂L(n) is just the undirected graph we obtain
from the digraph ΓL(n) if we disregard the orientation and the multiplicity of the
edges. In other words, one can easily see that ΓL(n) is nothing but the symmetrically
directed equivalent of the undirected graph Γ̂L(n).) Notice that Γ̂G(n) (just like
ΓD(n) for directed D) is a vertex-transitive graph, as for any two of its vertices there
is a permutation of [n] that can take one to the other.
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We will use the standard notation α(F ) for the independence number and χf (F )
for the fractional chromatic number of a graph F . We will make use of the basic
inequality ω(F ) ≤ χf (F ) for any graph F . We will also use the fact that if F is
vertex-transitive, then χf (F ) = |V (F )|/α(F ). For these and other basic facts about
the fractional chromatic number, we refer to [20].

Proof of Theorem 6. First we find a large independent set in the graph Γ̂L(n).
Let

In = {σ ∈ Sn : ∀k ∈ [�n/2�] σ−1(2k) < σ−1(2k − 1) and

σ−1(2k) < σ−1(2k + 1) (provided that 2k + 1 ≤ n)}.
In other words, In is the collection of all those permutations of [n] that place each
even number in an earlier position than either of its at most two odd neighbors. We
show that the permutations in In form an independent set in the graph Γ̂L(n).

Let σ and τ be two arbitrary elements of In, and suppose that they form an
edge in Γ̂L(n). Then there is some edge {�, �+ 1} of L for which there exist i and j
such that σ(i) = τ(j) = � and σ(j) = τ(i) = � + 1. We may assume without loss of
generality that i < j. Then σ ∈ In implies that � is even, while τ ∈ In implies that �
is odd. This contradiction proves that In is indeed an independent set in Γ̂L(n).

By the vertex-transitivity of Γ̂L(n), we have that

χf (Γ̂L(n)) =
|V (Γ̂L(n))|
α(Γ̂L(n))

≤ n!

|In| .

The size of the set In is a well-investigated quantity. The permutations in the
set In are called alternating, and the problem of determining their number, called
André’s problem, was already considered in [2] in 1879. Some more recent references
where the asymptotics of this sequence appears are [24] (cf. the note on page 455) and
[3] (cf. page 3); see also [23] for the vast literature on this sequence. The asymptotic
behavior of the sequence is given by |In| ∼ 2(n+2)n!/π(n+1).

Substituting this value into the above bound on χf (Γ̂L(n)), and usingNN(L, n) =

ω(Γ̂L(n)) ≤ χf (Γ̂L(n)), we obtain that

RR(L) ≤ lim
n→∞

1

n
log

πn+1

2n+2
= log

π

2

as stated.
The following is an immediate consequence of Theorems 1 and 6.
Corollary 7.

RR(L) < Rmin(L).

It is rather frustrating that, for Rmin(L) itself, we do not have any better upper
bound than the trivial value 1. A modest improvement on the best known upper
bound in the undirected case is that we at least know N(�L, n) <

(
n

�n/2�
)
for some

orientations of L.
Proposition 8. If �L is an orientation of L that has at least two vertices of

[n] which have different parity and either both have zero outdegree or both have zero
indegree, then

N(�L, n) <

(
n

�n/2�
)
.
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Proof. Assume �L is as in the statement and let i = 2k and j = 2� + 1 be
the two vertices satisfying the conditions therein. We may assume without loss of
generality that they both have outdegree zero. Let Mn be a set of pairwise �L-different
permutations. We may assume that the identity permutation is in Mn. Now consider
an arbitrary permutation σ of [n] that puts odd elements in the odd positions and
even elements in the even positions, except that there is an even number in position
j and an odd number in position i. Thus the parity pattern of σ is different from
that of the identity permutation. Hence, if Mn ≥ (

n
�n/2�

)
(note, however, that strict

inequality is impossible here by the upper bound N(L, n) ≤ (
n

�n/2�
)
of [13] and the

obvious inequality N(�L, n) ≤ N(L, n)), then one such permutation σ should appear
in Mn. However, since the identity permutation (which is in Mn) has a sink at both
of those places where it has an element of different parity from σ, there is no position
with an arc in �L from the element in the identity permutation to the element of σ
in the same position. This implies that our �L-different set of permutations cannot
contain such a σ, and therefore |Mn| <

(
n

�n/2�
)
. This proves the statement.

