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Abstract—Identification codes were introduced by Ahlswede  We describe the BCCK idenfication protocol in Sec. Ill and
and Dueck more than twenty years ago. There is today a lot of explain its links with the PR problem in Sec. IV.

studies to identify obje.ct.s such as contactless dgvices (for instze We conclude in Sec. V with a way to extend the work of
RFID tags) but, surprisingly, no one has considered the use of e
[3] to more difficult problems.

this kind of codes in the literature for that purpose until the
recent work of Bringer et al. at Indocrypt’09. We here show how
the security of these new identification protocols is related to Il. IDENTIFICATION CODES
some well-known problems in coding theory. We also extend the p  General Definition
original proposal to a new problem. ’
Let X, ) be two alphabets; a message length, anéi” a
. INTRODUCTION channel fromX" to V", defined as a conditional probability
o ) law: W (y"|z") is the probability to receive a messagé ¢
Identification codes have been introduced by Ahlswedg: given a transmitted messag@ € X". By extension, for a
and Dueck in [1] to answer to a different problem thagiven subsefz ¢ Y, W7 (E|2") is the probability to receive
transmission codes. Transmission codes can correct ergligessage belonging ® whenz” has been transmitted.
which happen during a noisy emission of a message whereagyefinition 1 (Identification Code, [1)A (1, N, A1, Ao)-
identification codes enable to test whether a particulasa®s jgentification code fromX to ) is given by a family
was sent. To quote [2], transmission codes answer to th)(.|;), D)} with i € {1,..., N} where:
guestion "What message has been sent?” and identification N
codes to "Has message been sent?”.
Informally, an identification code is given by a set of prob- . D, C Y is thedecoding set
abilistic coding functions, along with (deterministic)adeling . /\12 and ), are the first-kind and second-kind error rates
sets. On one hand, this has a negative impact as we have to with '
take into account the probabilities of false-negative aaidef
positive identifications. On the other hand, this gives us tw

Q(+]¢) is a probability distribution ove’", that encodes
Z‘a

Mz Y QEW(Dila")

interesting properties: wrean
« The identification of one element among others is and S "
possible by conveying onljoglogn bits. This means Az 2 Z Q@"]7)W"(Dsla")

that the string we have to transmit can be very short. znexn

« The probabilistic coding scheme increases a lot the job (where W7 (D;|z") is the probability to be in the de-
of the eavesdropper who would like to track a particular  coding set D; given a transmitted message’ and

identity as the same identifying bit string is not used twice 1" (D;|z") the probability to be outside the decoding
except with a small probability. set)

This second observation is the basis of [3] where the authdes all 7,5 € {1,..., N} such thati # j.

prove the security of their identification BCCK protocol in  Given Q(|i), the encoding setof i is defined as the set of

Vaudenay'’s model of privacy [4]. messages:” for which Q(z"|i) > 0, in other words, the set
There have been different proposals for constructing idendf messages likely to encode

fication codes [5], [6], [7]. The one of Moulin and Koetter [7] The fundamental noisy-channel coding theorem [1, Theo-

has, besides its simplicity of description, a particuldeiiest rem 1] states that given a chanri&l” of (Shannon) capacity

as it enabled [3] to rely for their proof of security on ax, it is possible to define identification codes of identifioati

classical cryptographic assumption known as the PolynomeapacityR;; = m asymptotically close tex.

