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Abstract—This paper describes a probabilistic approach to  Template-based chord recognition methods are based on the
template-based chord recognition in music signals. The algorithm hypothesis that only the chord definition is necessary taekt
only takes chromagram data and a user-defined dictionary of chord labels from a musical piece. A chord template is a 12-
chord templates as input data. No training or musical information dimensional vector representing the 12 semi-tonest{mma
such as key, rhythm or chord transition models is required. . ) 9.
The chord occurrences are treated as probabilistic events, whes Of the chromatic scale. Each component of the pattern isigive
probabilities are learned from the song using an Expectation- a theoretical amplitude according to the chord definitione T
Maximization (EM) algorithm. The adaptative estimation of these  most simple and intuitive chord template [2], [3], [4] has a
probabilities (together with an ad-hoc post-processing filtering) binary structure, with amplitudes of 1 for the chromas withi
has the desirable effect of smoothing out spurious chords that the chord defi ’t dof th h M |
would occur in our previous baseline work. Our algorithm is € chord aennition an . or other chromas. ) org complex
compared to various methods that entered the Music Information Patterns have been considered, for example taking intauatco

Retrieval Evaluation eXchange (MIREX) in 2008 and 2009, using the harmonics of the chord notes [5], [6].
a diverse set of evaluation metrics, some of which are new. The

systems are tested on two evaluation corpuses; the first one is  The first template-based system for audio chord recognition
composed of the Beatles catalog (180 pop-rock songs) and they a5 geveloped by Fujishima [2]. This method is the first one
other one is constituted of 20 songs from various artists and that considers chords not only as sets of individual notes, b
music genres. Results show that our method outperforms state- . ) . ’
of-the-art chord recognition systems. rather as entities whose structure is determined by one root
and one type. The chord transcription process is based on the
extraction from the signal oPitch Class Profiles (PCPdr
chroma vectorsThe chroma vectors are 12-dimensional vec-
tors where each component represents the energy or satiEnce
|. INTRODUCTION one of the 12 semi-tones within the chromatic scale, regasd|
of the octave. The temporal evolution of these chroma vector
D ESCRIPTION of music signals with relevant and comis called chromagram it has been widely used in literature
paCt representa’[ions has been one of the main f|6|d5f@|f chord or key estimation [5], [7] In Fujishima’s apprd)ac
interest in Musical Information Retrieval (MIR) in the ld8v 324 chords are detected, each of them modeled by a binary
years. One of the most common representations of pop soggford Type Template (CTTYhe chord detection is performed
is chord transcription, which returns the musical contefrd 0 py first calculating scores for every root and chord type,
piece. This representation, whilst not precisely reprauyell  then selecting the best score. The scores are computed from
the notes played by the instruments, allows musicians tidyeaghroma vectors and hand-tuned variations of the original.CT
playback songs. As such, a chord can be defined as a seti§h matching methods between PCP and CTT are tested:
harmonically-related notes played simultaneously. Ifitfea the Nearest Neighbor Method (Euclidean distance between
there are many ways to define and classify chords, dependiMgoma vector and hand-tuned CTT) and the Weighted Sum
on the application context, time period or music type [1]. IMethod (dot product between chroma vector and hand-tuned
this paper, we shall follow the conventions used for WestetfiTT). The hand-tuning is done by trial-and-error and act®un
popular music, where a chord can be written by using twgr the chord type probability and the number of notes within
notions:roots andtypes Theroot is the note upon which the the chord type. Two post-processing methods are introduced
chord is built, while thetype gives the harmonic structure ofjn order to take into account the temporal structure of the
the chord (i.e., the harmonic relationships between thesnothord sequence. The first attempt is to smooth over the past
within the chord). For example, a C major chord (composeghroma vectors to both reduce the noise and use the fact that
of notes C, E and G) is described by its root n@eand 5 chord usually lasts for several frames. The second attempt
its type major, implying the presence of the major thifl s to detect chord changes by monitoring the direction of the
and the perfect fifthG in the chord construction. The chordchroma vectors.
transcription output by our automatic chord transcribeais Harte & Sandler [3] use a very similar method to Fu-

sequence of chord labels with their respective start and ﬁ%ima’s. The chromagram extraction is improved by apply-
times. This output can be used for song playback - whiGhy 5 frequency tuning algorithm. They define binary chord
constitutes the main aim of our system - but also in othg&mplates for 4 chord types (major, minor, diminished and
applications such as song identification, query by similast  5,gmented) and then calculate a dot product between chroma
structure analysis. vectors and chord templates. The temporal information is
Coovriaht 2010 IEEE. P | ¢ thi rial | ~ captured by applying low-pass filtering on the chromagram
Howoe’:\)/};:rrl,g per(rfw)ission to usé thiirsgg?erigls?o? anylsotrr?:rerr)ljmsuapgaglé and median fllte”ng to the detected chord sequence.
obtained from the IEEE by sending a request to pubs-permis@eee.org Lee [4] also uses binary chord templates, this time for the 24
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major/minor triads. He introduces a new input feature dallenetrics and the two song corpus used for evaluation. Finally
Enhanced Pitch Class Profile (EPCP) using the harmor8ection V reports the results obtained by our probabilistic
product spectrum. The chord recognition is then carriedogut and deterministic methods, along with some state-of-the-a
maximizing the correlation between chroma vectors andaechanethods.
templates.

