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1.1 Introduction

State agencies responsible for managing various risks in social life issue

advisories to the public to prevent and mitigate various hazards. In this

Chapter we will investigate, how information about a common food born

health hazard, known as Campylobacter, spreads once it was delivered to a

random sample of individuals in France. The Campylobacter is most com-

monly found in chicken meat and causes diarrhoea, abdominal pain and

fever. The illness normally lasts a week but in rare cases patients can de-

velop an auto-immune disorder, called Guillain-Barré syndrome, that leads

to paralysis and can be deadly. Campylobacter together with Salmonella is

responsible for more that eighty percent of food born illnesses in France

and strikes over 20,000 people each year. People can take simple steps to

avoid infection by cleaning their hands, knives, cutting boards and other

food items touched by raw chicken meat and by cooking the meat thor-

oughly.

In this Chapter we build two different network models to see how the

information about Campylobacter diffuses in society, by mapping onto var-

ious network structures the data we gathered with three waves of surveys.

In these models the spread of information depends on two sets of factors.

First, each person has a set of individual properties that influences their
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propensity to transmit the information to or to receive the information

from someone they know. Second, each person is connected to others in

ways that also affects transmission. There are three aspects of these so-

cial ties that matter. As the information travels through existing ties, the

quantity of connections should have an influence as people with more ties

should have more opportunity to disseminate the information. The quality

of ties should matter as well, because certain types of ties may bemore con-

ducive to information transmission than others. Finally, the overall struc-

ture of the entire network, i.e. how ego-centric networks are linked into

a larger whole, should also play a role. Our surveys provide data for the

individual characteristics, as well as the quality and quantity of the social

ties. In the diffusion model, two different overall network structures, the

Erdős and Rényi random, and the Small World (SW) model, are introduced

through modeling assumptions.

The central question of this Chapter is how individual characteristics

and the various aspects of social network influence the spread of informa-

tion. A key claim of our Chapter is that information diffusion processes

occur in a patterned network of social ties of heterogeneous actors. Our

percolation models show that the characteristics of the recipients of the in-

formation matter as much if not more than the characteristics of the sender

of the information in deciding whether the information will be transmitted

through a particular tie. We also found that at least for this particular advi-

sory, it is not the perceived need of the recipients for the information that

matters but their general interest in the topic.

As for the diffusion of information, we found that the two network struc-

tures behave differently in some ways. If the proportion of the population

that receives the information initially from the center (our survey) is lower,

the random graph model diffuses the information to a larger segment of

the population then the SW model, as the advisory travels farther in ran-

dom networks. However, as the initial exposure increases above a certain

level, the two models deliver the advisory by word-of-mouth to very sim-

ilar proportions of the population. For the SW models we find that as the

size of the group that is initially exposed grows, diffusion first increases

then decreases and there is an optimal proportion of the population that

the message initially has to reach to result in the maximumword-of-mouth

diffusion. Since the initial deployment of the information costs money and

the subsequent diffusion is costless for the center, finding this optimal size

is of practical importance.

Finally, we offer a visual presentation of the transmission process and the

way the composition of those receiving the message shifts. Our analysis
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finds that distribution of particular characteristics of message recipients

changes most in the first round and in later rounds it gravitates towards

the distribution of the characteristics in the population.

1.2 Theoretical overview

1.2.1 Diffusion of health information and interpersonal communication

Major public health campaigns are aimed at modifying individual conduct,

by either trying to decrease risky behavior, such as alcohol abuse and smok-

ing or seeking to increase health promoting activities such as exercise and

following a healthy diet (Compas et al., 1998). The approaches to the dis-

semination of advisories in the field of public health have varied across

time, countries and objectives of the campaigns but they are systematically

based on specific views of society and on certain assumptions about social

processes.

Broadcast approach

The dominant approach in disseminating health advisories has been the

broadcast method where the information is released centrally and it is tar-

geted at members of the public individually. The main assumption behind

the broadcast approach is that the message travels directly from the cen-

ter, usually the health agency, to each citizen via various channels of mass

communication. The success of the broadcast approach depends on reach-

ing as many people as possible, and on delivering the message in ways that

the desired effects are created in each member of the audience. The broad-

cast model is a hub-and-spokes system with the agency in the middle and

each unconnected member of the public at the end of one spoke. Com-

municators using this model, therefore, concentrate on two aspects of the

process: reach and stickiness. Reach is the matter of getting the message to

the largest possible part of the target audience and involves careful plan-

ning of the dissemination of the information. Communicators must decide

what media are best suited to their purposes, where they should deploy the

information, when and how many times. Stickiness is a matter of creating

the proper effect once the information is delivered. Here the main objective

is getting people to pay attention to, understand and act on the information

in question. To improve individual reception of their messages, broadcast-

ers have spent a lot of effort trying to understand the psychology ofmessage

reception and perception in their quest to craft the most effective messages.
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1.2.2 The two-step model

Mass communication

The undisputable strength of the broadcast model is that it provides the

maximum control for the center over the message as each recipient ob-

tains the information from the central source. Doubts about the broadcast

model, nevertheless, have been raised early on. One of its first critics was

the sociologist, Paul F. Lazarsfeld who in a series of studies on political

communication in the 1940s found that the direct effect of broadcasted

political messages is negligible and that most people acquire their politi-

cal opinions not from television, radio or newspapers, but from other peo-

ple he named ‘opinion leaders.’ He argued that political messages produce

their effects – if at all – in a two step process: the original message is picked

up by the opinion leaders who then pass it on to the rest of the community

(Lazarsfeld et al., 1948; Katz and Lazarsfeld, 1955). Lazarsfeld’s main in-

sight was that most people receive political messages not from the media,

from a central point of emission, but by word-of-mouth from others in their

community and, therefore understanding the structure of the community

is crucial for making communication effective (Katz, 1996; Burt, 1999).

Marketing

A similar idea surfaced in market research where advertisers encountered

the same difficulty in getting their messages across. Researchers found that

just as citizens in political discourse, consumers often obtain their informa-

tion through social ties (Katona andMueller, 1955) and not from the adver-

tisements they are bombarded with. Following this observation, the field of

market research has distinguished three types of customers who influence

others: the early adopter, the opinion leader and the market maven. Early

adopters of new products influence others by buying the product. Their

purchases inform other people that the product is available and worth ac-

quiring. Opinion leaders have special expertise about a particular piece

of merchandise and dispense it to those interested in the product. Market

mavens, on the other hand, are individuals who research and plan their

purchases and pay a lot of attention to getting the best deal, and as a

result, “have information about many kinds of products, places to shop,

and other facets of markets, and initiate discussions with consumers and

respond to requests from consumers for market information” (Feick and

Price, 1987; Clark and Goldsmith, 2005). Marketing people are eager to

find early adopters, opinion leaders and market mavens. They focus on the

special characteristics of these senders of information. If they can sell them
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their product (or in the latter two cases sometimes only the idea of the

product) they can count on an interpersonal multiplier effect.

Public health

The limitations of the broadcast approach and the research on opinion

leaders turned the attention of public health officials to new models of dis-

seminating health information by trying to exploit interpersonal influence.

During the 1980s, health promotion programs were increasingly built on

community-based intervention that tried to differentiate populations with

respect to their health related behavior (Shea and Basch, 1990). This ap-

proach drew upon the theoretical perspective of diffusion (Rogers, 2003)

and social learning theory (Bandura, 1977) arguing that people acquire

new behavior frompeople in their environment through observational learn-

ing. One well-known example of this approach is the North Karelia Project

on smoking. Launched in 1972 in Finland to combat the country’s record

high mortality of cardiovascular diseases (Puska and Uutela, 2000), this

project was one of the first major community-based projects for cardio-

vascular diseases prevention. It was built in partnership with WHO and

targeted communities with health information through various channels

(television, newspapers, personal health training, seminars, etc.) in an at-

tempt to reduce the number of smokers. Based on the two-step theory of

the diffusion of innovations, a network of local opinion leaders was identi-

fied in each community often through relevant local organizations. Opin-

ion leaders then were trained to spread the advisory in a credible and ef-

fective manner. Unlike broadcasting, community intervention (as its name

suggest) aims at a much smaller audience and assumes a simple, two-step

connectedness among audience members.