It should be clear that if there are many sources and sinks in both parity classes,
then the difference

(
n

�n/2�
) − N(�L, n) can be made large. Unfortunately this is still

not enough to prove an exponential gap.

4. On bottlenecks. As stated in the introduction, Corollary 7 is in sharp con-
trast with the main result about Sperner capacity proven in [11]. For the sake of
completeness, we state this result here. This needs some definitions. (For detailed
explanation and motivation for these definitions we refer the reader to [11].)

Definition 9. The nth co-normal power of a digraph D is the digraph Dn with
vertex set V (Dn) = V (D)n, i.e., the n-length sequences of vertices of D, and edge set

E(Dn) = {(x,y) : ∃i (xi, yi) ∈ E(D)}.

Definition 10 (see [10]). The Sperner capacity of a digraph D is defined as

Σ(D) = lim sup
n→∞

1

n
logωs(D

n).

If D = {D1, . . . , Dk} is a family of digraphs on the same (finite) vertex set V , then
the Sperner capacity of this family is defined as

Σ(D) = lim sup
n→∞

1

n
logωs(∩Di∈DDn

i ),

where ∩Di∈DDn
i denotes the graph on vertex set V n with edge set ∩Di∈DE(Dn

i ).
Csiszár and Körner [8] introduced a “within a fixed type” version of Shannon

capacity, which has a natural and straightforward extension for Sperner capacity. To
introduce this notion we need the concept of types.

Definition 11. The type of a sequence x ∈ V n is the probability distribution Px

on V defined by

Px(a) =
|{i : xi = a}|

n
∀ a ∈ V.

For a fixed distribution P on V and ε > 0, we say that x ∈ V n is (P, ε)-typical if, for
all a ∈ V , we have |Px(a)− P (a)| < ε.
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Definition 12 (cf. [8]). The Sperner capacity within type P of a (finite) family
D of (finite) digraphs on the common vertex set V is

Σ(D, P ) = lim
ε→0

lim sup
n→∞

1

n
logωs(∩D∈D(Dn(P, ε))),

where Dn(P, ε) denotes the digraph induced by Dn on the (P, ε)-typical sequences in
V n. We write Σ(D,P ) for Σ(D, P ) if D = {D}.

The main result in [11] is the following statement.
Theorem 13 (see [11]). For any two (finite) families of (finite) digraphs C and

D on the same common vertex set V , we have

Σ(C ∪ D, P ) = min{Σ(C, P ),Σ(D, P )}.
As any finite family can be obtained by adding its members to an empty family

one by one, the above theorem has the following straightforward implication.
Corollary 14 (see [11]). For any (finite) family of (finite) digraphs D on a

common vertex set V and any probability distribution P on V , we have

Σ(D, P ) = min
D∈D

Σ(D,P ).

Since the number of different types is only polynomial in n (cf. Lemma 2.2 in [9]),
this immediately implies the main corollary of Theorem 13.

Corollary 15 (see [11]). For any (finite) family of (finite) digraphs D on a
common vertex set, we have

Σ(D) = max
P

min
D∈D

Σ(D,P ).

This theorem is sometimes referred to informally as the bottleneck theorem. This
result was key in the solution of several extremal set theoretic problems, including a
longstanding open problem by Rényi on the maximum possible number of pairwise
so-called qualitatively 2-independent partitions of an n-element set; cf. [11]. It also
has nontrivial consequences in information theory; see [7, 11, 18, 22] for examples of
the latter.