These template-based methods often have difficulties to II. DETERMINISTIC BASELINE METHOD

capture long-term variations of chord sequences, as well 3 his section describes the deterministic baseline methdd a

trge%ﬁgggaézncoT/Fe)acégg?rrgr:ea_?j_(;:gﬁnrse'SISItSpEgS?gf?ersne rin}roduces the main concepts of our chord recognition gyste
give g Pidore details can be found in [21], [22].

duce fragmented transcriptions, hardly usable for imntedia
song playback. Complex probabilistic methods have been

built in order to incorporate musical information such ag,keA. Principle and notations

chord transitions models, beats or structure. This higetle et C be a12 x N chromagram, composed of 12-
information can for instance be extracted from music theotimensional successive chroma vectets Let W be our
and introduced in Hidden Markov Models (HMM) [8], [9], in 12x K chord dictionary, composed & 12-dimensional chord
Dynamic Bayesian Networks (BDN) [10], [11] or in rule-base@emplatesw;,. Again, the dictionary is the set of all user-
systems [12], [13]. It can also be obtained from the trairihg defined chord candidates. In this paper we will only consider
HMM with audio data (annotated or not) [14], [15], [16], [17] major and minor chords built from the chromatic scale, hence
[18]. Finally, some methods combine these two approacbes, f¢ = 24.

instance using hypothesis search algorithms [19], [20]. Intuitively, the chordy, € [1,..., K] detected at frame

The method presented in this paper builds on the determiriiould be the one whose defining templatg, is theclosest
tic template-based method described in [21], [22] whilenff to the chroma vectot,,, given a certaln_measure of fit. Of_
ing a novel statistical framework that explicitly modelsoth COUrse we assume that only one chord is played at each time
occurrences in songs as probabilistic events. The pratyabil Tame. The fit between,, and every possible template;. has
each of the candidate chords in a song is learned directiy frdo be mea§ured up to a scale paramétey, that accounts to
the song, i.e., in a data-driven way. Hence, the probaicilisEN€rdY variations, so that
approach allows one to extract a relevant and sparse chord
vocabulary for every song. By vocabulary, we mean the
subset of thalictionary that contains the chords played in thé>iven a measure of fib (. ; .), the scale parameter is defined
song. The term dictionary refers to the set of all user-ddfin@s
chord candidates. The notion of vocabulary is not necdgsari hy,n = argmin D (cn; hwy), (2)
linked to key: for example, in the case of modulations, the h
chord vocabulary can contain chords from various keys. Oapd must satisfy
previous sysFems [21], [22] tended to produce fragmented ViD (Cni W)y =0, 3)
chord transcriptions, and to detect chords that were neepite :
in the ground-truth files. This phenomenon was mostly due @iven the set of computed scale parameters, the detected cho
a large number of parallel errors (major-minor confusidije 4, for framen is finally chosen as the one yielding best overall
main effect of the introduction of the chord probabilitiesthe fit, i.e.,
model is the elimination of most spurious chords detected by An = argmin {D (cy; hg,n Wk) }i- (4)
our previous methods (i.e., the probability of chords absen k
from the song tends to zero). This leads to more compact and
readable, in other wordsparsey chord transcriptions while B- Chord templates
improving the detection scores. Contrary to other prolsthul Chord templates are 12-dimensional vectors that can be
chord recognition methods, our method can still be classifieonsidered as theoretical chroma vectors, reflecting time co
within the template-based methods, since the only infaonat tribution in amplitude of each chroma in the chord. Chord
given to our system is the chord definition (i.e., the chongcognition methods often rely on chord templates, whieh ar
dictionary). either fixed [2], [3], [4], [6], [8], [23] or learned from audi
Besides the novel probabilistic chord transcription framelata [14], [16], [17]. We here consider fixed templates ag the
work, another contribution of this paper is the large-scabere easier to obtain (there is no need for annotated datajand
comparison of our method with numerous state-of-the-arbt depend on the training corpus. Hence, our chord tengplate
systems. Many metrics are considered, some of them newe simple binary masks: an amplitude of 1 is given to the
and we propose a complete evaluation of several aspectmofes present in the chord and an amplitude of 0 is given to
the chord recognition task. the other one$.For example aC major chord is given an
amplitude of 1 to chroma€g, E and G while other chromas
have an amplitude of 0. By convention, in our system the chord

Cn A Ny, Wy, - 1)

Section Il introduces notations and provides a short dgscr
tion of the main concepts of the deterministic baseline wath
[21]’_[2_2]' S_ectlon I descr_|bes our prObabI|!StIC appebaand Lin practice a small value is used instead of 0, to avoid numlerica
how it is built on the baseline method. Section IV presengs tinstabilities that may arise with some measures of fit.