1.2.3 Multi-step model

The concepts of the opinion leader, early adopter and market maven and

the strategic actor of the community intervention approach drew atten-

tion to the fact that information cannot be thought of as a one step process

and that the public is not atomized but linked through social ties. Yet all of

them, with the exception of the early adopter, lead only to a two stepmodel.

Society or the community is neatly divided between leaders and followers,

everyone is either the former or the latter but not both. Studies of early

adopters, on the other hand, opened up the possibility of a multi-step dif-

fusion model. As a few, very adventurous early adopters are followed by

less adventurous early adopters, and then by mainstream adopters, and fi-
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nally laggards, the process leads to a chain of diffusion where people in the

middle are both leaders and followers. Empirical studies of diffusion began

in the late 1930s and were mostly concerned with the spread of innovation

such as the adoption of ham radios (Bowers, 1937), progressivist policies

(McVoy, 1940), hybrid corn (Ryan and Gross, 1943), and the prescription

of new drugs by doctors (Coleman et al., 1957) through imitation. Most

studies were interested in measuring the accumulation of adoptions over

time.

In a broadcast model, the curve plotting the cumulative number or pro-

portion of adopters as the broadcast is repeated again and again is close

to a logarithmic function truncated at or before the point where no per-

son is left in the population to adopt. The marginal return to broadcast-

ing is highest at the earliest part of the process. The first broadcasts have

the highest effect and subsequent ones produce a declining yield. Once we

move away from the broadcast model and allow for imitation, the typical

diffusionmodel becomes an ogive in the shape of an S, as the diffusion pro-

cess takes off slowly then accelerates when adopters achieve a critical mass

or tipping point (Schelling, 1978; Galdwell, 2000). The curve would slow

down as the pool of potential adopters begins to shrink completing the fig-

ure. There are several functions that can describe the empirical curve and

much of diffusion research consist of correlating curves with the diffusion

mechanisms that are thought to have produced them (Mahajan and Peter-

son, 1985). Until recently, most diffusion models have been macro mod-

els predicting only the total number of adopters. As they rarely observe

the transmissions, diffusion researchers mostly deduce how they happen

from the aggregate outcome by assuming simple transmission rules. The

simplest models assume a homogenous population where individuals have

different propensities to adopt. Models of the adoption chain start from

the assumption that there are personal characteristics that make some peo-

ple early adopters. Personal attributes determine at which stage of the dif-

fusion process people enter, i.e. how many adopters they must perceive

to make the move. In information diffusion processes, the most curious

and cognitively astute people would be the first to find out about an advi-

sory, others would not pick up the information unless they heard it from a

friend, yet others would need to hear it from many to understand and be-

lieve it, etc. Here the spread of information would depend simply on how

many people you have of each cognitive type. If you have too few people

at the beginning of the chain, they will transmit the information to too

few people in the second group, not enough to make anyone care in the

third group and the diffusion fizzles out early. If there are more people in
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the first group, but very few in the second group, the outcome could be

similar, etc. The thing to notice is that in these models, propensities inher-

ent to each individual that matter (Granovetter, 1978; Kuran, 1987) after

that only the aggregate number – or proportion – of people who already

adopted makes a difference. A different approach assumes that all people

have the same propensity but they are located differently in a social struc-

ture because they are connected differently to others. Whether to adopt or

transmit then depends on their relative position – their spatial (Ryan and

Gross, 1943; Schelling, 1978) or social proximity (Coleman et al., 1957) to

those who already adopted.

In recent years, researchers have moved further away from the broadcast

model that assumes that the world can be sharply divided into a source

and atomized targets, beyond the two-step model of center, leaders and

followers, and past the simplistic, multistep diffusion models and entered

a world where all actors are 1) both potential sources and targets, 2) linked

in a patterned network of social ties that makes them more or less likely to

transmit information and that influences the overall travel of the informa-

tion in question, and 3) heterogeneous in terms of the properties that makes

themmore or less likely to send or receive information. In this Chapter, we

will use percolation models that combine graph theory that captures the

structural characteristics of networks with dynamic processes.

1.2.4 Structural characteristics of graphs

In order to describe a graph, we distinguish vertices (in our case people)

and edges (their ties). To characterize a graph, it is useful to compute cer-

tain properties and we present several useful ones for social networks (for

a survey, see Goldenberg et al., 2001). Perhaps the most well known prop-

erty of a social network is that they are often ‘small worlds,’ which means

that the shortest path length between two people is often small (Milgram,

1967). A formalisation of this measure is the mean geodesic distance for

a connected graph, which is the average of the shortest paths between all

possible pairs of vertices. Another useful measure for social networks is the

clustering coefficient of a graph, which is the chance that a friend of your

friend is also your friend.

1.2.5 Random graphs

Random graphs are formed by generating a set of edges for a graph in a

random fashion. Many random graph models have been extensively stud-
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ied both theoretically, and in relation to real networks, and later we apply

them in our simulated graph processes.

A classic random graph model is that of Erdős and Rényi (Erdös and

Rényi, 1959, 1960), which was independently discovered by Solomonoff

and Rapoport (Solomonoff and Rapoport, 1951). In the model, for a graph

of size n, each pair of vertices has an edge between them with probability

pe. One of the properties of the Erdős-Rényi random graph in the context

of social networks is that the clustering coefficient is often quite small. The

SW model tends to have a high clustering coefficient and small geodesic

distance. It can be constructed by taking a one-dimensional lattice of n

vertices in a ring, and joining each vertex to its neighbors k spaces away

on the lattice. There are therefore kn edges in this lattice. The edges are re-

wired by going through each one in turn and with probability ps moving

one end of the edge to a new vertex chosen uniformly at random. No self

edges (edges from a vertex to itself) or double edges (pairs of edges between

the same pair of vertices) are created.

An interesting question about random graphs is how they compare to

real-world ones. Dekker (2007) finds that real social networks have a low

average network distance, a moderate clustering coefficient and an approx-

imate power-law distribution of node degrees. In Newman et al. (2002) the

authors observe that real social networks have highly skewed degree dis-

tributions which can vary according to the property being measured. A

random graph model is proposed which can be fitted to an arbitrary de-

gree distribution. Such a model is useful since the theoretical computa-

tions of clustering and path length over the model often, but not always,

bear strong similarities to those found on real data.

1.2.6 Modeling dynamic processes

Disease spread: epidemiological models

In epidemiology, there are two deterministic models used most often to

study the spread of infectious disease from person to person. These mod-

els are based on a simple mathematical formulation that does not take into

account network properties (Hethcote, 2000). The SIR model (people are

either Susceptible, Infected or Recovered) is an appropriate approximation

for diseases that infect a significant part of the population in a short out-

break (such as influenza). This model considers people who recovered from

the disease to have acquired permanent immunity.

In the SIS (Susceptible/Infected/Susceptible) model, people do not ac-

quire permanent immunity and return to the state of susceptibility when
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they recover from a disease (e.g., tuberculosis). The SIS model is appropri-

ate for endemic diseases which persist in a population for long years.

Even though the models now being applied to specific diseases are more

complex and refined (Hethcote, 1989) – for instance some models use pe-

riodic contact rates to take into account the prevalence of many diseases

which varies because of seasonal changes in daily contact rates – they are

quite limited. One of the limits of these basic models is that they make

the unrealistic assumption that the population is homogenously or “fully

mixed.” The homogeneity assumption, that states that everyone is equally

susceptible before and infectious after acquiring the sickness, can be re-

laxed somewhat assuming that the population belongs to a small set of

categories (men, women, or adults/children) with heterogenous character-

istics.

These models also assume that the population is equally and randomly

connected (Watts, 2003; Brauer, 2005). Different network structures are ad-

dressed by positing multiple levels of mixing, e.g., people may belong to

two levels: to a household and to the world, and connected more at one

level (with household members) than at another (everyone else, see Ball

et al., 1997), yet those solutions still miss many dimensions and configura-

tions of social ties.