Note that Corollary 14 states that, within any type P , the Sperner capacity of
the family D is the same as that of the most restrictive single digraph (called the
bottleneck) in the family. This can be applied, in particular, to a family D that
consists of all possible orientations Di of the same undirected graph G. Note that,
for such a family D, if (x,y) is an edge of ∩Di∈DDn

i , then there are coordinates i
and j and an edge {a, b} ∈ E(G) such that (xi, yi) = (yj , xj) = (a, b). This follows
analogously to the similar statement for permutation capacities that we described
right before the introduction of robust capacity in Definition 4. We want to argue
that Corollary 7 expresses the lack of an analogous result for permutation capacities
already in the case of such special families discussed in this paragraph.

There is an obvious analogy between Sperner capacity and the notions investi-
gated in this paper. Indeed, when looking at permutations of the first n positive
integers and their relations according to whether or not there is a position where we
see an edge of some fixed directed graph, then we consider analogous relationships
to those appearing in the definition of Sperner capacity. In the same manner, con-
sidering permutations that are pairwise in the required relationship with respect to
all orientations of a given undirected graph on N is analogous to the investigation of
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the Sperner capacity of a family that consists of all different oriented versions of a
fixed undirected (finite) graph. For the latter situation, Corollary 15 tells us that the
maximum number of sequences pairwise satisfying the required relation is essentially
determined (in the sense of the asymptotic exponent) by the “weakest member of the
family” considered within the “best type.” When we investigate permutations, then
we are always “within the same type” as every element (i.e., natural number in our
case) appears exactly once in any permutation. Thus if an analogous result were true
for our problem involving permutations, it would formally look like the statement of
Corollary 14. In particular, for the family L of all orientations of L, RR(L) would
stand in place of Σ(D, P ) (notice that by the discussion preceding Definition 4, RR(L)
is just the asymptotic exponent of a largest family of permutations pairwise satisfy-
ing the requirements for all elements of the family L), and Rmin(L) would stand in
place of minD∈D Σ(D,P ). Thus the analogous statement would give that the obvious
inequality

RR(L) ≤ Rmin(L)

should hold with equality. Now note that it is exactly this statement that we disproved
by Corollary 7 in the previous section.

We add that the main role of types in the proof of Theorem 13 is that the elements
of any sequence of some given type can be permuted so that we get an arbitrarily
chosen other sequence of the same type. This property also holds for our current
sequences representing permutations. Therefore, the methods of [11] can be used,
but there are serious limitations due to the fact that, in the present context, we are
dealing with infinite families of digraphs. Corollary 7 indicates that these limitations
are essential, as they lead to the nonexistence of a bottleneck theorem here.

If we consider only finitely many orientations of L, then the methods of [11] seem
to work. By this we mean that defining, for every F ⊆ L, the quantity

R(F) := lim sup
n→∞

1

n
logωs(∩�L∈FΓ�L(n)),

which is the asymptotic exponent of the maximum size of a set of permutations that
are pairwise �L-different simultaneously for all �L ∈ F (so, in particular, R(L) =
RR(L)), we have R(F) ≥ Rmin(L) whenever F is finite. This statement is some-
what weaker than the more direct analogue of Corollary 14 stating that R(F) =

min�L∈F R(�L), which is perhaps also true; however, it already shows that the main
reason for a different behavior in the present case is that the digraph family we con-
sider here has infinitely many elements.

5. Further lower bounds. In this section we improve upon the lower bound
proven in Theorem 1, namely, we prove the following.

Theorem 16. Let γ ≈ 1.647 be the largest root of the polynomial x4−x2−x− 3.
Then

Rmin(L) ≥ log γ ≈ 0.7198.

We know by Lemma 2 that it is enough to give lower bounds on tL(n). Here
and in what follows we will use the following notation. For k < n positive integers,
an n-length sequence containing each of the numbers 1, . . . , k exactly once, and with
a ∗ at the remaining n − k positions, stands for a permutation of [n] in which the
place of the first k natural numbers is already fixed while the ∗’s can be substituted
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by k + 1, . . . , n in an arbitrary manner (provided that the resulting sequence is a
permutation of the elements of [n]).