C major D. Post-processing filtering

0.4

Frame by frame chord recognition does not take into
account the influence of adjacent frames, which may be
considered suboptimal as it does not exploit the availaile i
formation redundancy between the frames. In order to correc
this, we introduced in our baseline work a post-processing
C c# D D¥F E F F# G GF A A B filtering step that works upstream on the recognition doter

C minor {D (cn; hie.n Wi)}n. Two types of filtering have been tested

T T T for our baseline systentow pass filtering, that smoothes the
output chord sequence and reflects the long-term trend in the
chord changes, anthedian filtering, that has been widely
used in image processing, is efficient to correct randonrerro
while respecting transitions.

Note that this type of filtering is innovative, since it is
applied to the recognition criterion itself, and not to the
chromagram (as in previous work [2], [7], [8]) or to the

Fig. 1. Chord templates for C major and C minor (x-axis: notexig:a detected chord sequence [8].
amplitude).

0.4
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IIl. PROBABILISTIC FRAMEWORK

templates are normalized so that the sum of the amplitudes isn this section we describe the main methodological contri-
1 but any other normalization could be employed, as scal@tion of this paper, a novel probabilistic template-basfeatd
factors are refitted. Examples f@r major andC minorchord  recognition system. Our approach is built on the deterrtinis
are presented on Figure 1. baseline system described in Section II, but now the mesasure
of fit are turned into likelihood functions and the chord
occurrences are treated as probabilistic events. In péatjc

, . the probability of each chord is learned from the song, aisl th
In [21], [22], we considered for our recognition task seVergyi he shown tosparsifythe chord vocabulary (elimination of

measures of fit, which are popular in the field of signal, rious chords), which in turn greatly improves trangioip
processing. The well-knowkuclidean distancedefined by accuracy.

C. Measures of fit

Devc (Xly) = [ (#m — ym)” ()

m

A. Generative model foe,,

has already been used by Fujishima [2] for the chord reco ‘When the Euclidean distance, the KL divergence or the

nition task. Theltakura-Saito (IS) divergence defined by IS divergence is uged as the measure of fit, the criterion
D (cy; hin wy) defined in Section Il is actually a log-

Tm\ 4 ©6) likelihood in disguise. Indeed, the latter measures of fit re
spectively underlie Gaussian additive, Poisson and Gamma

Ym
) _ ) multiplicative observation noise models and they may be
was introduced in [24] and presented as a suitable measurg9feqd to a log-likelihood such that

the goodness of fit between two spectra. It is popular in the
speech community and has recently proven useful for source —log p (cp|hin, W) = @1 D (Cnlhin Wi) + @2,  (8)
separation based on nonnegative matrix factorization ef th

spectrogram [25]. Th&ullback-Leibler divergence [26] is a wherep (¢, |hy.n, wi) is the pro_bability_of chroma vectar,,
well-known measure of the dissimilarity between probagili (M0W treated as a random variable) given chord tempiate

distributions. It has been widely used in information thyeor@ fixed deterministic parameter) and scale,, (treated as
unknown deterministic parameter), and whegeand o

and has given rise to many variants: in the present paper, p h q
use the generalized Kullback-Leibler (KL) divergence gals?'€ €onstants w.r.ti, and w,. The exact correspondences
between each measure of fit and its equivalent statistical

known as I|-divergence) defined b
g ) y observation model are given in Table I.

T
Dis(xly) =) — —log

m
m

Tm
D = mlog | = | — Tm + Ym. 7 N -
xz (xy) Zm:x 8 (ym) Tm Y " The distributionp (¢, |hi,n, W) represents the probability

) o _ of observinge,, given that the chord played at frame is
These three measures of fit have probabilistic interpeetati o 1.t2 gne ie. the one modeled by template. Let us

that will be discussed in Section Ill. Furthermore, theydoeh introduce the discrete state variabjg € [1,..., K] which
differently with respect to scale (taken here as the redatiy,qicates which chord is played at frarme7i.e ’% — kif

contribution of small energy observations with respect tQ,rq% is played at frame:. Hence, we write
higher energies), and in particular the IS divergence itesca

invariant (see [25] for further discussion). P(Cnlvn =k, hin) = p(Cnlhin, Wi) . 9)



TABLE |
CORRESPONDENCES BETWEEN THE MEASURES OF FIT AND THEIR EQUIVENT STATISTICAL OBSERVATION MODEL OF THE CHROMAGRAM

. . Log-likelihood
Noise structure Observation modep (cn|hk n,wk) 9 Scale parametefiy, .,
’ —log (P (Cn\hk,mwk)) :
Additive Gaussian noise M 1 ZM 1 Cman W,k
2 2 m= >
c 5 R pw. o ) —=d (c shic nW ) cst By v aare—
Cn = hk,an Fe Hmle( m,n ; Nk,nWm, k>, 2.2 YEuc \Cn) NknWk + Zf:1 w%hn
Multiplicative Gamma M 1 Cm,n | M cm,n
noisec,, = (hk,nwk) c€ Hm:l Rl on Wi, k RgonWm B, 8 Bdrs (Cn|hk,an) + cst b Zm 1 Wk
. . M M
Poisson noise | (cm,n ; hk,"wmk) dxr (Cn\hk,an) + cst > Cmn

where N/, G and P are the probability distribution defined in Appendix
andcst denotes terms constant w.riy, ,, wy.

