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Abstract—Identification codes were introduced by Ahlswede
and Dueck more than twenty years ago. There is today a lot of
studies to identify objects such as contactless devices (for instance
RFID tags) but, surprisingly, no one has considered the use of
this kind of codes in the literature for that purpose until the
recent work of Bringer et al. at Indocrypt’09. We here show how
the security of these new identification protocols is related to
some well-known problems in coding theory. We also extend the
original proposal to a new problem.

I. I NTRODUCTION

Identification codes have been introduced by Ahlswede
and Dueck in [1] to answer to a different problem than
transmission codes. Transmission codes can correct errors
which happen during a noisy emission of a message whereas
identification codes enable to test whether a particular message
was sent. To quote [2], transmission codes answer to the
question ”What message has been sent?” and identification
codes to ”Has messagem been sent?”.

Informally, an identification code is given by a set of prob-
abilistic coding functions, along with (deterministic) decoding
sets. On one hand, this has a negative impact as we have to
take into account the probabilities of false-negative and false-
positive identifications. On the other hand, this gives us two
interesting properties:

• The identification of one element amongn others is
possible by conveying onlylog log n bits. This means
that the string we have to transmit can be very short.

• The probabilistic coding scheme increases a lot the job
of the eavesdropper who would like to track a particular
identity as the same identifying bit string is not used twice
except with a small probability.

This second observation is the basis of [3] where the authors
prove the security of their identification BCCK protocol in
Vaudenay’s model of privacy [4].

There have been different proposals for constructing identi-
fication codes [5], [6], [7]. The one of Moulin and Koetter [7]
has, besides its simplicity of description, a particular interest
as it enabled [3] to rely for their proof of security on a
classical cryptographic assumption known as the Polynomial
Reconstruction (PR) problem [8], [9], [10], [11]. Later on,
the context of this proof has been reconsidered by [12] in an
information theoretical point of view.

We here recall the definition of idenfication codes in Sec.
II. A focus is made on the construction of Moulin and Koetter
in Sec. II-B.

We describe the BCCK idenfication protocol in Sec. III and
explain its links with the PR problem in Sec. IV.

We conclude in Sec. V with a way to extend the work of
[3] to more difficult problems.

II. I DENTIFICATION CODES

A. General Definition

Let X ,Y be two alphabets,η a message length, andW η a
channel fromX η to Yη, defined as a conditional probability
law: W η(yη|xη) is the probability to receive a messageyη ∈
Yη given a transmitted messagexη ∈ X η. By extension, for a
given subsetE ⊂ Yη, W η(E|xη) is the probability to receive
a message belonging toE whenxη has been transmitted.

Definition 1 (Identification Code, [1]):A (η,N, λ1, λ2)-
identification code fromX to Y is given by a family
{(Q(·|i),Di)}i with i ∈ {1, . . . , N} where:

• Q(·|i) is a probability distribution overX η, that encodes
i,

• Di ⊂ Yη is thedecoding set,
• λ1 andλ2 are the first-kind and second-kind error rates,

with
λ1 ≥

∑

xη∈Xη

Q(xη|i)W η(Di|xη)

and
λ2 ≥

∑

xη∈Xη

Q(xη|j)W η(Di|xη)

(where W η(Di|xη) is the probability to be in the de-
coding set Di given a transmitted messagexη and
W η(Di|xη) the probability to be outside the decoding
set)

for all i, j ∈ {1, . . . , N} such thati 6= j.
Given Q(·|i), the encoding setof i is defined as the set of

messagesxη for which Q(xη|i) > 0, in other words, the set
of messages likely to encodei.

The fundamental noisy-channel coding theorem [1, Theo-
rem 1] states that given a channelW η of (Shannon) capacity
κ, it is possible to define identification codes of identification
capacityRid = η

log log N
asymptotically close toκ.

The proof of this result is based on the following generic
construction:A1, . . . , AN ⊂ Xη areN subsets such that each
Ai has the same cardinaln and each intersectionAi ∩ Aj

for i 6= j contains at mostλn elements. Define the encoding
distributionQ(·|i) as the uniform distribution overAi; in the
noiseless case (the channelW η is the identity function) the



decoding sets are also theAi’s. Note that in that case the false-
negative rateλ1 is equal to0 and the false-positive rateλ2 is
λ. [1] actually proves that such subsets do exist.