We will also use the notation �L(j) for the orientation of the semi-infinite path L

obtained from a given orientation �L of L by deleting its first j − 1 vertices, i.e., j
will be its “starting” vertex. Accordingly, just as before, the vertices of Γ�L(j)

(n) are

the permutations of the numbers j, j + 1, . . . , j + n − 1, while adjacency is defined
analogously as in Γ�L(n).

We prove the following lemma.
Lemma 17. We have

tL(n) ≥ gn,

where gn is the sequence defined by gn = Fn+1 for n ≤ 5, and gn = gn−2+gn−3+3gn−4

for n ≥ 6.
Proof. For n ≤ 5 the statement follows from Lemma 3. Let us fix an arbitrary

orientation �L of L. For n ≥ 6 we consider three cases according to how the first three
edges of L are oriented.

Case 1. If both vertices 2 and 3 have equal outdegree and indegree (i.e., all of
the first three edges are oriented towards their larger, or all of them towards their
smaller, endpoint), then the following permutations form a transitive clique in Γ�L(n).
(According to the actual directions, the first sequence is the source or the sink in that
transitive clique.)

1 3 2 ∗ ∗ . . . ∗
2 1 ∗ ∗ ∗ . . . ∗
3 4 1 2 ∗ . . . ∗
3 4 2 1 ∗ . . . ∗
4 2 3 1 ∗ . . . ∗

(Note that the elements of the fourth column have no role in forming this transitive
clique.)

Here the first sequence contains n− 3 ∗’s, the second n− 2, and the three others
n− 4. By the induction hypothesis, there exists a transitive tournament of size gn−4

in Γ�L(5)
(n−4): take any such transitive tournament and substitute each of its vertices

into (the stars of) a different copy of each of the last three sequences. Do the same
with a transitive clique of size gn−3 in Γ�L(4)

(n − 3) for the first sequence and with a

transitive clique of size gn−2 in Γ�L(3)
(n − 2) for the second sequence. It is now easy

to see that the resulting gn−2 + gn−3 + 3gn−4 permutations of [n] form a transitive
tournament in Γ�L(n).

Case 2. If one of the two vertices 2 and 3 has outdegree 0 while the other has
outdegree 2 (i.e., the directions of the first three edges in �L “alternate”), then the
same sequences as above form again a transitive tournament in Γ�L(n), except that
their ordering is different. In the scheme below, either all edges go “downwards” or
all go “upwards,” depending on the direction of the first edge of the path:

1 3 2 ∗ ∗ . . . ∗
3 4 1 2 ∗ . . . ∗
3 4 2 1 ∗ . . . ∗
2 1 ∗ ∗ ∗ . . . ∗
4 2 3 1 ∗ . . . ∗

The argument is completed in the same way as in Case 1.
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Case 3. If we are neither in Case 1 nor in Case 2, then we may assume without
loss of generality that vertex 2 has outdegree 0 and vertex 3 has outdegree 1, i.e., that
(1, 2), (3, 2), (4, 3) ∈ E(�L): all other cases not covered so far are equivalent to this
one, so the following construction can be modified accordingly. The following scheme
gives a transitive tournament in Γ�L(n):

1 3 2 ∗ 4 ∗ . . . ∗
1 2 3 4 ∗ ∗ . . . ∗
1 2 ∗ 3 4 ∗ . . . ∗
1 ∗ 2 ∗ 3 ∗ . . . ∗
2 1 ∗ ∗ ∗ ∗ . . . ∗

Once again the argument is completed in the same way as in Case 1.
This concludes the proof of the lemma.
Proof of Theorem 16. Lemma 17 implies Rmin(L) ≥ lim supn→∞

1
n log g(n), where

the right-hand side is equal to γ by virtue of the recursion satisfied by the sequence
gn.