We are slightly abusing notations here ag should also which may routinely be done with an EM algorithm [27]
appear on the left-hand side of Eq. (9), but as this is a fixeding the set of chord state variables as missing data, which
parameter as opposed to a parameter to be estimated, we wadl denotey = [y1,...,vn]. The EM algorithm involves
drop it from the notations. Now let us denote by, the computing (E-step) and maximizing (M-step) the following
probability of occurrence of chordl in the song. Hence we functional

have 2 ,
Ply, = k) = ay, (10) Q(0]e) Zlogp C.v®)p(v|C,0")  (14)
where we so far assume that the frames are mdepender};rere logp(C,~|®) is referred to as thecomplete data
T )
Let us introduce the vectc.)_r.varrables =l o] likelihoodandp (v|C, ®') is themissing data posteriofEach
(vector of all chord probabilities) antl,, = [h1 ., ..., hin)

of the two EM steps is described next.
a) E-Step: Under the frame independence assumption
the functional (14) can be written as

(vector of all scale parameters at framg Averaging over
all possible states (chords), the statistical generatiodehof
the chromagram defined by Eq. (9) and (10) is written more

concisely as 0 (@&’ N ,
X @) = Z logp (¢n, Y = k[©) p (3 = Klcn, ©).
p(Cn|0é7hn) = Zakp(cn|hk,nawk’) ) (11) e (15)
k=1 Let us denoteyy , the posterior probability of state variable
which defines amixture model ~r.n (the notation is chosen in analogy with the notation

chosen for its prior probabilityy), i.e.,
To recapitulate our model, given a dictionary of choMs

with occurrence probabilitiesy, a chromagram frame,, is Ak = P = klcn, ©) (16)
generated by 1) randomly choosing chdrdwith probabil- _ agp (Cnlrn =k, ©) ’ 7)
ity a, 2) scalingw; with parameterh; , (to account for Z{; arp(cnlym =1,0)

amplitude variations), and 3) generating according to the
assumed noise model and the vedigr, wy.
The only parameters to be estimated in our model are t
chord probabilitiesac and the set of amplitude coefficients
= {hkn},,- Given estimates of these parameters, cho
recognition at every frame may be performed by selection

where the second equation comes naturally from the applica-
ion of Bayes theorem and from the fact that the probabilitie
Gm to 1. In the following, we denote by, ,, the posterior
éate probabilities conditioned on parameter ite@teHence,

y expanding the complete data likelihood as

of the chord with largest posterior probability, i.e, log p (Cny Yn = k|®) = log p (cp|hkn, Wr) + log oy, (18)
An = argmax {p(n = klcn, 6,1y} (12) the E-step amounts to evaluating the EM functional as
Next we describe an EM algorithm for maximum likelihood ,
estimation of parameters and H. Q(e]e) = Z logp (Calhin, Wie) +log ] @l s
o (19)
B. Expectation-Maximization (EM) algorithm which we reg:{all is to be maximized w.rt ® = (o, H) and
Let us denote by® = (a, H) the set of parameters. OurSUbiect tozkzl_ ap =1 )
task is to maximize the following objective function " b) M-Step: The derivative ofQ (©|©") w.rt to hy
writes
logp (C|©®) =Y logp (cnle,hy), (13)

n

vhk.nQ (6‘6/) = a;@nvhk.n logp(cn‘hk,nywk)v (20)



so that updatindi; ,, amounts to solving 44100 Hz, 16 bits, mono). This database has been extensively
~ used for the evaluation of many chord recognition systems, i
Vi 10g P(Cn| k., Wi) =0, (1) particular those presented at MIREX 2008 and 2009 for the
which does not involve the current parameter estim@fe Audio Chord Detection task [28], [29]. The annotation files
Therefore, the parametdd can be precomputed and doesre provided by Christopher Harte [30]. A total of 17 types
not need to be updated during the EM iterations. Note thaft chords are used (maj, dim, aug, maj7, 7, dim7, hdim7,
the estimationH is equivalent to that of Eqg. (3) in themaj6, 9, maj9, sus4, sus2, min, min7, minmaj7, min6, min9)
deterministic baseline method. The expressions of theescamong with one ‘no chord’ label (N) corresponding to silesice
parametersy , are presented on Table I. or untuned material. The alignment between annotations and
Regarding the optimization of parameter the sum con- audio files is performed with an algorithm also provided by
straint can be handled with the introduction of a Lagrangigdhristopher Harte.

term, leading to the following update: The second corpus was provided to us by the QUAERO
N project. It consists of 20 musical pieces from commercial

ap = #. (22) recordings annotated by IRCAM (PCM 22050 Hz, 16 bits,

Yot D ome1 &, mono) from various artists (Pink Floyd, Queen, Buenavista

The resulting EM algorithm is summarized below. In th&0¢ial Club, Dusty Springfield, Aerosmith, Shack, UB40 Fal

following we will refer to our probabilistic approach as PCRU! Boyr,] NeIth_IFurtl'Tl_do, Justin Timber:ake, Mariah Carey,
(standing for probabilistic chord recognition). Abba, Cher, Phil Collins, Santa Esmeralda, Sweet, FR David

and Enya) and various genres (pop, rock, electro, salsa,
disco,...). The corpus only contains major and minor labels
More details about this corpus can be found in [31].