Reconstruction (PR) problem [8], [9], [10], [11]. Later on, The proof of this result is based on the following generic

the context of this proof has been reconsidered by [12] in @onstruction:A,..., Ay C X" are N subsets such that each

information theoretical point of view. A; has the same cardinal and each intersectiod; N A;
We here recall the definition of idenfication codes in Sefor i # j contains at mosin elements. Define the encoding

Il. A focus is made on the construction of Moulin and Koettedistribution Q(+|¢) as the uniform distribution oved;; in the

in Sec. II-B. noiseless case (the chanri@l” is the identity function) the



decoding sets are also thg’s. Note that in that case the false-
negative rate\; is equal to0 and the false-positive rate, is CLD parameters Verifier
A. [1] actually proves that such subsets do exist. identifiersp, p’ F,, (a1,...,an) (U, pr, 1)

B. Moulin and Koetter Identification Codes Family

Though the fundamental theorem states that there exist Pick j
families of identification codes of capacity-approachiager pi(a;) 2y
practical construction were still to be found. Among others L
Moulin and Koetter proposed the following code, based on Figure 1. CLD identification via Moulin-Koetter identifidah codes
an Error-Correcting Codé€' of lengthn, size N = |C| and
minimum distancel over some alphabet.

For a worde; = (cz(-l), e cl(»")) € C, the corresponding setissued to help the verifier to sort out the messages whenaever
A; is the collection of all(u,cl(“)), foru € {1,...,n}. Note such transmissions are emitted. All the present CLD’s have t
that we indeed have sets; of constant sizer; moreover, the check whether there is a match with the stored polynomial.
intersection of two different set4; N A; contains at most—d For instance, CLD with polynomialg,p’ in its memory,
elements, which induces, = =4 =1 — 4. evaluates whethep;(o;;) = p(e;). In this case, it responds

The instantiation of this construction explicitly des@ibin with (ACK,p’(«;)). Otherwise, it remains silent.

[7] uses Reed-Solomon codes. A Reed-Solomon code over &t the end,CLD; is identified by the verifier if its answer

finite field A = F,, of lengthn < ¢ — 1, and dimensiork, corresponds te;(c;).

(ACK, j, a=pi(a;))

(ACK, b=p' (o))

If p(a;) =a

is the set of the evaluations of all polynomias € F,[X] To thwart replay attacks , a flag bit is added in each CLD to
of degree less thak — 1, over a subset’ C F, of size tell whethera; was already used or not. Of course, this flag
n (F' = {a1,...,a,}). In other words, for eactk-tuple bit has to be switched whem(«;) is received.

(..., Th—1) € ]F’; the corresponding Reed-Solomon word )

is the n-tuple (y1,...,yn) Wherey;, = Z?;& xja{. In the Practical Parameters

sequel, we identify a source woldy, ...,zx_1) € FX with An advantage of the BCCK protocol is that — even for a

the corresponding polynomiab — Zf;é v X7 € F[X). npisy channel — the CLD’§ will only have to compute the
Definition 2 (Moulin-Koetter RS-Identification Codes): distance between the received message and the stored one to

check for a given equality;(«;) = p(a;). If the channel is
supposed error-less — in other words, if a transmission code

Ap ={(j, P(a;))|j € {1,...,n}} for P any polynomial on is applied — then the equality should be true after decoding;
F, of deg’ree atmosk — 1. if not, adding redundancy to the messages enables to reduce

The Moulin-Koetter RS-Identification Codes are dethe €quality check to a distance bounding test.

fined by the family of encoding and decoding sets Consider a memory size af® = 256k bits, with ‘1_:_264'
{(Ap, Ap)} per. [X]. des P<k- CLD’s are then able to stor2*®—6 = 212 = 4096 64-bit fields

This leads to a(log, n + log, g, ¢*, 0, “=L)-identification elgments. As eagh interrogation consur@semory elgrnents,
code from{0,1} to {0, 1}. " _thls _enable§2048 interrogations of a CLD k_)y the ver_n‘ler, and
implies that the length of the corresponding code: is- 2!,
which is consistent witm < ¢ — 1.

Let F, be a finite field of sizeq, ¥ < n < ¢ —1 and
an evaluation domainF = {oq,...,a,} € F,. Set

Using a Reed-Solomon code of dimensigrthis gives\, =
il sinced =n —k+1.