For the special orientations of L where all vertices except 1 have equal outdegree
and indegree (there are two such orientations that are equivalent for our purposes),
we have a slightly better lower bound. The oriented L in which all edges are oriented
towards their larger endpoint will be referred to as the “thrupath.” The following
proposition for this orientation is clearly valid also for its reverse.

Proposition 18. Let Lt denote the thrupath. We have

R(Lt) ≥ log γ′ ≈ 0.7413,

where γ′ is the largest root of the polynomial x3 − x− 3.
Proof. The proof goes along the same lines as the proof of Theorem 16 after

realizing that the following permutations form a transitive clique for the thrupath.

2 ∗ ∗ 1
3 2 1 ∗
3 ∗ 2 1
1 3 ∗ 2

One of the most interesting open problems concerning Sperner capacity is whether
every graph has an orientation, the Sperner capacity of which achieves the Shannon
capacity of the underlying undirected graph which is simply the Sperner capacity of
the symmetrically directed equivalent. (This question is explored in [19], where a
positive answer was proven for a nontrivial special case. The same question is also
treated in [12].)

The analogous question for us here is whether the permutation capacity of the
undirected semi-infinite path L can be achieved as the permutation capacity of one of
its orientations. Needless to say, we do not know the answer, as our best upper bound

on R(�L) for any orientation �L of L is just the trivial value 1. From the other side,
Proposition 18 gives the best lower bound we know on any single orientation of L. For
L itself, the best lower bound published so far is the one in [14] having value 1

4 log 10 ≈
0.83048. Next we improve on this lower bound. (Unfortunately, the construction
contained in Proposition 19 below is not very aesthetic. We supply a slightly weaker,
but more appealing, construction in the remark following this proposition.)

Proposition 19. The maximum number of pairwise L-different permutations
T (n) satisfies

T (n) ≥ 5T (n− 4) + 9T (n− 5) + 3T (n− 6)
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implying

R(L) ≥ 0.8604.

Proof. The value 0.8604 is an approximation of the logarithm of the largest root
of the characteristic equation of the recurrence relation above, so it is enough to prove
the validity of this recurrence relation.

This is done along similar lines to those in the proof of Theorem 16 by verifying
that the following seventeen permutations are pairwise L-different (colliding in the
terminology of [13]):

5 2 3 1 4 ∗ ∗ ∗ ∗ 2 4 1 ∗ 3 ∗ ∗
5 ∗ 2 3 1 4 ∗ ∗ 4 ∗ ∗ 2 3 ∗ 1 ∗
5 4 ∗ 2 3 1 ∗ ∗ 4 3 ∗ ∗ 2 ∗ 1 ∗
5 1 4 ∗ 2 3 ∗ ∗ 4 ∗ ∗ 1 3 2 ∗ ∗
5 3 1 4 ∗ 2 ∗ ∗ 4 3 ∗ ∗ ∗ 1 2 ∗
5 3 2 4 1 ∗ ∗ ∗ 6 2 3 ∗ 4 ∗ 1 5
5 ∗ 3 2 4 1 ∗ ∗ 6 4 3 ∗ ∗ 1 2 5
5 1 ∗ 3 2 4 ∗ ∗ 6 2 5 1 ∗ 3 ∗ 4
5 4 1 ∗ 3 2 ∗ ∗

Remark. The following construction is perhaps somewhat nicer than the one in
Proposition 19. Consider the 14 cyclic permutations of the following two 7-length
sequences:

1 3 4 2 ∗ ∗ ∗
3 5 2 1 4 ∗ ∗

It is straightforward to check that these 14 permutations are pairwise colliding
and thus prove the validity of the recursive lower bound

T (n) ≥ 7[T (n− 4) + T (n− 5)].

This implies R(L) ≥ 0.8599.