Algorithm 1: EM algorithm for probabilistic template-
based chord recognition

Input: Chromagram dat& = [cy,...,cy], chord o

templatesW = [w, ..., W] B. Chord dictionary
Output: Chord probabilitiesx = [, . .., ak] The evaluation protocol we use in this paper relies on the
Initialize o one used in MIREX 08 & 09 [28], [29]. Since major and

minor chords are prominent in pop music, the evaluation is

Compute scale paramete¥k as in Eq. (21) o !
only based on a 25-chord dictionary: 12 major chord labels,

for i=1: nier do G 12 minor chords labels and one 'N’ label corresponding to
al~t = Henlunwi) oy /I e-step  Silences or untuned material.
’ 21y Plenlhin,wi) o The Beatles annotation files are therefore mapped to major
NONS >N oain | mse and minor types following these rules (used in MIREX 08 &
S DHID DA ® 09) [28], [29]

e major: maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9,
maj9, sus4, sus2

- o ¢ Mminor: min, min7, minmaj7, min6, min9

C. Chord recognition under the probabilistic model Since the QUAERO corpus contains only major and minor
As already discussed in Section IlI-A, our chord recognitiochords already, no mapping is necessary.

criterion is based on the frame-by-frame maximum state

posterior probability, i.e., .

C. Metrics
Tn = argflax {aknbe (23) The chord transcription task is actually the fusion of two
subtasks: a recognition task (find the correct label for each

Note that the state posterior probabilities are readilylalvke f d tation task (find th t chord bound
from within the EM algorithm. Just like in the baselinere.lme) and a segmentation task (find the correct chord bound-

method, this frame-by-frame chord recognition system cgﬁ'es)' Also a good transcription is supposed tq be compmbtg
be improved by taking into account the long-term trenlp Use a sparse chord vocabulary. We here list some metrics
in the chord changes. We therefore propose to useadin In order to evaluate not only the quality of transcriptiort bu
hoc filtering process that implicitly informs the system Ofalso the accuracy of segmentation and of chord vocabulary, a

the expected chord duration. The post-processing filteils';ngdefc”ges below. d &F In th .
performed on the state posterior probabilities,, and not on et ﬁ a corpus Composed .skcj?gs. nt el annotation
the chromagram, as in [2], [7], [8], or on the detected chomes' each song Is segmented With; temporal segments
: U(s) = {ui(s),...,ur,(s)}. For each segment.(s), the
sequence as in [8]. . . S
annotation files provide a chord labg(s).
Let us denotdu| the duration of segment andu N’ the
A C intersection of segments and «’. Hence the total length of
- Lorpus the songs is |s| = 3212, |us(s)].
As for evaluation, we first consider the Beatles corpus,
composed of all 13 albums of the Beatles (180 songs, PCMQUAERO project: http://www.quaero.org

IV. EVALUATION



tion segmentatiod/(s) is defined as:

Annotation (T,=2) | 11(‘?) = Cr‘na] | 12((?) = Arpm |
I

Us) ! us(s) ua(s)

DHD (L{(s)|ljl(s)) _ Ztil |ut(8)| - Inf:'(t' |ut(8) N at'(8)|

Transcription (7,=3) | | iZ(f>:Amin | ‘ZA;;(s):‘Fmaj‘ | (26)
Us) Fae T ae it5(s) !

[ (s) = Cmaj
L L

The inverse directional Hamming divergence is defined as:
Overlap Score 1 1

T, |« N
s I 1 ~ Zilug(s)| — maxy |ug(s) Nuy (s
Directional Hamming | ‘ul(s?‘ - m?xu ‘ul‘(s) ! u‘l/(s)‘ | |uz(s‘)\ ~ milxu ‘ZQ‘(S) ﬁu‘u(s)\ | B (27)
DHD (u(s)it(s)) b ' ' Finally, the Hamming distance between the two segmentation
o _ Jiia ()| — maxy Jiia(s) N ue (3)] is defined as the mean of the two directional Hamming
Directional Hamming | 1 1

I I I I | i .
DHD(L}(.S)W(H)) I I i { divergences:

_ DHD (U(s)|t(s)) + DHD (U(s)U(s)) .