Information spread

Most empirical studies of information spread investigate diffusion of in-

formation through the Internet. For instance, information propagation in

Weblogs or “blogs” is analyzed using a corpus containing 401,012 posts in

(Gruhl et al., 2004). One of the dimensions of analysis is the topics of posts.

They characterise topics as: “just spike” which are inactive, then active, and

then inactive again; “spikey chatter” which have a significant chatter level

and are sensitive to real world event and hence have spikes; and “mostly

chatter” which have moderate levels of discussion.

The authors also model topic propagation among individuals. An infor-

mation propagation model is derived based on the Independent Cascade

model (Goldenberg et al., 2001). In this extended model, each vertex is

a person and each directed edge has a probability of information being

copied from one vertex to another in the next time quantum. The model is

extended with an additional edge parameter which is the probability that a

person reads another persons blog. Edge probabilities for the transmission

graph are learnt using an EM-like algorithm (Dempster et al., 1977). One of

the observations made from the learnt transmission graph is that most peo-

ple transmit on average to less than one additional person whereas some
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users transmit to many others, providing a boost to certain topics. An im-

portant difference between this work and ours is that individuals can reach

many others through their blog posts, and in our case, the number of pos-

sible transmissions is limited by the number of regular social contacts.

Kempe et al. (2003) consider the problem of selecting the most influen-

tial nodes in a social network in the context of information propagation.

One application of this work is in the analysis of the “word-of-mouth” ef-

fect in the promotion of products. The challenge is to discover which indi-

viduals should be targeted with information in order to trigger a cascade

of further adoption. This problem is NP-Hard, however efficient greedy

algorithms are shown to find a solution within sixty-three percent of the

optimal for the Independent Cascade and Linear Threshold models. Our

diffusion model is essentially a deterministic variant of the information

cascade model, and hence this result can also be applied to our work.

Percolation process

A percolation process is one in which vertices (sites) or edges (bonds) on a

graph are randomly designated either “occupied” or “unoccupied” and one

asks about various properties of the resulting patterns of vertices (New-

man, 2003). Percolation theory is mainly developed in physics but, as New-

man (2003) reminds us, one of the initial motivation of its development in

the 1950s was the modeling of the spread of disease and it is still used in

epidemiological studies (Sander et al., 2002). Newman and Watts (1999)

used site percolation on SW graphs as a model of the spread of informa-

tion or a disease in social networks, and Allard et al. (2009) deployed a

bond percolation model taking into account heterogeneity in the edge oc-

cupation probability through a multitype networks approach (see also Co-

hen et al., 2000a). Callaway et al. apply a more general approach (Callaway

et al., 2000) that consider the probability of the occupation of a vertex given

its degree k.

Our Chapter proposes a model with varied susceptibility to infection

and shows under strong heterogeneity in susceptibility there are patches

of uninfected but susceptible people. The model uses both bond and site

percolation in which vertices either have a specific piece of information

or do not. The question in this Chapter relates to how individuals select

among their network of people those interested in the information, and

how this information is then diffused to the broader network.
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1.3 Data and method

There are two approaches to network based research. The first looks at

ego networks and takes a sample of individuals and through a series of

questions tries to map out their social ties (Marsden, 2005). These are then

analyzed together with other individual attributes in statistical models as-

suming independent and random observations. The advantage of ego net-

work research is that it allows for large and representative samples and

consequently provides generalizable findings. It also permits the collection

of a large amount of information about individuals (egos). This tradition

generates data that are strong on vertices, weak and incomplete on edges.

The second approach takes entire populations and maps the relationships

among all vertices. The relationships or edges are usually complete and

they are observed as opposed to reported, but the data about the vertices

tend to be limited. The choice of populations – and therefore the topics – is

opportunistic.

Our approach belongs to the first line of investigation but with a unique

design. We began with an ego network method then we followed the net-

work path through which the information was dispersed collecting data on

dyads in some cases from both the sender and the recipient of the informa-

tion at the two ends of the tie.

1.3.1 Data

To recruit a sample representative for gender, age and socio-economic sta-

tus of the French population, we first broadly sent an invitation to 24,000

people to answer a questionnaire on “Food Habits and Food Risks”. They

answered socio-demographic questions which allowed us to select those

who fit the quotas. Although the sample is broadly representative for the

French population, people in the sample have more frequent connections

to the Internet than the population as a whole. In the sample, all people

use an Internet connection whereas 39% of the French never use one (Car-

dona and Lacroix, 2008) and 84.7% of people in the sample use an internet

connection at least once a day while this number is 41% nationwide.

The survey was conducted in three waves. The first wave, that took place

in December, 2008 and January, 2009 interviewed 6,346 individuals, we

call Egos. Egos are those who receive the information from us. In our mod-

els, Egos can only be senders of the information as they are at the root of

the diffusion process. All interviews were conducted through the web us-

ing self-administered web surveys. In the first wave, we asked Egos a series
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of questions about their knowledge of food risks, their food habits, social

networks and socio-demographic characteristics. We also exposed them to

the information about Campylobacter, which explained the health hazard

and provided advice on how to avoid it. We did not tell them that we are

interested in information diffusion, but we informed them that we would

revisit them for a follow up.

We returned to the sample of Egos three weeks later. In the second wave,

we were able to interview 4,496 of the first wave sample, an attrition of

twenty-nine percent. The analysis shows that thosewho dropped out tended

to be somewhat less educated. This time we asked people what they re-

membered of the information about Campylobacter, how they changed

their behavior, and if they told about Campylobacter to anyone else. We

asked a series of questions about each person they reported to have talked

to about Campylobacter and we requested that by writing in their con-

tact’s e-mail address send an email requesting that they fill out a question-

naire for the study. Egos contacted and described 7,655 contacts we call Al-

ters. On the average, Egos transmitted the information to 1.7 Alters (Figure

1.1). The most common way to convey the information was face-to-face fol-

lowed by phone conversations. Only less than 6% of Egos told others about

Campylobacter via the internet (Table 1.1). None of the socio-demographic

variables were strongly correlated to transmission but young people, peo-

ple working in small companies and those who live with a partner and have

children, and those withmore than elementary education were a littlemore

likely to transmit the information.

In the third wave, we interviewed the Alters willing to respond to Ego’s

request. The questionnaire for these Alters was similar to the first and sec-

ond questionnaires administered to Egos adjusting for differences in con-

text.6 We obtained 451 responses. Only 301 had any recollection of the

encounter with Ego. We used only these Alters in our analysis. The re-

sponding Alters reported to have contacted yet another 138 people with

the information.

There is no generic model for the spread of information independent of

the nature of the information to be diffused. In our case, the advisory about

the Campylobacter has certain peculiarities. Advisory about this sickness is

not knowledge typically sought by its recipients, such as information about

chronic diseases or jobs, but rather, it is “pushed” by its sender who wants

to benefit others (or simply wants to pass the time with small talk). The

6 For instance, we could not ask any questions from Alters that would gauge their knowledge about
Campylobacter before they received the information from Ego. We did ask such questions from the
Egos in the first wave before we presented the advisory.
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Figure 1.1 The distribution of the number of transmissions reported by
Egos.

Type of contact Percent

Face-to-face 78.95
Phone 15.37
Internet (e-mail, Skype, etc.) 5.68
Total 100 (N=7,655)

Table 1.1 The type of contact through which the information was transmitted.

motivation for transmitting the information is rarely self-interest because

the sender typically does not directly benefit from sending the information

unless he transmits it to a household member who cooks for him, in which

case there is a motivation of self-protection against the disease.

Furthermore, the transmission is dyadic and does not involve a critical

mass. In this respect, it is similar to epidemics where a single contact with

an infectious person makes one as sick as multiple contacts with many ill

people. Certain types of information do spread better when the sender re-

ceived it from multiple sources. This is the case when the credibility of the

information depends primarily on how widely it is held. Belief in the up-

ward or downward trajectory of the stock market belongs in that category.

In our model, the Campylobacter advisory is transmitted dyadically partly

because of its content is found to be credible by most people (the average
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score for both Egos and Alters was 6.1 on a seven-point scale) and there is

no need for outside reinforcement.