B. Moulin and Koetter Identification Codes Family

Though the fundamental theorem states that there exist
families of identification codes of capacity-approaching rate,
practical construction were still to be found. Among others,
Moulin and Koetter proposed the following code, based on
an Error-Correcting CodeC of length n, size N = |C| and
minimum distanced over some alphabet.

For a wordci = (c
(1)
i , . . . c

(n)
i ) ∈ C, the corresponding set

Ai is the collection of all(u, c
(u)
i ), for u ∈ {1, . . . , n}. Note

that we indeed have setsAi of constant sizen; moreover, the
intersection of two different setsAi∩Aj contains at mostn−d
elements, which inducesλ2 = n−d

n
= 1− d

n
.

The instantiation of this construction explicitly described in
[7] uses Reed-Solomon codes. A Reed-Solomon code over a
finite field A = Fq, of length n < q − 1, and dimensionk,
is the set of the evaluations of all polynomialsP ∈ Fq[X]
of degree less thank − 1, over a subsetF ⊂ Fq of size
n (F = {α1, . . . , αn}). In other words, for eachk-tuple
(x0, . . . , xk−1) ∈ F

k
q , the corresponding Reed-Solomon word

is the n-tuple (y1, . . . , yn) where yi =
∑k−1

j=0 xjα
j
i . In the

sequel, we identify a source word(x0, . . . , xk−1) ∈ F
k
q with

the corresponding polynomialP =
∑k−1

j=0 xjX
j ∈ Fq[X].

Definition 2 (Moulin-Koetter RS-Identification Codes):
Let Fq be a finite field of sizeq, k ≤ n ≤ q − 1 and
an evaluation domainF = {α1, . . . , αn} ∈ Fq. Set
AP = {(j, P (αj))| j ∈ {1, . . . , n}} for P any polynomial on
Fq of degree at mostk − 1.

The Moulin-Koetter RS-Identification Codes are de-
fined by the family of encoding and decoding sets
{(AP , AP )}P∈Fq[X], deg P<k.

This leads to a(log2 n + log2 q, qk, 0, k−1
n

)-identification
code from{0, 1} to {0, 1}.

Using a Reed-Solomon code of dimensionk, this givesλ2 =
k−1

n
sinced = n− k + 1.

III. D ESCRIPTION OF THEBCCK IDENTIFICATION

PROTOCOL

This protocol takes place between a verifier and multiple
contactless devices (CLD). The goal of the identifier is to
identify the CLDs that are present in communication range
by sending them a message.

Each CLD stores two different random polynomials of
degree at mostk − 1. For instance, letpl, p′l ∈ Fq[X] be
associated withCLDl. The verifier’s database contains these
2 polynomials for all CLD.

More precisely, suppose that a set ofM < qk devices is
initialized. The memory of these devices is then filled with a
set ofpl(αj), for αj ∈ F , with F a public subset ofFq, i.e.
the devices contain the evaluation ofpl over a subset ofFq.
The verifier is then given the polynomialpl.

To identifyCLDl , the verifier broadcasts(ACK, j, pl(αj))
over the wireless channel, whereACK is a session number

CLD parameters Verifier
identifiersp, p′ Fq, (α1, . . . , αn) (l, pl, p

′
l)

(ACK, j, a=pl(αj))←−−−−−−−−−−−−−−−−− Pick j

If p(αj) = a
(ACK, b=p′(αj))−−−−−−−−−−−−−−−−−−−→ p′l(αj)

?
= b

Figure 1. CLD identification via Moulin-Koetter identification codes

issued to help the verifier to sort out the messages when several
such transmissions are emitted. All the present CLD’s have to
check whether there is a match with the stored polynomial.
For instance, CLD with polynomialsp, p′ in its memory,
evaluates whetherpl(αj) = p(αj). In this case, it responds
with (ACK, p′(αj)). Otherwise, it remains silent.