[1l. DESCRIPTION OF THEBCCK IDENTIFICATION IV. SECURITY RESULTS

PROTOCOL In this section we sum up the security properties of the
This protocol takes place between a verifier and multipfgrotocol which are proved in [3]. The protocol's aim is
contactless devices (CLD). The goal of the identifier is twentification of objects via their interrogation followéy an
identify the CLDs that are present in communication rangeithentication step. The security is analysed in the matjel [
by sending them a message. which includes security of the authentication phase andpyi
Each CLD stores two different random polynomials o6f the objects.
degree at mosk — 1. For instance, lew;, p; € F,[X] be ,
associated withtC'LD;. The verifier's database contains thesé: Requirements
2 polynomials for all CLD. Basically the communications, operations and more gener-
More precisely, suppose that a set f < ¢* devices is ally the actions that an adversary can take, request offénéer
initialized. The memory of these devices is then filled with with are formalized by oracles. For instance, an adversary
set of p; (), for o; € F, with F' a public subset ofF,, i.e. can send a message to a device to receive the corresponding
the devices contain the evaluation gf over a subset of,. answer (if any). He can also ask the verifier to launch a
The verifier is then given the polynomig]. new protocol instance. The adversary can even handle $evera
To identify CLD; , the verifier broadcas{sACK, j,p;(«;))  protocol instances in parallel to try to learn informatidor
over the wireless channel, wherBC' K is a session numberinstance by mixing some messages. Vaudenay’s model also



introduces the corruption of a device to learn its state asdggested for various cryptographic schemes [8], [9],,[10]
the internal secret. Here, secrets are not correlated batw§ll].
devices so this operation is not really a risk against sgcuri Definition 3: Givenn, k,¢ such thatl <t <n, k <n and

of the protocol (see the list of requirements below). given z,y € F7, with z; # z; for ¢ # j,
The security or privacy properties related to this model and« output all (p, I) wherep € F,[X], deg(P) < k, |I| > t,
the protocol are the following: and for alli € I, p(z;) = y;.

Correctness The identification of a legitimate deviceWe denoteP R}, , ; such an instance of the PR problem.
should fail only with a negligible probability. The PR problem is unconditionally secure whexa &, and
Resistance against impersonation of devicesOnly is easy to solve when > vkn, as list decoding of Reed-
legitimate devices should be able to be authenticateSlolomon codes via the Guruswami-Sudan algorithm [13] is
The adversary is activd,e. he may take the place of possible.

verifiers and devices during the communications, he canlf the numbert of noiseless components is in the range
eavesdrop and modify the messages. At the end &k ..., |vkn]}, then itis more difficult to determine whether
adversary should not be identified by the verifier as the PR problem is hard or not. [12] takes interest in this
legitimate device, except with a negligible probabilityissue, and considers the information-theoretic side of thi
One specific constraint is that the adversary cannot replasoblem: given vectors:, k,t, z,v as in Definition 3,how

a past protocol instance between a legitimate device amény polynomialsp € F,[X] are there of degree less than
the verifier. k that interpolatey on z ? In other words, what is the size
Replay attacks A specific impersonation risk not han-of the list after the list-decoding af, allowing at mostn — ¢
dled by the previous requirement is when a legitimatdifferences between elements of the list gfdif the list is of
verifier broadcasts twice the same message during tegponential size, then the PR instancenecessanyifficult.
different protocol instances. Then after eavesdropping [@f2] shows that the size of the list is linked to the Maximum-
the first instance, impersonation is easy. This should nokelihood (ML) threshold of the Reed-Solomon code, which
happen, except with a negligible probability. can be interpreted as the number of coordinates required to b
Resistance against impersonation of the verifieras exact iny in order for the ML decoder to output the original
the protocol is based on the idea of interrogation afodeword with a large probability.