Moreover, health advisories, like most diseases, are most infectious soon

after they are received and as time passes they become less likely to be

transmitted. In our data, 91% of Egos who could recall the timing trans-

mitted the information during the first week and almost half of those on

the day they received the information from our survey. Only less than a

tenth of the transmissions happened in the second and third weeks. Dur-

ing the time window of our study we observed most of the transmissions

that was going to happen and we are unlikely to have missed an outburst

of diffusion after we completed our study.

1.4 Computational simulation

There are several limitations of collecting real data, influenced by factors

such as cost and privacy. To alleviate these limitations we extract patterns

from the survey data and then extrapolate them by simulating a social net-

work. The main aim of this simulation is to measure the average informa-

tion spread from each Ego on different types of random network. Average

information spread is computed using a measure called average hop length

which is defined as the the total number of transmissions of information

divided by the total number of original senders.

All computational code is implemented using Python and the NumPy,

SciPy, Matplotlib, and Mlpy (Albanese et al., 2009) libraries. The Support

Vector Machine (SVM) code is provided using LIBSVM (Chang and Lin,

2001)7.

1.4.1 Data preparation

In the simulation, vertices represent people and edges are relationships be-

tween them. For example, an undirected edge exists between vertices if

they know each other as friends, family members, colleagues or acquain-

tances. Vertices are v ∈ Rd , d = 62, and store values such as the age, gen-

der, education level of each person. Appendix A shows the complete list of

fields used in the simulation. Note that missing values are often replaced

with the mode. Furthermore Q7, Q43M1-10, Q47CM1-5 and Q47EM1-5

7 The complete source code for the simulation experiments is available online at
http://sourceforge.net/projects/apythongraphlib/.
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are categorical variables and hence represented using binary indicator fea-

tures. As an example, Q7 represents the respondents profession and has 8

categories, hence is represented by 8 binary variables indicating the pres-

ence or absence of each category.

The full details of the data preparation stage are given in Appendix

B. Essentially, missing characteristics in the data are completed based on

the knowledge aquired about the survey population. The total size of the

dataset after the completion step is 86,755 pairs of people (examples), in

witch 82,485were negative (no transmission) and 4,270were positive (trans-

mission) examples. We denote by S the set of triples composed of pairs of

people and an indicator label for transmissionoccurrence, S = {(v(1),v(2),y) :
v ∈ (E ∪A),y ∈ {−1,+1}}, where y = +1 indicates information transmission

from v(1) to v(2).

1.4.2 Learning transmissions

Given S one must first find a function such that f ′(v(1),v(2)) ≈ y, and we

use an SVM (Boser et al., 1992) to find this function. To simplify notation

let x = (v(1)
′
v(2)
′
)′ ∈ R114, and the function mapping x to y be f . We will

refer to x as an example and y as the corresponding label. An SVM finds a

hyperplane which separates the set of examples into those which are pos-

itively labelled and those which are negatively labelled. It does this with

maximal margin, which often ensures good generalisation to unseen data.

A further advantage of SVMs is that they can operate in a kernel defined

feature space and hence model non-linear functions without explicit com-

putation of the new feature space. See Shawe-Taylor and Cristianini (2004)

for an overview of kernel methods.

As a first step to learning transmissions, the complete dataset is stan-

dardised so that the examples have zero mean and unit standard deviation.

They are then randomly sampled into a subset of size 15,000. This subset

is used for choosing the SVM penalty parameter C, and the kernel param-

eters. For this model selection stage, we use a linear kernel with parameter

values selected as C ∈ {22,23, . . . ,211,212}, and also the Radial Basis Func-

tion (RBF) kernel with C ∈ {22,24, . . . ,210,212}. The RBF kernel is given by

κ(x,z) = exp(−‖x − z‖2/2σ2) with kernel width σ ∈ {2−4,2−3, . . . ,21} in this

case. As the dataset has many more negative examples than positive ones,

the penalty on the errors on positive examples is weighted according to

C− = Cγ where γ ∈ {22,23,24}.

In order to choose a set of parameters we use k-fold Cross Validation

(CV) to evaluate prediction error. In this procedure, the dataset is split into
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k equal sets. One set is kept back for evaluating error, and the remaining

are used for training. This is repeated a total of k times with a different test

set used each time, and this whole process is repeated for each unique set

of SVM parameters. In our case k = 3. The output at the model selection

phase is the set of parameters for the SVM which result in the lowest error.

Following model selection, one would like to obtain an unbiased esti-

mate of the error obtained on an unseen set of examples. The model selec-

tion phase resulted in the selection of the RBF kernel, C = 2,048, σ = 1 and

γ = 32. We use the set of 71,755 examples disjoint from that used during

model selection, and a 5-fold cross validation procedure to obtain an aver-

age error with the SVM using this set of parameters. The resulting balanced

error is 0.092 (0.000)8 which compares favourably to the error obtained on

predicting no transmissions, which is 0.5. The error on the positive exam-

ples is 0.111 (0.000) and the error on the negative ones is 0.073 (0.000).

With the linear kernel, C = 128.0 and γ = 16, the best balanced error rate

is 0.235 (0.000) with errors of 0.276 (0.000) and 0.195 (0.000) on positive

and negative examples.

The model weights describe the net influence of the various factors de-

termining whether the information is transmitted from Ego/Sender to Al-

ter/Recipient (Table 1.2). These weights are derived from a model that pre-

dicts the pattern of transmission with error. As smaller magnitude weights

can be due to prediction error, we concentrate on the large weights and

cut out the smaller ones where the relative size of the noise is larger. One

of our findings is that in our model, the characteristics of Alters matter

more than the characteristics of Egos, as seventeen of the twenty variables

with the highest weights belong to Alters. This is surprising because it is

the Ego/Sender who decides whether to relay the information. There are

two explanations for this finding, one is technical the other is substantive.

The technical explanation starts from the recognition that we have consid-

erably fewer fully observed Alters than Egos. The characteristics Alters are

predicted and not actually observed. Because we generated the characteris-

tics of recipient and non-recipient Alters differently, and non-transmitting

ties always involve on one end a non-recipient Alter and transmitting ties

a recipient one, this could have amplified the influence of Alter character-

istics on whether or not a tie transmits the advisory.

The substantive explanation, on the other hand, rests on the assumption

that the Egos decide to relay the information on the basis of the characteris-

tics of Alters, although, as we will see not by estimating the recipients need

8 The value in parentheses is the standard deviation of the error.
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Variable Meaning Finding
Transmission is more likely if. . .

Weight

Ego’s characteristics

Perception

1 Q17bisA#X Risk perception of Campylo
(after info)

Ego considers Campylobacter in-
fection risky

76.002

Knowledge

2 Q16#X Seeking of info (after info) Ego looked for extra information -56.268

Social Network variables

3 Q44BX Number of weekly direct con-
tacts with colleagues

Ego has fewer direct contacts with
colleagues

-64.349

Alter’s Characteristics

Demographic variables

4 Q185$X Age Alter is younger -51.404
5 Q184$ Gender Alter is female -108.127
6 Q186$ Education Alter has less education -60.097
7 Q187$ 2 Profession: enterprise head, ar-

tisan, merchant
Alter is not enterprise head, arti-
san, merchant

-46.412

Social Network variables

8 Q178C$ Frequency of contact with col-
leagues

Alter spends more time with col-
leagues

-61.636

9 Q178B$ Frequency of contact with
neighbors

Alter spends more time with
neighbors

-57.886

10 Q179M$ 3 Group membership parental
assoc

Alter is not a member of parental
associations

-51.585

11 Q180C$X Number of weekly direct con-
tacts with family members

Alter contacts many family mem-
bers

46.635

12 Q183EM$ 2 Tie with discussion about Food
Risk

Alter talks to household member
about food risk

75.639

13 Q196$X Frequency of Internet connec-
tion

Alter uses the Internet less fre-
quently

125.049

Experience

14 Q4A$ Personally cook Alter does not cook often -93.724
15 Q24$X How often eats chicken (fowl) Alter eats poultry less often 48.795

Knowledge

16 Q1A$ General knowledge about food
risk

Alter thinks s/he knows more
about food risk

94.683

17 Q21$ Previous knowledge about
Campylobacter

Alter had no previous knowledge
about Campylobacter

94.127

18 Q32$X Seeking of info (after info) Alter did look for more info on
Campylobacter

-63.833

Perception

19 Q33A$X Risk perception of Campy-
lobacter (after info)

Alter considers less risky Campy-
lobacter

-86.062

20 Q20A$ Finds info credible Alter finds info credible 49.843

Table 1.2 Variables with the highest weights for predicting transmission.
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for the message, which they may not know, but on the basis of their percep-

tion of the recipients general interest in food risk. Another mechanism that

can explain the importance of Alters characteristics is that Recipients elicit

the advisory. For instance, women raised to be more attentive to others will

be more likely to receive the information by the way they communicate

with Egos. Because the technical reasons do play some part in the elevated

importance of Recipient characteristics the extent of which we cannot tell,

we make our substantive claim with caution.