6. Finite graphs and digraphs. The paper [14] investigated the maximum
number of pairwise G-different permutations of [n] for finite graphs G with vertex
set [m], m ≤ n. It was observed that, for a fixed finite graph G, this number is
constant if n is large enough. This eventual constant value κ(G) was introduced as
a new graph invariant: it is straightforward to note that κ(G) does not depend on
the actual labeling of the vertices of G by natural numbers. This invariant seems to
be quite difficult to determine even for relatively small graphs, and the only infinite
family of graphs for which we could determine the value of κ(G) was that of the stars
K1,r.

Interestingly, we can say just a little more in the case of digraphs. As for un-
directed graphs, if D is a finite digraph, then the maximum number of pair-
wiseD-different permutations of [n] will also be a constant—which we denote κd(D)—
for large enough n. This immediately follows from the corresponding statement for
undirected graphs, since κd(D) is clearly bounded above by κ(G), where G is the
underlying undirected graph of D. While the value of κ(G) is not known in general
for complete bipartite graphs G, the directed parameter is, at least in the case of the
most natural special orientation. The key to this is the simple observation that the
answer is just a reincarnation of a well-known theorem of Bollobás [5].

We denote by
(
[n]
r

)
the set of r-element subsets of n.
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Theorem 20 (see [5]). Suppose that A1, . . . , Ak ⊆ (
[n]
p

)
and B1, . . . , Bk ⊆ (

[n]
q

)
are such that, for all i, Ai ∩Bi = ∅, while, for all i 	= j, Ai ∩Bj 	= ∅. Then

k ≤
(
p+ q

p

)
.

The bound in Theorem 20 is sharp: consider the sets in
(
[p+q]

p

)
as the Ai’s and

let Bi = [p+ q] \Ai.

Corollary 21. Let �Kp,q denote the oriented complete bipartite graph with all
edges having their heads in the q-element partition class. Then

κd( �Kp,q) =

(
p+ q

q

)
.

Proof. Let the two partition classes of �Kp,q be A and B, and consider a set M

of pairwise �Kp,q-different permutations of [n]. For a permutation σ ∈ M , associate
Aσ := {i : σ(i) ∈ A} and Bσ := {i : σ(i) ∈ B}. It is easy to see that the system of set
pairs {(Aσ, Bσ)}σ∈M satisfies the conditions in Theorem 20, and therefore we have
M ≤ (

p+q
p

)
.

To prove that this upper bound is attainable, we assume without loss of generality
that the vertices in A are labeled by 1, . . . , p and those in B by p+1, . . . , p+ q.
Take all possible p-element subsets of [p + q] and, for each such subset S, take any
permutation that puts the elements of A in the positions in S, and the elements of
B in the positions of [p + q] \ S. It is easy to see that these

(
p+q
q

)
permutations are

pairwise �Kp,q-different.
Remark. The undirected invariant κ(Kp,q) has a very similar “translation” to a

problem in extremal set theory. Namely, it is the maximum possible m for which set
pairs {(Ai, Bi) : |Ai| = p, |Bi| = q}mi=1 can be given with the property that, for all
i, Ai ∩ Bi = ∅, while for all i 	= j, Ai ∩ Bj 	= ∅ or Aj ∩ Bi 	= ∅. This problem was
considered by Tuza in [25], where it is solved in the case when p or q is equal to 1. The
result in [14] for κ(K1,r) translates to this solution. As far as we know, the problem
is unsolved for all other pairs of values p and q.

It is observed in [14] that if G is a finite graph with vertex disjoint subgraphs
G1, . . . , Gs, then κ(G) ≥ ∏s

i=1 κ(Gi). The proof of this result carries over immediately
to the digraph parameter κd.

