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Romain Hennequin, Student Member, IEEE, Bertrand David, Member, IEEE, and
Roland Badeau, Senior Member, IEEE

Abstract—In this paper, we present a complete proof that the
B-divergence is a particular case of Bregman divergence. This
little-known result makes it possible to straightforwardly apply
theorems about Bregman divergences to (3-divergences. This is
of interest for numerous applications since these divergences are
widely used, for instance in non-negative matrix factorization
(NMF).

Index Terms—Beta-divergence, Bregman divergence, non-nega-
tive matrix factorization.

1. INTRODUCTION

IVERGENCES are distance-like functions, widely
D used to assess the similarity between two objects. For
instance, Kullback—Liebler (KL) divergence [14] is used in
information theory to compare two probability distributions,
and the Itakura—Saito (IS) divergence is used as a measure of
the perceptual difference between spectra [12]. Generalized
classes of divergences, for instance Bregman divergences, are
used in pattern classification and clustering [1]. In non-negative
matrix factorization (NMF [15]), divergences are used as cost
functions: NMF approximates an F' X T’ non-negative matrix
V with the product of two non-negative low-rank matrices:

V~WH

where the size of W is F' x R and the size of H is R x T (with
R< Fand R < T).

This approximation is generally quantized with a cost func-
tion to be minimized with respect to W and H. This cost
function is often an element-wise divergence between V and
WH]15].

Numerous divergences are used as cost functions in NMF.
Most common divergences probably are the Euclidean (EUC)
distance, the KL divergence (see [15]) and the IS divergence

(see [9]).
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Several authors proposed generalized divergences which en-
compass these classical divergences.

» Csiszar’s divergence [5], which is a generalization of
Amari’s a-divergence [6]. Both these divergences encom-
pass the KL divergence and its dual.

* Bregman divergence [3], [7], which encompasses the EUC
distance, the KL divergence and the IS divergence.

» [-divergence, introduced in [8] and studied as a cost func-
tion for NMF in [13] which also encompasses the EUC
distance, the KL divergence and the IS divergence.

NMF is widely used in numerous areas such as image pro-
cessing [11], [15], text mining [17], email surveillance [2], spec-
troscopy [10] and audio processing [9], [18], [19].

In this paper, we present a formal proof that the beta-diver-
gence actually is a subclass of Bregman divergence. While this
result is assumed to be known in a certain community [4], [16],
we provide a full demonstration of it in the wide framework
of element-wise divergences, and we present some applications
to illustrate its interest. This result indeed permits to immedi-
ately particularize properties derived for Bregman divergence
to 3-divergence.

II. DIVERGENCE

In this section, we define the concept of divergence, element-
wise divergence, and the particular case of Bregman divergence
and [-divergence.

A. Definition

Divergences are distance-like functions which measure the
separation between two elements.

Definition 2.1: Let S be aset. A divergence on S is a function
D : S xS — R satisfying

V(p,q) € S xS D(pl|lg) >0, and D(p|lg) =0iff p=q.

As a distance, a divergence should be non-negative and sepa-
rable. However, a divergence does not necessarily satisfy the tri-
angle inequality and the symmetry axiom of a distance. In order
to avoid the confusion with distances, the notation D(p||q) is
often used instead of the classical distance notation D(p, q).

B. Bregman Divergence

Definition 2.2: Let S be a convex subset of a Hilbert space
and ® : S — R a continuously differentiable strictly convex
function. The Bregman divergence [3] Dg : S x S — R4
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(where Ry is the set of non-negative real numbers) is defined
as

Dy (x|ly) = 2(x) = 2(y) — (x -y, VO(y))
where V®(y) stands for the gradient of ® evaluated at y and
(.,.) is the standard Hermitian dot product.

The value of Bregman divergence D4 (x||y) can be viewed
as the difference between the function ®(x) and its first order
Taylor series at y. Thus, adding an affine form to ® does not

change Dg.

III. ELEMENT-WISE DIVERGENCE

A. Definition

In this section, S = RY or § = (R;\{0})". On such sets,
one can define element-wise divergences: a divergence on Rf
(resp. (R4 \{0})™) is called element-wise if there exists a di-
vergence d on Ry (resp. Ry \{0}) such that

Vx=

(xlv"'7

N

B. Element-Wise Bregman Divergence

Element-wise Bregman divergences are a subclass of
Bregman divergences for which @ is the sum of N scalar,
continuously differentiable and strictly convex element-wise
functions:

) €S P(x

Z¢%

Then Do (x|ly) = Y.L, dy(wily:) where dg(xly) = d(x) —
#(y) — ¢'(y)(z — y) and thus, the divergence is element-wise.
For element-wise Bregman divergences, we can equivalently
denote the divergence Dg or Dy.

Vx = (.Z‘l,xg, ..

C. [(3-Divergence

Definition 3.1: Let 3 € R. The -divergence on R;\{0} is
defined by:

5 —log() — 1, B=0
dg(zly) = { zllogz —logy) + (y—z), B=1
' @’ +(8=1)y" —Bay’ !
50— , B e R\{0,1}.

One should notice that the previous definition of [-diver-
gence is continuous with respect to J in the sense that:

VBo € R, Vz,y € Rp\{0} dg,(z,y)= glinﬂl ds(z,y)

P—=Po
particularly for 3y = 0 and Gy = 1.