Overlap ScoreDS(s) = 1 = 0.4 HD(s) = 3 (28)
Hamming Distance D(s) = 1 x (£t + %0) =02 The Hamming Distance tends to reflect the dissimilarity of
aeavd two segmentations: this metric takes values between 0 and 1
Reduced Chord LengtRC'L(s) = —&— = 3 and the lower the value, the better the segmentation quiadity
_3 particular, a value of 0 is obtained when both segmentations
Reduced Chord Label Numb@CLN (s) = 3 are exactly the same. The mean of all the Hamming Distances
False Chord Label NumbarCLN(s) =1 of the corpus is called Average Hamming Distance (AHD).

3) Fragmentation metrics:A chord transcription is ex-
Fig. 2. Example of calculation of Overlap Score, Hamming Distan pected to display “compactness”. Indeed, the presence of
Reduced Chord Length, Reduced Chord Number and False Chdrel Lanymerous fragmented chords can lead to noisy and hardly
Number. The figure uses a discrete “clock” for purpose of fitatton but -
in reality the time scale is continuous up to the sample period. understandable transcriptions. In order to evaluate veneth
chord recognition method produces fragmented transoripti

or not, we propose a new metric that we céwerage Chord

With our transcription method, each sosgs divided into L€Ngth (ACL) Let us first define for a song, the Reduced
7, segments, and every segments) is given a chord label Chord LengthRCL(s) as the ratio between the experimental

(). average chord duration and the duration of the ground truth,
ie.,
1) Performance metricsOur primary goal is to evaluate the % ZtTil [t (s)]
accuracy of the chord labels attributed by our mett@erlap RCL(s) = ﬁ (29)
ScoreOS(s) is defined as the ratio between the length of the T, 2ei=1|Ut13

correctly analyzed chords and the total length of the sarg, i Note that this score can also be defined as the ratio between
X T, and 7. This metric should be as close to 1 as possible;

ZtTgl ZtT,Szl lue(s) N aie (s)];, 5y, (s) when lower than 1, the transcriber tends to overfragment the

= ——==. (24) piece. We define the Average Chord Length as the mean of

all the Reduced Chord Lengths of the corpus.

This Overlap Score ranges from 0 to 1. The higher the score4) Chord vocabulary metrics:Another indicator of the

the better the performance. quality of a chord transcription is the compactness of therah
The Average Overlap Score (AQSyhich has been used forvocabulary used for the transcription. Remember that fohea

MIREX 2008 [28], is the mean of the Overlap Sco@§(s) song the chord vocabulary is the subset of the chord diatjona

0S(s)

|s]

of the corpus: needed to transcribe that song. When the song relates to a
g specific key, it reflects by extension the tonal context of the
AOS = 1 ZOS(S)' (25) Piece, but by chord vocabulary we mean a wider notion than
S e key. We define two metrics for assessing the correctnessof th

estimated chord vocabulary: theerage Chord Label Number
The chord recognition task can be seen as the joint recqgCLN)and theAverage False Chord Label Number (AFCLN)
nition of chord root and chord type. Another metric can also Given a song;, we define th&Reduced Chord Label Number
be defined: thé\verage Root Overlap Score (AROQ®hichis RCLN(s) as the ratio between the number of different
defined just like the AOS, but only assesses root detectionchord labels used for the transcription and in the ground
2) Segmentation metricdn order to evaluate the segmen4iruth annotation. Better results are obtained when thigimet
tation quality, recent publications [11] have usediteanming approaches 1. When greater than 1, the transcription uses a to
Distance (HD) calculated from theDirectional Hamming wide chord vocabulary. The Average Chord Label Number is
Divergence (DHD)32]. The DHD reflects the unfitness of onethe mean of all Reduced Chord Label Numbers of the corpus.
segmentation to another. The directional Hamming divatgen The Average False Chord Label Number is the average
between the annotation segmentatiéts) and the transcrip- number of chord labels that do not belong to the annotation



files. It should be as low as possible: an AFCLN of 0 woul ct
. . #/Db |
indicate that the method always detects the correct chc D
vocabulary. DHED L
These metrics are illustrated on a small example in Figu F#/Ggg
G
2. G#/Abé_
A
V. RESULTS AHIBDL
A. Experimental setup ComiDom |
. Dm -

We use the chromagram proposed by Bello & Pickens [8]. D#m/EbM - [ Ground truth chord probabilities
the input to our system. Other chromagrams were considel Em I Experimental chord probabilities (a)
in preliminary studies (in particular the one described8h [ F#m/cmr
[7], [33]) but we found Bello & Pickens’ chromagram to G#m/AAbrrg:
give the best results with our system. We used the co a#mBbm|
kindly provided by the authors. The window length is 743 m Bmo ol 02 03 ‘ 02 o5 o6

and the hop size is set to 93 ms. Their implementation al

performs a silence (‘no chord’) detection using an empligica Fig. 4. Ground-truth and estimated chord probability distiionsé for the
set threshold on the energy of the chroma vectors. Morelgletaeaties sondrun for your life

about the calculation of the chromagram can be found in [8].