The factors can be sorted into five categories: demographics, social net-

works, experience, knowledge and perception. To interpret the effect of

social networks on transmission, we have to keep in mind that our unit of

analysis is the social tie and not the individual. The three variables with

high weights that describe Ego belong to the perception, knowledge and

network categories and ourmodel does not point to any demographic or ex-

periential variables on the Ego side. Two of the three factors that describe

transmitting Egos are not surprising. Egos who perceive Campylobacter

more risky and those who looked up additional information aremore likely

to send the information to Alters. The third one, that the frequency of di-

rect contacts with colleagues has a negative effect, will be explained below.

A tie is more likely to transmit the information about Campylobacter if

the Alter is female, young, has less formal education and if she is not a

self-employed entrepreneur by profession.

Of the social network characteristics of Alters, spending more time with

neighbors, family members and colleagues, increases the chances of a tie to

transmit. Interestingly, frequent contacts with colleagues by Ego have the

opposite effect. Ties are more likely to transmit if Ego has fewer contacts

with, while Alter spends more time with colleagues. This, however, is less

of paradox than it seems.

We observe that this apparent paradox involves two different aspects of

collegial ties: quantity and intensity. The second part of this seeming con-

tradiction, that intensity of ties has a positive effect on transmission, is not

unexpected. People who spend more time together with colleagues will be

more likely to hear about topics unrelated to work. We find the same rela-

tionship for neighbors.

The second part requiresmore explanation that involves our unit of anal-

ysis: ties and not people. Egos who are well-connected to colleagues in our

data set will contributemany collegial ties. Thismeans that if Ego hasmany

collegial ties but only a few will carry the information, most ties with col-

legially well-connected Egos will not carry the information. When we con-

sider ties, rather than people what matters is not whether the number of
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transmission rises with the number of ties but whether it rises at a higher

rate than ties do. If the non-transmitting ties rise faster than transmitting

ones, the relationship for ties between transmission and the number of ties

will be positive for people (the more ties the more transmission) but we

will observe a negative relationship for ties (the more ties the less likely a

tie will transmit). Collegial ties thus have a diminishing marginal return:

the first few colleagues will raise the chances of Egos telling some of them

about the advisory but working with ten as opposed to twenty colleagues

makes little difference.

Why is it then that the number of family contacts increases and not de-

creases the probability of transmission? The answer is that people have

fewer familial than collegial contacts. It seems that the general relation-

ship between number of ties and transmission is such that for the first few

ties, not just the number but also the rate of transmission rises. Ego must

have a certain number of ties to find one Recipient who is interested, the

very first or second tie may not make much of a difference, the third and

fourth does. Therefore, what we learn from our model is that higher in-

tensity of collegial and neighborly ties of the recipient will make it more

likely that she or he receives the information. The number of ties will yield

an increasing return in the beginning but a decreasing one after a certain

point.

We also included measures of formal affiliation to organizations as a

measure of social networks. We learn that transmission is less likely to be

targeted at people who are members of parent associations and other for-

mal associations do not seem to make a difference.

An indirect measure of a type of connectedness is the frequency with

which people use the Internet. Our survey was conducted through the web,

thus it seems strange that people who spend more time on the web are not

more but less likely to receive the advisory. Yet this result is consistent with

our finding that most of the transmission happens face to face (see Table

1.1).

Experience and practices of Alters seem to indicate that transmission

is not driven by the need of the recipient to know about Campylobacter.

Those who cook less and eat chicken more often are less likely to receive

the information about disease. One possible explanation is that Ego as-

sumes that people who cook a lot and eat lots of chicken are more likely

to already be aware of the advisory. What seems to attract the information

is if Alter has a general interest in food risk. Ties to recipients who report

that they have more general knowledge and then seek additional informa-

tion on Campylobacter once they received the advisory, i.e., ties to people
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who are alert and curious about the topic are the most likely to carry the

transmission.

As for Alters’ perceptions, information seems to decrease their fears as

the advisory communicates the measures that can be taken to avoid the

infection. This creates a break on the transmission: if perceiving riskiness

increases the urge to send the advisory but receiving the information re-

duces the sense of risk, at the next step, there will be fewer people relaying

the information.

1.4.3 Modelling diffusion

The SVM model which predicts information transmission is applied to a

set of random graphs in this stage. We artificially created a set of vertices

use these vertices as a basis of a graph, and select a random subset of the

vertices to have information about Campylobacter. Using the SVM model,

and various initial setups, we observe how information is diffused within

the graph (see Algorithm 1 of Appendix C).

At the end of the algorithm, several measurements made during the sim-

ulation are output. The quantities ν1, . . . ,νm are the proportions of people

with information at each iteration. Another quantity of interest is ξ which

is the total number of receivers/total number of unique senders. This is

a measure of the “fanout” of information, i.e. how many vertices receive

information directly by each sender on average (see Figure 1.1).

Figure 1.2 An illustration of the difference between µh and ξ measures,
in which edges represent information transmissions between vertices. For
the graph on the left there is one original sender, two senders and three
transmissions and receivers, hence µh = 3 and ξ = 3/2. For the one on the
right there is only one sender and µh = 3 and ξ = 3.

The simulation is run using 10,000 vertices, with an SVM trained using

20,000 random examples from the generated transmissions.We use the SW

model to generate vertices with neighbors k ∈ {10,15}, re-wiring probability
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ps ∈ {0.01,0.05,0.1,0.2} and initial information probability a ∈ {0.1,0.2,0.5}.

Algorithm 1 is run five times for each set of parameters and the results are

shown in Table 1.3. The same test is repeated with the Erdős-Rényi random

graph with pe ∈ {0.001,0.002,0.003,0.004}.

ps k a µh ξ ν1 −ν0 ν2 − ν1 ν3 − ν2

.01 10 .1 3.544 (.124) 1.630 (.065) .106 (.005) .040 (.006) .013 (.006)

.01 10 .2 2.677 (.069) 1.196 (.030) .135 (.010) .032 (.014) .006 (.015)

.01 10 .5 1.835 (.031) 0.528 (.017) .124 (.016) .008 (.016) .000 (.015)

.01 15 .1 4.499 (.075) 1.771 (.050) .127 (.009) .060 (.013) .015 (.012)

.01 15 .2 3.363 (.060) 1.249 (.038) .164 (.007) .041 (.008) .006 (.009)

.01 15 .5 2.229 (.041) 0.493 (.016) .136 (.006) .011 (.007) .001 (.006)

.05 10 .1 3.609 (.097) 1.615 (.039) .104 (.009) .043 (.011) .012 (.012)

.05 10 .2 2.676 (.036) 1.188 (.026) .136 (.004) .033 (.006) .007 (.006)

.05 10 .5 1.815 (.034) 0.526 (.027) .119 (.005) .010 (.006) .001 (.006)

.05 15 .1 4.782 (.115) 1.809 (.031) .131 (.008) .063 (.012) .017 (.014)

.05 15 .2 3.343 (.053) 1.222 (.019) .157 (.004) .043 (.006) .007 (.009)

.05 15 .5 2.242 (.031) 0.497 (.011) .137 (.003) .011 (.005) .000 (.006)

.1 10 .1 3.681 (.033) 1.577 (.021) .100 (.006) .044 (.008) .016 (.007)