From this divergence on R\ {0}, one can define an element-
wise (3-divergence on (R+\{0})N

Z dg (Tn]yn)-

Ds(x|ly) =
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IV. 3-DIVERGENCE AS A BREGMAN DIVERGENCE

In this section, we show that the Bregman divergence encom-
passes the (-divergence in a natural way.
For 8 € R, let ¢5 : R4 \{0} — R be the function defined as

—logz + -1, B=0
Vi € R+\{0}, ¢@(JI) = .Tlogaj—g;+1 /B: 1
B(ﬁ n - 3_1 + ﬁ, otherwise.

As shown in Appendix A, this definition is continuous with
respect to 3 in the sense that

Vi € R,Vz € Ry \{0} Jim bp(x) = g, (2).

Forall 8 € R, ¢ is smooth on R \ {0} and its second deriva-
tive is

Pa(x) =272 )

Thus ¢z is strictly convex and one can define the Bregman di-
vergence Dy, associated to ¢g:

Dy, (x|ly) = me — ¢p(Yn) = ¢ (Yn) (0 — yn)-

Straightforward calculations (see Appendix B) show that for
all 3 € R, Dy, = Dg is a $-divergence. Thus the Bregman
divergence encompasses [3-divergence.

V. APPLICATIONS

In this section, we present examples showing how our re-
sult can particularize properties of the Bregman divergence to
the [-divergence, in order to illustrate its potential fields of
application.

A. Non-Negative Matrix Factorization

Non-negative matrix factorization generally consists in mini-
mizing an element-wise divergence between an F' X T' non-neg-
ative matrix V and its low-rank approximation WH (where
W and H are non-negative matrices respectively of dimension
Fx Rand R x T, with R <« F,T):

F T
WMH=ZXZ V]| [WH] 1) ©)

To perform this minimization, multiplicative update algorithms
are widely used [5], [7], [15]. In such algorithms, the multiplica-
tive update rule of H for minimizing (2) with an element-wise
Bregman divergence D, cost function given in [7] is:

WT(¢"(WH).V)

= (g (W) (W)
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The product “.”, the fraction bar, and ¢’ are element-wise oper-
ations on the corresponding matrices. We can directly derive the
(already well-known [5]) update rule of H for a S-divergence
Dy cost function using (1):

W (WH) (P-2) V)

H— H. WT((WH)'(ﬂ_l))

This illustrates the interest of deriving general properties
about the Bregman divergence instead of the 3-divergence.

B. Right Type Centroid

The right type centroid is used in clustering as a “center” of a
point cloud with respect to an asymmetric divergence: the right
type centroid can thus be thought as an average typical point of
a set.

Definition 5.1: Given a divergence D, the right type centroid
of a finite set ¥ = {x1,X2...,%,} C S is defined as:

1
cgght = argmin— Z D(x;]|c).
¢ i=1

Theorem 5.1: When D = Dy is a 3 divergence, cr[i)ght is
unique, independent of  and is equal to g = (1/n) >\ | X;.
Proof: Tt was shown in [1] that, when D = Dg is a
Bregman divergence, cr[i) g’ht is unique, independent of ® and is
equal to p = (1/n) Y | x;. As -divergence is a subclass of
Bregman divergence, the proof is straightforward. O

VI. CONCLUSION

In this letter, we presented a proof that the general class of
Bregman divergence encompasses the 3-divergence in a natural
way. This results permits to straightforwardly apply theorems
about the Bregman divergence to the 3-divergence. As the latter
is widely used in methods such as NMF, which has applications
in numerous areas (signal processing, clustering, data mining,
spectroscopy), the field of application of this result is quite
wide.

APPENDIX A
CONTINUITY OF ¢g WITH RESPECT TO 3

With the little-o notation, one can write as 3 — 0:

eflogw T 1
P =BG T B-1" B
:1+ﬁlogz+0(ﬂ)_ T B—-1
BB —1) -1 pB-1)
:% o(1).
Then:

ﬁlilgb ¢a(r) = —loge +x — 1.

In a similar way, one can write as § — 1:

B xe(/i’fl)logm B ,B.Z' l
W ="5G T EB- T B
_z(=f+1+(B-1logz +o(8—1)) L
BB —1) B
_ —z+zlogz +1
=—©5 +o(1).
Then

éiml ¢s(z) =zloger —x + 1.

APPENDIX B
EQUIVALENCE BETWEEN THE BREGMAN DIVERGENCE
AND THE (3-DIVERGENCE

For g € R\{0,1}:

) P x y’
¢3(a:|y) _ﬂ(,@— 1) B g—1 - BB —1)

y y =t 1
5t (o) e
(2 + (8 — 1)y’ =By’ =) = dg(xy).

1
S BB-1)

It is straightforward to check that the equality dg,(z|y) =
dg(z]y) also holds for 5 € {0,1}:

diy (aly) = —loga + o - <—1ogy+y>—(—§+1) (e~ 1)

—log:v—l—logy—l—(x—y)—i-g—l—(:c—y)
= —log 2+ 2 — 1= do(zly),
y vy

dg,(zly) =xlogr —x+ 1~ (ylogy —y + 1) ~logy(z—y)
=z(logz —logy) + (y — x) = di(z|y).
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