For our new probabilistic methods, two sets of paramete .
are to be chosen: the probability distribution parametefs ({fverlap Scores are respectively 0.733 and 0.919 for OGF1

for the Gaussian model arngifor the Gamma model), and theanOI I?CR_/Gamma, showmg a clear improvement. A careful
L examination of both transcriptions suggests three expitara
post-processing filtering parameters. For each of theserob

. NS . . . TO030r this improvement:
vation distributions, extensive simulations have beenedion / q hord boundari |
order to find the optimal probability distribution paramste ~* PCR/Gamma detects chord boundaries more accurately

These parameters are chosen in order to fit the model to the than /OGFl' q | hords whil
chord recognition task, i.e., to model the type of noise gmes  * PCR/Gamma seems to detect longer chords while OGF1

in the chromagrams gives very fragmented results.

The post-processing methods and neighborhood sizes uset 1€ chord vocabulary used in the transcription output
by PCR/Gamma is sparser than the one returned by

here are chosen in order to optimize the value of the Average o _ i _
Overlap Score on the Beatles corpus. Nevertheless, there is O©CGF1. preventing in particular from some major-minor

not much difference between two filtering methods or close confusions.
neighborhood sizes. The evaluation metrics computed for this song confirm these
The experimental parameters used for our PCR methods @Rservations:
as follows. « The Hamming Distances are respectively 0.206 and
« Gaussian additive noise models? = 0.02 and median 0.060, which reflects the fact that the segmentation pro-
filtering on 17 frames (2.23s) ; vided by PCR/Gamma is very similar to the one described
« Gamma multiplicative noise model 3 = 3 and low- in the annotation files.
pass filtering on 15 frames (2.04s) ; o The Reduced Chord Lengths are respectively 0.345 and
« Poisson noisemedian filtering on 13 frames (1.86s). 1.085, which shows that PCR/Gamma better evaluates the
We will respectively refer to the method based on the above chord length.
models as PCR/Gaussian, PCR/Gamma, PCR/Poisson. « The chord vocabulary used by PCR/Gamma is smaller
than OGF1’s one: the Reduced Chord Label Numbers for
B. Example on one Beatles song the two methods are 1.75 and 0.75 respectively. Since the

second value is closer to 1 than the first one, the number
of chords used by PCR/Gamma is the most accurate. The
calculation of the False Chord Label Numbers confirms
this: they are respectively equal to 6 and 0, which means
that the transcription provided by PCR/Gamma does

Before giving the overall results, we propose here to in-
vestigate the differences between the deterministic ant-pr
abilistic approaches on one example. We chose the Beatles’
song Run for your lifefrom the albumRubber Soulas its
transcription demonstrates the improvements brought by th .
probabilistic approach over the deterministic one. As such NOt use any chord labels that were not present in the
Figure 3 displays the transcription obtained with PCR/Gamm  annotation files.
and with OGF1, the latter being one of the two deterministic PCR/Gamma efficiently estimate the chord vocabulary
algorithms that we submitted at MIREX'GOA first obser- thanks to the parametex that models, for each song, the

vation is that PCR/Gamma gives better results. Indeed, tff@ord probability distribution. This is illustrated on kig 4
which displays the estimated chord probabilities (veatr
3In essence, OGF1 corresponds to the baseline system debsdnitSec- on top of the empirical normalized chord length histogram

tion Il based on a KL divergence and median filtering with smimflvindow . .
of size 15 and a dictionary composed only of major and minor chdfdr ComPUtEd from the annotation file. We may see that they

details see [21], [22], [29]. closely fit, which confirms our assumption regarding the
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Fig. 3. Examples of chord transcription on the Beatles $Rug for your life The estimated chord labels are displayed in black while tbargl-truth chord
annotation is in gray. Top figure: transcription with the ddag deterministic approach (OGF1), bottom figure: trapsion with the probabilistic approach

(PCR/Gamma).
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TABLE I
COMPARISON WITH THE STATEOF-THE-ART ON THE BEATLES CORPUS

80

100

MIREX 2008 MIREX 2009 PCR methods
BP RK PVM KO1 KO2 DE OGF1 | OGF2 Gaussian| Gamma | Poisson
Average Overlap Score (AOS) 0.707 | 0.705 | 0.648 || 0.722 | 0.734 | 0.738 | 0.714 | 0.724 0.749 0.758 | 0.744
Average Root Overlap Score (AROS) 0.740 | 0.763 | 0.680 0.754 | 0.761 | 0.772 | 0.775 | 0.783 0.785 0.787 0.775
[ Average Hamming Distance (AHD)  [[ 0.153 | 0.146 | 0.209 [[ 0.152 | 0.150 [ 0.156 | 0.163 [ 0.152 [ 0.146 | 0149 | 0.156 |
| Average Chord Length (ACL) [[ 0941 ] 1.074 [ 0.422 ][ 1.160 [ 1.168 [ 0.890 [ 0552 | 0.717 [| 0872 [ 0920 [ 1.057 |
Average Chord Label Number (ACLN) 1.441 | 1.414 | 2.285 1507 | 1.319 | 1.667 | 2.070 1.693 1.314 1.185 1.012
Average False Chord Label Number (AFCLN] 3.560 | 3.330 | 8.490 || 3.760 | 2.590 | 4.590 | 7.390 | 4.990 2.640 1.860 | 1.060
| Run time (in seconds) [[ 1619 [ 2241 [ 12402 ][ 6382 [ 6382 [ 1403 [ 790 | 796 || 480 [ 482 [ 486 |

accurate estimation of the chord vocabulary.