At the end,CLDl is identified by the verifier if its answer
corresponds top′l(αj).

To thwart replay attacks , a flag bit is added in each CLD to
tell whetherαj was already used or not. Of course, this flag
bit has to be switched whenpl(αj) is received.

Practical Parameters

An advantage of the BCCK protocol is that – even for a
noisy channel – the CLD’s will only have to compute the
distance between the received message and the stored one to
check for a given equalitypl(αj) = p(αj). If the channel is
supposed error-less – in other words, if a transmission code
is applied – then the equality should be true after decoding;
if not, adding redundancy to the messages enables to reduce
the equality check to a distance bounding test.

Consider a memory size of218 = 256k bits, with q = 264,
CLD’s are then able to store218−6 = 212 = 4096 64-bit fields
elements. As each interrogation consumes2 memory elements,
this enables2048 interrogations of a CLD by the verifier, and
implies that the length of the corresponding code isn = 211,
which is consistent withn ≤ q − 1.

IV. SECURITY RESULTS

In this section we sum up the security properties of the
protocol which are proved in [3]. The protocol’s aim is
identification of objects via their interrogation followedby an
authentication step. The security is analysed in the model [4]
which includes security of the authentication phase and privacy
of the objects.

A. Requirements

Basically the communications, operations and more gener-
ally the actions that an adversary can take, request or interfere
with are formalized by oracles. For instance, an adversary
can send a message to a device to receive the corresponding
answer (if any). He can also ask the verifier to launch a
new protocol instance. The adversary can even handle several
protocol instances in parallel to try to learn information,for
instance by mixing some messages. Vaudenay’s model also



introduces the corruption of a device to learn its state and
the internal secret. Here, secrets are not correlated between
devices so this operation is not really a risk against security
of the protocol (see the list of requirements below).

The security or privacy properties related to this model and
the protocol are the following:

• Correctness: The identification of a legitimate device
should fail only with a negligible probability.

• Resistance against impersonation of devices: Only
legitimate devices should be able to be authenticated.
The adversary is active,i.e. he may take the place of
verifiers and devices during the communications, he can
eavesdrop and modify the messages. At the end an
adversary should not be identified by the verifier as a
legitimate device, except with a negligible probability.
One specific constraint is that the adversary cannot replay
a past protocol instance between a legitimate device and
the verifier.

• Replay attacks: A specific impersonation risk not han-
dled by the previous requirement is when a legitimate
verifier broadcasts twice the same message during two
different protocol instances. Then after eavesdropping of
the first instance, impersonation is easy. This should not
happen, except with a negligible probability.

• Resistance against impersonation of the verifier: as
the protocol is based on the idea of interrogation of
devices, we are concerned also with the situation where
an adversary tries to be recognized as a legitimate verifier.
If this would be possible, then tracking of a device would
become feasible. This is related to the notion of mutual
authentication.

• Privacy: In [4], privacy is defined as the non-ability for
any adversary to distinguish a simulated system from the
actual one. The simulated system runs thanks to simulated
oracles which are aware neither of the secret parameters
nor of the device’s secret. This definition of privacy is
more general than anonymity and untraceability. In the
sequel, the adversary against privacy is not allowed to
corrupt the devices (this corresponds to a weak adversary
in [4]).

The protocol relies on the transmission of evaluations of
polynomials. The security and privacy are then depending on
the ability of an adversary to recover a polynomial or to detect
links between values. If the verifier would communicate with
only one device this would be straightforward. Nevertheless,
the protocol is designed to achieve good properties when a
verifier interrogates many different devices among a cloud of
devices: the messages are actually mixed between values of
uncorrelated polynomials. The security and privacy are related
to the problem of polynomial reconstruction in presence of
noise.

B. Assumptions

1) Hardness of the Polynomial Reconstruction Problem:
The definition of the basic Polynomial Reconstruction (PR)
problem follows. The problem is now well known and has been

suggested for various cryptographic schemes [8], [9], [10],
[11].