devices, we are concerned also with the situation where[12] also derives an explicit formula to approximate the
an adversary tries to be recognized as a legitimate verifidireshold, and it appears that for a Maximum-Distance Separ
If this would be possible, then tracking of a device wouldile code, it is very close to the lower-bouhdThat means that
become feasible. This is related to the notion of mutu#tiere might exist polynomial-time algorithms that can kieat
authentication. threshold of the Guruswami-Sudan list-decoding algorithm
Privacy: In [4], privacy is defined as the non-ability forHowever, finding such an algorithm is reputed to be hard, and
any adversary to distinguish a simulated system from tlkas of today, it is safe to assume that whesn /kn, solving
actual one. The simulated system runs thanks to simulatkeé PR problem is computationally hard.

oracles which are aware neither of the secret parameter®) The Decisional Reconstruction Probleihe Decisional
nor of the device’'s secret. This definition of privacy iR problem (DPR) [8] consists in deciding if a givénc
more general than anonymity and untraceability. In thgl,...,n} is in I for an instancey of PR, , , which admits
sequel, the adversary against privacy is not allowed & least one solutioitp, /). Assuming that DPR is hard, [8]
corrupt the devices (this corresponds to a weak advers&ijows that PR instances do not leak any partial information
in [4]). on the polynomials.

The protocol relies on the transmission of evaluations of In the security analysis, the PR and DPR problems are
polynomials. The security and privacy are then depending 88sumed to be hard even in the case where the noise is
the ability of an adversary to recover a polynomial or to detegenerated by the other transmissions. In this case, the nois
links between values. If the verifier would communicate witf Not random as the received elements are evaluations of a
only one device this would be straightforward. Neverthelesfew different polynomials. [14] explained the link between
the protocol is designed to achieve good properties wherP@lynomial reconstruction in the mixture model [15] and
verifier interrogates many different devices among a cloud B€ed-Solomon list decoding, and it is not easier to recoastr
devices: the messages are actually mixed between valuest @olynomial polluted with a structured noise as input than t
uncorrelated polynomials. The security and privacy arateel reconstruct a polynomial with random noise.

noise. recovery problem [16]. In fact, when a verifier interrogates

many devices, this leads to several mixed PR instances with

B. Assumptions many transmitted values for the same indeXhe list recovery

1) Hardness of the Polynomial Reconstruction Problem:problem is to retrieve the solutions to all underlying PR

The definition of the basic Polynomial Reconstruction (PRjistances. This is equivalent to solving one longer PR it&a

problem follows. The problem is now well known and has beeand thus leads to a similar bound. Letbe the maximum



number of collisions per positioh the list recovery problem of  Concerning impersonation of a device, we know that eaves-
Reed-Solomon codes is assumed to be hard when/nki. dropping would not give any useful information. As targgtin

a specific device via interrogations is not possible excetit w
C. Security against Eavesdropping probability 1 (thanks to the previous result), it is not possible

Against an eavesdropper, who is by definition a passit@ isolate the answers of one device. Thus, guessing thealevi
adversary, the security relies on the impossibility to retauct answer is not possible except with probabilffy
a polynomial associated to a device and the privacy reliesProposition 3: The protocol is resilient to device imperson-
on the impossibility to distinguish transmitted valuesbisth ation attacks.
cases, the only information available to an adversary ae fh. Privacy

transmitted messages. ) ) . Remember that privacy is ensured when simulations are
Let M be th? numper of dgwces which are queried bNIdiStinguishable from the real system. The simulationnis i
one verifier d““”g a g|ven_per|od and gt be the num_ber fact easy by sending random values for the verifier and by
of eavesdropped interrogations. Assume that the deviaes Bhswering randomly to one request ov&f for a device.
interrogated almost uniformly by the verifier (remembeoalsryg i not distinguishable due to [8] (PR instances are not
that there are false-positives with an identification coske, distinguishable from random sequences) and the previous

the verifier may address several devices simultaneously ar@gults (eavesdropping does not give any information and

will in that gjsirecelve as many rephes).i{l‘f/M is small impersonation of a verifier is not feasible so it is not pogsib
compared toy'kn then we know that there is almost surely, qetermine whether a device reacts when it should do so).