.1 10 .2 2.713 (.088) 1.196 (.039) .136 (.007) .036 (.007) .007 (.008)

.1 10 .5 1.831 (.016) 0.528 (.010) .121 (.009) .011 (.011) .001 (.010)

.1 15 .1 4.812 (.128) 1.761 (.031) .130 (.009) .061 (.015) .020 (.014)

.1 15 .2 3.373 (.037) 1.226 (.031) .158 (.007) .043 (.008) .007 (.008)

.1 15 .5 2.244 (.057) 0.495 (.016) .139 (.005) .011 (.005) .001 (.005)

Table 1.3 Results from the information diffusion simulation using the SW

model. Standard deviations shown in parentheses. The re-wiring probability is

ps and k is the initial number of neighbors. The initial information probability

is a, µh is the average hop distance and ξ is total number of receivers/total

number of unique senders. The proportion of vertices with information is

recorded as ν0, . . . ,ν3.

pe a µh ξ ν1 −ν0 ν2 − ν1 ν3 − ν2

.001 .1 2.900 (.098) 1.394 (.015) .063 (.011) .031 (.015) .012 (.015)

.001 .2 2.122 (.081) 1.141 (.027) .090 (.011) .028 (.014) .006 (.015)

.001 .5 1.460 (.013) 0.624 (.026) .092 (.008) .008 (.007) .001 (.006)

.002 .1 4.112 (.056) 1.560 (.016) .099 (.005) .056 (.010) .022 (.012)

.002 .2 2.790 (.065) 1.148 (.032) .130 (.010) .040 (.015) .009 (.015)

.002 .5 1.829 (.028) 0.539 (.010) .120 (.005) .010 (.006) .001 (.006)

.003 .1 5.130 (.167) 1.678 (.036) .129 (.010) .073 (.018) .022 (.020)

.003 .2 3.455 (.102) 1.210 (.029) .159 (.009) .044 (.012) .009 (.013)

.003 .5 2.225 (.027) 0.490 (.011) .135 (.009) .011 (.007) .001 (.006)

.004 .1 6.029 (.179) 1.765 (.034) .141 (.009) .078 (.016) .022 (.018)

.004 .2 4.123 (.033) 1.264 (.021) .178 (.007) .049 (.008) .008 (.010)

.004 .5 2.721 (.022) 0.488 (.010) .152 (.011) .013 (.011) .001 (.010)

Table 1.4 Results from the information diffusion simulation using the

Erdős-Rényi model. The probability of an edge is pe.
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The results with the Erdős-Rényi graphs are shown in Table 1.4. In gen-

eral we observe that the number of new vertices receiving information de-

creases at each iteration, and one would expect this decrease as the proba-

bility that a vertices neighbors also have information increases with i. Since

pe is probability of an edge the mean number of edges is expected to be

npe, and µh should increase with pe. Table 1.4 shows that this is the case,

however a doubling in the probability of an edge from 0.1 to 0.2 results

in less than double the average hop distance. Note that the more neigh-

bors a vertex has, the more likely that a greater number of those neighbors

without information are suitable candidates for transmission (as learnt by

the SVM). However, it is clear that as each vertex has more neighbors,

the chance of an information-containing vertex coming across a neighbor

which also has information increases. In a similar way, an increase in initial

information probability corresponds with smaller average hop distances,

though a doubling of a results in µh which is greater than half of the origi-

nal value.

The values of ξ capture a different aspect of the information diffusion.

One would expect a higher value of a to imply more neighbors with infor-

mation for each vertex and hence a lower ξ value, and in general this is the

case. When a = 0.5, an increase in the value of pe results in a decrease in ξ

possibly since there are more people who are able to send information and

fewer who can receive. Notice also that the values of νi+1 − νi have an in-

teresting trend: for i = 0 the increase is greatest in most cases when a = 0.2

compared to when it is either 0.1 or 0.5

The SW results are given in Table 1.3. Note that the Erdős-Rényi graph

is similar to a SW model with a re-wiring probability of 1. Hence, a useful

comparison is between the Erdős-Rényi graphs with pe = 0.003 and the SW

graphs with k = 15 and ps = 0.1. The interesting differences in this case are

those with the values of ξ. The values of ξ are smaller in the Erdős-Rényi

graphs, and since surprisingly the total number of receivers are approx-

imately the same, it implies that there are more unique senders in these

graphs. Recall that with high clustering the chance of a friend of a friend

being a friend is high and hence fewer senders are able to receive the same

number of people as compared with the random connectivity of the Erdős-

Rényi graphs.

Another interestingfinding is that at the lowest level of a(a=.1) the Erdős-

Rényi graph results in more total number of Alter recipients than the SW

network, but as a increases, the difference disappears. This implies that if

the initial broadcasting of the message reaches only a few people, SW net-

works are less efficient but if the number of Egos gets above a certain pro-
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portion of the population there is no difference between the two network

types in terms how many Alters the diffusion process delivers.

The overall number of receivers does not vary significantly with changes

in ps, however for fixed ps and k the total number of receivers is highest

when a = 0.2. This latter trend is not generally observed with the Erdős-

Rényi graphs. Clearly, the total number of transmission rises as more edges

can accommodate transmissions and falls as the network becomes satu-

rated. The peak is generally before 0.1with Erdős-Rényi and approximately

0.2 with SW graphs.

Several of the other trends present in Table 1.3 are trivial. An increase

in k from 10 to 15 always results in higher transmission since each vertex

has more edges and hence more chance of passing information. The length

of information paths is short for high values of a, implying that the person

who receives information passes it onto many others but those receivers

rarely pass it on. Furthermore, when a = 0.5 the information often only

travels along a path of length 2.

In summary this relates to information propagation in the followingways:

network structure does not seem to influence the total number of people re-

ceiving information. What is important is the number of connections and

the probability of having information in the first place. Clearly, not every

pair of people will facilitate a transmission and hence if too few people

are provided with information, then it may stop before reaching every-

one interested in it. Similarly, a saturated network does not permit a lot

of transmissions. In the SW model the maximum total number of receivers

occurred when 20% of the population was provided with the information.

Since νi+1−νi always decreases with i, this information is clearly in contrast

with “viral” information spread in all of the scenarios presented.

Transmission visualisation

The measures recorded in Tables 1.3 and 1.4 give a good idea of the in-

formation diffusion processes occurring in the generated graphs. We ad-

ditionally consider the visualisation of graph transmissions. We start with

the SW model with n = 10,000, k = 15, ps = 0.1, and a value of initial infor-

mation probability of a = 0.1. In this particular instance, the total number

of recipients (including the initial ones) is 2,897. Disregarding orientation

of information transmission, 2,346 persons belong to an unique connected

components, while the remaining 551 persons fall into much smaller com-

ponents (the largest having thirty-five members). However, despite con-

stant progress in graph visualisation (Di Battista et al., 1999; Herman et al.,
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2000), representing the main connected component in a legible remains

impossible. We rely therefore on two simplifying assumptions.

The first one consists in building a clustering of the nodes of the main

connected component (Schaeffer, 2007; Fortunato, 2010): we find groups

of individuals which are more likely to transmit or receive the informa-

tion inside their group than to members of other groups. Then, rather than

displaying the original large graph, we draw a graph of the clusters: each

node corresponds to a group of people from the original graph (the sur-

face of the node is proportional to the number of persons in the cluster).

The edges between nodes indicate information transmission betweenmem-

bers of the corresponding clusters. Concretely, we use maximal modular-

ity clustering (Newman and Girvan, 2004) with the algorithm described

in (Noack, 2007; Noack and Rotta, 2009) using the implementation pro-

vided by Andreas Noack9. The visualisation of the clustered graph is done

with Fruchterman-Reingold algorithm (Fruchterman and Reingold, 1991)

as implemented in the Igraph R package (Csárdi and Nepusz, 2006; R De-

velopment Core Team, 2010).

The clustering process finds fifty clusters: less than 3.7 percent of infor-

mation transmission happens between clusters while the rest takes place

inside clusters. This provides a validity index for the clustering: ignoring

information propagation outside of a cluster will not introduce major dis-

tortions in the analysis. The resulting display is given by Figure 1.3, upper

left panel. The figure shows also information propagation in the graph.