Definition 3: Given n, k, t such that1 ≤ t ≤ n, k ≤ n and
given z, y ∈ F

n
q , with zi 6= zj for i 6= j,

• output all (p, I) wherep ∈ Fq[X], deg(P ) < k, |I| ≥ t,
and for all i ∈ I, p(zi) = yi.

We denotePRz
n,k,t such an instance of the PR problem.

The PR problem is unconditionally secure whent < k, and
is easy to solve whent ≥

√
kn, as list decoding of Reed-

Solomon codes via the Guruswami-Sudan algorithm [13] is
possible.

If the numbert of noiseless components is in the range
{k, . . . , ⌊

√
kn⌋}, then it is more difficult to determine whether

the PR problem is hard or not. [12] takes interest in this
issue, and considers the information-theoretic side of this
problem: given vectorsn, k, t, z, v as in Definition 3,how
many polynomialsp ∈ Fq[X] are there of degree less than
k that interpolatey on z ? In other words, what is the size
of the list after the list-decoding ofy, allowing at mostn− t
differences between elements of the list andy? If the list is of
exponential size, then the PR instance isnecessarydifficult.
[12] shows that the size of the list is linked to the Maximum-
Likelihood (ML) threshold of the Reed-Solomon code, which
can be interpreted as the number of coordinates required to be
exact iny in order for the ML decoder to output the original
codeword with a large probability.

[12] also derives an explicit formula to approximate the
threshold, and it appears that for a Maximum-Distance Separa-
ble code, it is very close to the lower-boundk. That means that
there might exist polynomial-time algorithms that can beatthe
threshold of the Guruswami-Sudan list-decoding algorithm.
However, finding such an algorithm is reputed to be hard, and
as of today, it is safe to assume that whent <

√
kn, solving

the PR problem is computationally hard.
2) The Decisional Reconstruction Problem:The Decisional

PR problem (DPR) [8] consists in deciding if a giveni ∈
{1, . . . , n} is in I for an instancey of PRz

n,k,t which admits
at least one solution(p, I). Assuming that DPR is hard, [8]
shows that PR instances do not leak any partial information
on the polynomials.

In the security analysis, the PR and DPR problems are
assumed to be hard even in the case where the noise is
generated by the other transmissions. In this case, the noise
is not random as the received elements are evaluations of a
few different polynomials. [14] explained the link between
polynomial reconstruction in the mixture model [15] and
Reed-Solomon list decoding, and it is not easier to reconstruct
a polynomial polluted with a structured noise as input than to
reconstruct a polynomial with random noise.

Finally the last problem related to the protocol is the list
recovery problem [16]. In fact, when a verifier interrogates
many devices, this leads to several mixed PR instances with
many transmitted values for the same indexi. The list recovery
problem is to retrieve the solutions to all underlying PR
instances. This is equivalent to solving one longer PR instance
and thus leads to a similar bound. Letl be the maximum



number of collisions per positioni, the list recovery problem of
Reed-Solomon codes is assumed to be hard whent <

√
nkl.

C. Security against Eavesdropping

Against an eavesdropper, who is by definition a passive
adversary, the security relies on the impossibility to reconstruct
a polynomial associated to a device and the privacy relies
on the impossibility to distinguish transmitted values. Inboth
cases, the only information available to an adversary are the
transmitted messages.

Let M be the number of devices which are queried by
one verifier during a given period and letT be the number
of eavesdropped interrogations. Assume that the devices are
interrogated almost uniformly by the verifier (remember also
that there are false-positives with an identification code,so
the verifier may address several devices simultaneously and
will in that case receive as many replies). IfT/M is small
compared to

√
kn then we know that there is almost surely

no solvable PR instance. Otherwise, the adversary can try to
find one solvable PR instance among all the possible ones
(i.e. he has to deal with collisions by choosing for each index
i one message among the different messages eavesdropped).
In [3], it is shown that the probability to find a good instance
becomes negligible fore

√

n
k
≤ M ≤ √q, where e is the

Euler’s number (exponential of 1). The other strategy for the
adversary is to wait for a sufficient number of interrogations
so that the list recovery problem becomes tractable (i.e. if
T/M is greater then

√
nkl with l = T/n the approximate

number of collisions per index). This gives the following
result (the indistinguishability property is deduced thanks to
the decisional version of PR).