In particular, if the graph G is the disjoint union of components G1, . . . , Gs, then
we have κ(G) ≥ ∏s

i=1 κ(Gi). In the undirected case, we know of no examples where
we have strict inequality. For digraphs, however, the inequality can be strict. For
example, let D1 be the digraph on {1, 2, 3} with directed edges (1, 2) and (2, 3): it is
easy to check that κd(D1) = 2. Now let D2 be a copy of the same digraph on vertex
set {4, 5, 6}, with directed edges (4, 5) and (5, 6). The following is a collection of eight
(D1 ∪D2)-different permutations:

3 2 ∗ 1 4 5 6 ∗ ∗ . . . ∗
3 2 ∗ 1 5 4 ∗ 6 ∗ . . . ∗
2 3 1 ∗ 4 5 6 ∗ ∗ . . . ∗
2 3 1 ∗ 5 4 ∗ 6 ∗ . . . ∗
∗ 3 2 1 ∗ 4 6 5 ∗ . . . ∗
∗ 3 2 1 4 ∗ 5 6 ∗ . . . ∗
3 ∗ 1 2 ∗ 4 6 5 ∗ . . . ∗
3 ∗ 1 2 4 ∗ 5 6 ∗ . . . ∗
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Here, the graph D1 ∪D2 is to be regarded as being a graph on [n], for n ≥ 8, and
the ∗’s represent the natural numbers 7, . . . , n, in arbitrary order.

Thus we have κd(D1 ∪D2) ≥ 8 > 4 = κd(D1)κd(D2).

Returning to the undirected case, it seems even to be difficult to find κ(tK2),
where tK2 is the union of t disjoint edges: it is conjectured that the lower bound
κ(tK2) ≥ 3t is tight in this case, and an upper bound of 4t was given in [14].

Even checking that κ(2K2) = 9 takes some work: we give a brief sketch of an
argument. Let {1, 2} and {3, 4} be the two edges of 2K2, and let C be a set of (2K2)-
different permutations. First, assume that there are three permutations in C with,
say, a 1 in the first position. By a case analysis involving how many different positions
are occupied by the 2’s in these three permutations, it can be shown that |C| ≤ 9.
On the other hand, if there is no instance of three permutations in C with the same
element in the same position, then any element of C is adjacent to at most 8 others
in C—two via each of the four positions where 1, 2, 3, 4 occur—and so again |C| ≤ 9.
It is possible to use this result to improve the upper bound κ(tK2) ≤ 4t slightly, but
not by an exponential factor.

Let t �K2 be the disjoint union of t directed edges. It seems likely that κd(t �K2) =

κd( �K2)
t = 2t, but again there seems to be no immediate proof.

At the other extreme, the problem of finding κd for oriented complete graphs,
e.g., those of transitive tournaments, is as open as for their undirected counterparts,
i.e., the determination of the values κ(Kr); cf. [14]. We do not even know whether
κ̂(Kr) := limn→∞ NN(Kr) is superexponential in r.

7. Open problems. We conclude by collecting some of the open problems, some
already mentioned, that are related to the topic of the present paper.

Problem 1: What is the value of RR(L)? In particular, is it equal to 1
2?

Problem 2: Is Rmax(L) > Rmin(L), i.e., are there two different orientations L1 and L2

of the semi-infinite path L for which R(L1) 	= R(L2)? Is Rmax(L), or even Rmin(L),
equal to 1?

If Rmax(L) = 1, then that immediately solves the next problem. However, in case of
a negative answer, the problem is still interesting.

Problem 3: Is Rmax(L) equal to R(L)?

We repeat the asymptotic version of the conjecture by Körner and Malvenuto [13].

Problem 4: Is R(L) equal to 1?

Finally, we put here again the problems mentioned at the end of the previous section.

Problem 5: Is κd(t �K2) equal to 2t?

Problem 6: Is κ̂(Kr) superexponential in r?
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[10] L. Gargano, J. Körner, and U. Vaccaro, Qualitative independence and Sperner problems
for directed graphs, J. Combin. Theory Ser. A, 61 (1992), pp. 173–192.

[11] L. Gargano, J. Körner, and U. Vaccaro, Capacities: From information theory to extremal
set theory, J. Combin. Theory Ser. A, 68 (1994), pp. 296–315.
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