Apart from the upper left panel, each graph of this figure shows the num-

ber of persons that have received the information at each time step of the

propagation (the surface of each node encodes the number of persons). The

upper right graph corresponds to the initial receivers (611 Egos), while ar-

rows show information propagation from one cluster to another. The left

graph of the second line shows the number of receivers after one step of

propagation (i.e., Alters 1), etc. The fact that most of the propagation hap-

pens between clusters during the first two steps is easily explained by two

factors. Firstly, the initial growth is the largest one and corresponds the

largest numbers of transmissions: it should generate the largest part of the

external transmissions.Moreover, the clustering algorithmused is based on

modularity maximisation. Modularity is a quality criterion for graph clus-

tering that rewards putting connected nodes in the same cluster. However,

the reward is inversely proportional to the degree of the nodes. Therefore,

the obtained clustering tends to put high degree nodes in different clusters.

9 Available at http://code.google.com/p/linloglayout.
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Clustered graph Egos: 611

Alters 1: 1123 Alters 2: 446

Alters 3: 122 Alters 4: 44

Figure 1.3 A clustered representation of the largest connected component
of propagation graph used in Section 1.4.3 (upper left panel) and a clus-
tered representation of information propagation, see main text for details.

As the first information transmission is the one in which persons tend to

pass knowledge to the largest number of alters, those egos are more likely

to be assigned to distinct clusters than the transmitters of the following

steps.

As most of information propagation happens inside clusters, focusing
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on one cluster provides a good idea of the general transmission. We dis-

play information propagation in the largest cluster on Figure 1.4. To avoid

missing information propagation, the cluster was extended in the following

way: when information flows from a person in the cluster under considera-

tion to a person in another cluster, the recipient is added to the cluster. In

the present case, the cluster grows from an initial size of 96 persons to 112

persons. Then, the result presented in Figure 1.4 is exactly the propagation

that would have happened even if no other persons apart from those in the

cluster had received initially the information.
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Figure 1.4 Information propagation in the largest cluster, extended as ex-
plained in the main text. Education levels are encoded by colours and
genders by shape. The iteration number at which the information reached
the person is written in the corresponding node. A node with a red border
received also the information from a person in a distinct cluster.

1.5 Distribution of individual (vertex) characteristics

In this test we run a simulation using the SW model with parameters ps =

0.1 and k = 15, and observe how the distribution of various characteris-
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tics such as gender, age, etc. vary at each iteration. Transmissions are learnt

using a sample of 20,000 examples, and an SVM is trained using the pa-

rameters found in Section 1.4.2. The simulation is run with 20,000 vertices

for 3 iterations and repeated a total of 5 times with different random seeds.

We observe that there are 1,495.2 Egos, and 2,689.6, 1,245.2, 369.4 new

Alters iterations 1, 2 and 3, respectively.

Figure 1.5 Cumulative number in our population who received the advi-
sory in three iterations.

The simulation shows that after the initial jump the number of receivers

taper down. The gender composition changes with each round of iteration.

As we have seen earlier women are more likely to be the recipients of the

information than men. This explains that there is an overall increase in the

proportion of women. This increase mostly levels off after the first round

of transmission. This is due not just to the fact that there are increasingly

fewer new recipients of the advisory but also that subsequent transmissions

are more gender balanced. In the second round the proportion of women

actually decreases compared to the first one and levels off in the third, and

final round (Table 1.5).

Female Male

All 0.509 0.491
Egos 0.535 0.465
Alters 1 0.667 0.333
Alters 2 0.602 0.398
Alters 3 0.598 0.402

Table 1.5 Distribution of genders in simulated information diffusion.
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Figure 1.6 Blue: proportion of those who have the information. Red: over-
all population proportion.

As the information spreads in our simulation we see a similar pattern

for the average age of those who receive the advisory (Table 1.6). The blue

graph in this chart is almost the mirror image of the previous one. There is

an initial drop in age then it changes little.

1 2 3 4 5 6 7 8 9 10 11 12

All 0.000 0.032 0.065 0.106 0.142 0.166 0.163 0.132 0.094 0.057 0.029 0.013
Egos 0.000 0.029 0.066 0.107 0.141 0.176 0.158 0.135 0.093 0.053 0.032 0.012
Alters 1 0.000 0.041 0.072 0.120 0.154 0.169 0.162 0.121 0.083 0.047 0.021 0.011
Alters 2 0.000 0.034 0.070 0.113 0.145 0.160 0.159 0.138 0.091 0.055 0.027 0.009
Alters 3 0.000 0.031 0.072 0.109 0.152 0.171 0.163 0.130 0.083 0.060 0.019 0.009

Table 1.6 Distribution of ages.

We have similar findings for education and general knowledge of food

risk. Overall the pattern is that the decisive change is in the first round and

then smaller changes occur for subsequent rounds which together with the

ever decreasing number of new recipients results in a stable average.

1 2 3 4 5 6

All 0.030 0.123 0.265 0.313 0.199 0.069
Egos 0.031 0.126 0.263 0.307 0.204 0.070
Alters 1 0.040 0.138 0.269 0.306 0.182 0.065
Alters 2 0.039 0.140 0.277 0.309 0.175 0.060
Alters 3 0.031 0.129 0.269 0.305 0.197 0.068

Table 1.7 Distribution of education (1=Without degree/primary/BEPC,

2=CAP/BEP, 3=BAC, 4=BAC+2, 5=More than BAC+2, 6=Doctorate).
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Figure 1.7 Blue: average age of those who have the information. Red: Av-
erage age of overall population.

Figure 1.8 Blue: average education of those who have the information.
Red: Average education of overall population.

The simulation shows that with the information spreading, the popu-

lation it reaches is increasingly female, young, less educated and tend to

be more knowledgeable about food risks in general, however, much of this

shift takes place in the first round of the transmission. This is partly be-

cause the characteristics that make people more likely to receive the in-

formation are not making them more likely to send it further and it is also

partly because of saturation as recipients with those characteristics not hav-

ing the information in a person‘s social circle become more scarce.

In terms of occupational categories, the distribution shifts in a way that

among the information recipients we find a smaller portion of retirees and

people not working at the end of the third round than we had in the be-

ginning (Table 1.7). The diffusion process reaches the economically active
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Figure 1.9 Blue: average food risk knowledge of those who have the infor-
mation. Red: Average food risk knowledge of overall population.

people more successfully than the inactive ones, but, again, we see the same

pattern: the first step is the largest one, and then movement is in the op-

posite direction but in much smaller steps. This pattern is in line with our

earlier findings about the role of collegial ties, the type of ties only eco-

nomically active people possess. Because collegial ties are usually within

occupational categories, we can explain the seemingly contradictory find-

ings that net of other factors Alters with less education are more likely to

receive the information but the occupational groups with higher average

education, such as professionals and employees, will grow faster than oth-

ers among those who receive the information. It seems that professionals

and employees get the advisory not because they are better educated but

probably because the nature of the workplace interaction they have com-

pared to workers. Within each group, however, it is the less educated who

are more likely to be given the news about the Campylobacter.

When we rerun the diffusion using the comparable Erdős-Rényi model,

the distribution of the characteristics are very similar and the differences

are within the range of random error (Table 1.1).

1.6 Conclusion

The diffusion of the advisory about the Campylobacter shows that the broad-

cast model misses an important part of the spread of this type of informa-

tion; the diffusion of the advisory from its initial audience to others. Unlike

the two step process model that, in an attempt to identify opinion leaders,

focuses on characteristics make people good senders of the information
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1 2 3 4 5 6 7 8

All 0.000 0.006 0.158 0.228 0.233 0.042 0.146 0.186
Egos 0.000 0.005 0.160 0.217 0.245 0.040 0.157 0.174
Alters 1 0.000 0.001 0.174 0.271 0.290 0.024 0.102 0.138
Alters 2 0.000 0.001 0.164 0.259 0.278 0.033 0.122 0.143
Alters 3 0.000 0.002 0.175 0.238 0.273 0.033 0.128 0.151

Table 1.8 Distribution of professions.(1=Agricultural workers,

2=Self-employed, 3=Cadres, 4=Professionals, 5=Employees, 6=Workers,

7=Retirees, 8= Other not working).