no solvable PR instance. Otherwise, the adversary can try tQDroposition 4:The protocol ensures the privacy of the

find one solvable PR instance among all the possible oNg&Sjices when the numbeY/ of queried devices during the
(i.e. he has to deal with collisions by choosing for each index, qe period satisfies,/Z < M < /g and when the number

1 one message among the different messages eaveSdmeﬁdéavesdropped interrgg;tion r?aquests is at rifost M2k.

In [3], it is sh0\_/vr_1 that the probability to find a good_instance The proofs of Propositions 1, 2, 3 and 4 are given in [3].
becomes negligible fOE\/_% < M < /g, wheree is the  Note that replay attacks are prevented in the protocol only
Euler's number (exponential of 1). The other strategy f@ thor privacy concern: When a device is isolated, the fact that i
adversary is to wait for a sufficient number of interrogasionyges not accept to reply to a replayed message would lead
so that the list recovery problem becomes tractable f to the possibility for tracking. However, in the context of
T/M is greater thenvnkl with | = T/n the approximate interrogation of devices among a cloud, this is not an issue
number of collisions per index). This gives the followingyny more. Moreover if a verifier's message could be replayed
result (the indistinguishability property is deduced &m0 tnen tracking a device would be easy as the device would

the decisional version of PR). answer with the same message. For security, this is not a risk
Proposition 1: Let ey/3 < M < /g andT < M?k. A s this does not give additional information.
passive adversary that eavesdrops at rifoséquests With the chosen parameters, we suggest the use of poly-
« cannot reconstruct one polynomial associated to a devic®mials of degreek — 1 = 255. This permits to define
except with a negligible probability; q* = 264x256 possible polynomials; the numbaf of devices

« cannot determine whether two non-identical interrogatiomreeded in the cloud around a verifier has then to be greater
requests correspond to the same device except witlthane x \/E i.e. at least 8. With)M = 256, this leads to the

negligible probability. restriction7' < 224, which is automatically satisfied here as
Note that identical interrogation requests happen WithoproT < Mn =2".
ability 1/y/n. In the sequel we assume once and for all that V. HIDDEN IDENTIFICATION CODES

2
ey/F <M < /qandT < M>k. We now want to introduce a second line of defence to the

BCCK identification protocol. We here consider the problem
known as the Code Reverse Engineering (CRE) problem [17],
In the protocol, a device answers to a broadcast messggg], [19], [20]. This problem can be stated as follows: the
only if the message is related to its internal polynomiial,if adversary acting as an eavesdropper does not know anything

the verifier is believed to be genuine. on the characteristics of the identification code which isdus

As eavesdropping does not give any advantage to thgring the BCCK protocol; he thus may want to recover the
adversary, he may try to emit random values. With respectdede. To the best of our knowledge, this CRE problem has
a cloud of M devices, the probability when emitting a randonhever been solved for identification codes. At first thought,
value to interrogate correctly one of them 4§. However this context does not seem favourable to the adversary. We
the security against impersonation of the verifier is in faghus suggest to strengthen the previous work by restrittiag
important only with respect to a pre-fixed device: information available on the identification codes.

Proposition 2: An adversary cannot impersonate a verifier As a practical example of such a construction, we use
to interrogate one given device, without replaying an eavefie Moulin-Koetter construction of Sec. II-B, with an eror
dropped transcript, except with probabiligx correcting codeC defined by its generating matrig&r €

D. Security against Impersonation



Frxk = (G, ...
the induced identification code are tig = {(j; G,'z;),1 <
j < n} wherez; is the ith vector of FX. If the generating

(10]

matrix is kept secret, and known only by the verifier, then in
order to breach privacy or security, an attacker should ke ab

to reverse-engineer parts of the matéx
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