Proposition 1: Let e
√

n
k
≤ M ≤ √q and T < M2k. A

passive adversary that eavesdrops at mostT requests

• cannot reconstruct one polynomial associated to a device,
except with a negligible probability;

• cannot determine whether two non-identical interrogation
requests correspond to the same device except with a
negligible probability.

Note that identical interrogation requests happen with prob-
ability 1/

√
n. In the sequel we assume once and for all that

e
√

n
k
≤M ≤ √q andT < M2k.

D. Security against Impersonation

In the protocol, a device answers to a broadcast message
only if the message is related to its internal polynomial,i.e. if
the verifier is believed to be genuine.

As eavesdropping does not give any advantage to the
adversary, he may try to emit random values. With respect to
a cloud ofM devices, the probability when emitting a random
value to interrogate correctly one of them isM

q
. However

the security against impersonation of the verifier is in fact
important only with respect to a pre-fixed device:

Proposition 2: An adversary cannot impersonate a verifier
to interrogate one given device, without replaying an eaves-
dropped transcript, except with probability1

q
.

Concerning impersonation of a device, we know that eaves-
dropping would not give any useful information. As targeting
a specific device via interrogations is not possible except with
probability 1

q
(thanks to the previous result), it is not possible

to isolate the answers of one device. Thus, guessing the device
answer is not possible except with probability1

q
.

Proposition 3: The protocol is resilient to device imperson-
ation attacks.

E. Privacy

Remember that privacy is ensured when simulations are
indistinguishable from the real system. The simulation is in
fact easy by sending random values for the verifier and by
answering randomly to one request overM for a device.
This is not distinguishable due to [8] (PR instances are not
distinguishable from random sequences) and the previous
results (eavesdropping does not give any information and
impersonation of a verifier is not feasible so it is not possible
to determine whether a device reacts when it should do so).

Proposition 4: The protocol ensures the privacy of the
devices when the numberM of queried devices during the
same period satisfiese

√

n
k
≤M ≤ √q and when the number

of eavesdropped interrogation requests is at mostT < M2k.
The proofs of Propositions 1, 2, 3 and 4 are given in [3].
Note that replay attacks are prevented in the protocol only

for privacy concern: When a device is isolated, the fact that it
does not accept to reply to a replayed message would lead
to the possibility for tracking. However, in the context of
interrogation of devices among a cloud, this is not an issue
any more. Moreover if a verifier’s message could be replayed
then tracking a device would be easy as the device would
answer with the same message. For security, this is not a risk
as this does not give additional information.

With the chosen parameters, we suggest the use of poly-
nomials of degreek − 1 = 255. This permits to define
qk = 264×256 possible polynomials; the numberM of devices
needed in the cloud around a verifier has then to be greater
thane×

√

n
k

, i.e. at least 8. WithM = 256, this leads to the
restrictionT < 224, which is automatically satisfied here as
T ≤Mn = 219.

V. H IDDEN IDENTIFICATION CODES

We now want to introduce a second line of defence to the
BCCK identification protocol. We here consider the problem
known as the Code Reverse Engineering (CRE) problem [17],
[18], [19], [20]. This problem can be stated as follows: the
adversary acting as an eavesdropper does not know anything
on the characteristics of the identification code which is used
during the BCCK protocol; he thus may want to recover the
code. To the best of our knowledge, this CRE problem has
never been solved for identification codes. At first thought,
this context does not seem favourable to the adversary. We
thus suggest to strengthen the previous work by restrictingthe
information available on the identification codes.

As a practical example of such a construction, we use
the Moulin-Koetter construction of Sec. II-B, with an error-
correcting codeC defined by its generating matrixG ∈



F
n×k
q = (G1, . . . , Gn). The encoding (and decoding) sets of

the induced identification code are theEi = {(j;Gj
txi), 1 ≤

j ≤ n} where xi is the ith vector of Fk
q . If the generating

matrix is kept secret, and known only by the verifier, then in
order to breach privacy or security, an attacker should be able
to reverse-engineer parts of the matrixG.
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