Percent Distribution by Occupational Categories among

Egos and after the final interation

30%

25%

20%

15%

10%

5%

0%

Egos

Final

Figure 1.10 Percentage distribution of Occupational categories.

, we found that the characteristics that make people good recipients are

equally, if not more important. Modeling the diffusion showed us that ran-

dom networks and SW networks produce roughly the same results in terms

of the proportion of the population that receives the information but the

less clustered random networks achieve the result through longer hop dis-

tances and smaller ratio of receivers to unique senders. The composition of

those who receive the information changes most in the first transmission

and then it levels off not just because there are fewer and fewer recipients

making it harder to change the cumulative total but also because new re-

cipients in each round are less different from the overall population. This is

partly because the characteristics that make someonemore likely to receive

the information are not those that make themmore likely to pass it on. The

mismatch between the two sets of characteristics will dampen transmission

even in the absence of network barriers.
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The diffusion of the Campylobacter advisory shows that word-of-mouth

dispersion of the information, an aspect of the process the broadcast model

ignores, is significant. It also demonstrates that while the first transmission

from original Egos to Alters is the biggest part of this word-of-mouth dis-

persion, the Two-Step model is flawed because there are still substantial –

although smaller – steps spreading the message it fails to recognize. The

Two-Step model also focuses on the qualities of the sender (opinion leader)

and our findings show that the recipients’ qualities are important. Further-

more, our percolation model was able to build a complex dispersion pro-

cess which allowed us to account for the heterogeneity of people and of

their social networks. Our simulations also showed that not just the local

but the global properties of networks matter. Replicating this study with

other advisories will tell us the extent to which our empirical findings can

be generalized and be of practical use to state agencies.
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Appendix A List of features used in simulation

ID Field Name

Q4 Gender
Q5 Age in categories
Q48 Education
Q7 Profession (8 categories)
Q51 Income
Q52 Single or married
Q53 Number of children
Q13 Size of village/town/city

Q20A Personally cook
Q26 Frequency of eating poultry meat

Q28A General knowledge about food risk
Q22 Personal experience with food risk
Q34 Previous knowledge about Campylobacter
Q16# Seeking of info (after info)
Q55 Frequency of Internet connection

Q17bisA# Risk perception of Campylobacter

Q37A, Q37B Finds the information credible, understandable
Q37C, Q37D Finds the information convincing to change behaviour, worrisome

Q42A-D Contact frequency with friends, neighbours, colleagues, family
Q43M1-10 Organisation memberships (1 organisation per field, 10 options)
Q44A-D Weekly contact with friends, colleagues, family, acquaintances
Q45 Friends closeness
Q47CM1-5 Tie with discussion about Health (6 categories)
Q47EM1-5 Tie with discussion about Food Risk (6 categories)
Q50 Number of people at physical place of work
Q46A-D Homophily of contacts (age, gender, education, income)

Table A.1 The list of features used for each vertex.

Appendix B Data completion

There are q = 4,496 Egos, denoted by E = {c1, . . . ,cq} with ci ∈ R
62 for all

i. The Egos collectively listed a total of 7,655 people with whom they dis-

cussed the Campylobacter information. Among them, there are r = 301 Al-

ters who responded to the survey for whomwe got the set of 62-dimensional

vectors, A = {d1, . . . ,dr }. The information recorded for the set of other re-

ceivers (7,204 Alters) is limited to their gender, age, profession and edu-

cation10. To make a prediction for when information transmission occurs

between two people, one needs the complete, immediate, social network

for Egos, and the 62-dimensional vector for Alters. Hence, we completed

10 An additional 150 Alters failed to remember the information provided to them
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the data by generating a set of non-receivers and completing the set of re-

ceivers (Alters) for each Ego.

To compute non-receivers, we consider 2 characteristics: one is the num-

ber of times Egos have direct contact with friends, colleagues, family mem-

bers out of the household and acquaintances in a typical week (Q44A-D).

The total number of non-receivers is computed using Q44A-D. The other is

whether most of the Egos’ contacts are homophilic (i.e., they are similar in

their characteristics to the Ego, Q46A-D). Homophily can be related to sex,

age, education and income. The set of homophiles for the ith person Hi ⊆ E

is the set of people with identical features as indicated by Q46A-D. For ex-

ample, if a person ci states in Q46A-D that most of their contacts have the

same age and gender, thenHi is the setHi = {cj : cj ∈ E,cik = cjk ,ciℓ = cjℓ , i ,
j}where cik is the kth element of ci , and k and ℓ are the indices correspond-

ing to age and gender respectively. Similarly the set of non-homophiles is

H ′i = E \ (Hi ∪{ci}). Given the total number of contacts Ni for the ith person

and a probability h of being a homophile, a set of hNi vectors is randomly

sampled from Hi and (1 − h)Ni vectors are sampled from H ′i . In our case

h = 0.7.

As previously stated, the Egos record only the age, gender, profession and

education of their Alters, and one needs to complete the data using A. For

the ith person in E and the jth Alter recorded, we find a random element of

the set of Alter homophiles Gi = {dj : dj ∈ A,dik = djk ,diℓ = djℓ ,dim = djm}

where dik is the kth element of di , and k,ℓ,m are the indices corresponding

to age, gender and education respectively.

Appendix C Information diffusion algorithm

In Algorithm 1 the vertices of the graph are generated using a multivari-

ate normal distribution, with the mean vector and covariance matrix com-

puted using the Egos and Alters from the survey data. Edges in the graph

are added according to the Erdős-Rényi or Small World graph models. At

line 4, a|V | vertices are selected at random and marked as having infor-

mation. The following inner for loop iterates through all of the edges in

the graph, and makes a prediction for whether information is transmitted

along that edge using the characteristics of the vertices and the Support

Vector Machine (SVM) model learnt at line 2. Note that the original survey

data are not necessarily identically and independently distributed, but we

assume so in order to apply the SVM.



Dissemination of health information within social networks 37

Algorithm 1 Pseudo code for information diffusion simulation.

1: Input: Graph size n, iterationsm, initial proportion with information a

2: Learn SVM model of information transmission

3: Create G = (V ,E) with |V | = n randomly generated vertices

4: Randomly select a set I0 of a|V | vertices to mark with information

5: for i = 1 to m do
6: for j = 1 to |E| do
7: Make information transmission prediction along edge j

8: end for
9: Ii is the set of vertices with information, let νi = |Ii |/n

10: end for
11: Set µh as total number of transmissions/total number of original

senders

12: Set ξ as total number of receivers/total number of unique senders

13: Output: Proportions ν1, . . . ,νm of people with information, ξ and µh.



Bibliography

Abbott, A. 1995. Things of Boundaries. Social Research, 62, 857–882.
Adams, J. D., Black, G. C., Clemmons, J. R., and Stephan, P. E. 2005. Scientific

teams and institutional collaborations: evidence from U.S. universities. Re-
search Policy, 34, 259–285.

Afgan, N. H., Carvalho, M. G., Pilavachi, P. A., andMartins, N. 2007. Evaluation of
natural gas supply options for south east and central Europe. Part 1: indicator
definitions and single indicator analysis. Energy Conversion and Management,
48, 2517–2524.

Agency for Toxic Substances and Disease Registry. 2007. Case studies in environ-
mental medicine (CSEM) nitrate/nitrite toxicity. www.atsdr.cdc.gov/csem/

nitrate/nitrate.html.
Aksnes, D. W. 2006. Citation rates and perceptions of scientific contribution. Jour-

nal of the American Society for Information Science and Technology, 57, 169–185.
Albanese, D.,Merler, S., Jurman, G., Visintainer, R., and Furlanello, C. 2009.MLPY

Machine Learning PY. http://mloss.org/software/view/66/.
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics of complex networks.

Reviews of Modern Physics, 74, 47–97.
Albert, R., Jeong, H., and Barabási, A.-L. 2000. Error and attack tolerance of com-

plex networks. Nature, 406, 378–381.
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