C. Comparison with state-of-the-art

KO1 & KO2: Khadkevich & Omologo [18]

DE:

Ellis [14]

OGF1 & OGF2: oumaseline method1], [22]

More details about these methods can be found in the given

Our methods are now compared to some state-of-the-asterences or from the corresponding MIREX websites [28],
systems according to the metrics defined in Section IV. Thefg].
methods have all been tested with their original implementa 1) Beatles corpusTable Il presents the results obtained by
tions and have all participated in MIREX 2008 [28] or 2009hese 11 chord recognition systems on the Beatles corpus.

[29].
MIREX 2008:

o BP: Bello & Pickens [8]
« RK: Ryynanen & Klapuri [17]
o PVM: Pauwels, Verewyck & Martens [34]

MIREX 2009:

Quantitative scores such as AOS or AROS show that our

probabilistic approach slightly outperforms state-cé-#rt: the
AOS we obtain with PCR/Gamma is indeed 2% larger than the
best score (DE). Since all the scores are close, it is irtteges

1As the KO1 and KO2 methods are run together because they share

common resources, we here report the total running time.
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9 groups have mean column ranks significantly different from Gamma Beatles corpus. As a reminder, the scores of each is 0-7124 @7d 0.758
respectively. Refer to [22] for a detailed description of #rror types.

Fig. 5. Tukey-Kramer's test performed on Overlap Scores tatied on the
Beatles corpus. The x-axis shows the average rank for eawl cacognition

method along with the comparison interval. seem to avoid this fragmentation effect and the best results

are obtained with PCR/Gamma.

. o ) One of the main contributions of the probabilistic frame-
to figure out whether the methods are significantly differeRfork is the explicit evaluation of the song chord vocabulary
from each other. We therefore propose to perform a Tukeyne good detection of this chord vocabulary is described by
Kramer's test [35], [36] on the Overlap Scores. This test Wago metrics: the ACLN (that better be as close to 1 as pogsible
notably run in MIREX 2008 & 2009 and compares the averagg,q the AFCLN (that better be as low as possible). We notice
rank of every chord recognition method to the average raggt all methods seem to over-evaluate the number of chords.
of every other system. Results of the Tukey-Kramer’s test afhe two methods PVM and OGF1 seem to be particularly
displayed on Figure 5. It shows that the improvement brougﬁénalized by this phenomenon. Our 3 PCR methods, on the
by our PCR approach is significant. Indeed PCR/Gamma dgntrary, reliably evaluate the chord vocabulary: theyabt
significantly better than all the other tested methods, BXC&he 3 best scores. AFCLN scores confirm these results: the
for PCR/Gaussian. The latter method performs significantlytroguction of chord probabilities allows to correctlyptare
better than all the methods except for KO2, PCR/Gammge chord vocabulary of every song.
and PCR/Poisson. Finally, PCR/Poisson is significantlyebet s the PCR approach does not require any training nor side-

than BP, RK, PVM and OGF1. In particular, PCR/GamMmgytormation (besides the chromagram data and the stailistic
outperforms OGF1 on 148 songs over 180. model specification) its computation time is quite low. Tkan

The introduction of other evaluation metrics allows U some code optimization, our PCR methods perform even
to compare chord recognition methods according to sevefgbter than the baseline methods OGF1 & OGF2, and are
criteria. |ndeed, the 4 other metrics tend to evaluate tlﬂ%refore twice as fast as other state-of-the-art methods.
segmentation, the fragmentation and the good detectioneof t |, previous work [22], we have presented an analysis
chord vocabulary. of the errors commonly made by chord recognition meth-

The segmentation, i.e., the detection of the chord boungds: we propose here to conduct the same analysis for our
aries, is measured by the AHD (that better be as low @sobabilistic approach. Figure 6 presents the distriloutd
possible). We notice that, except for the PVM method, adrror sources for PCR/Gamma and for the two deterministic
the AHD values are close (around 0.15). Indeed, statistigakthods OGF1 & OGF2. Five types of common errors are
tests are rather inconclusive: a Tukey-Kramer's test shbets emphasized, corresponding either to structural simjlait
except for the PVM method, they are no strong differenceégrmonic proximity situations (see [22] for details). Weice
between the chord recognition methods. For example, thiat parallel errors, which were very common with OGF1 &
method obtaining the best AHD (PCR/Gaussian), is onyGF2, do not seem to be as important with PCR/Gamma. This
significantly different from PVM, OGF1 & DE. is an interesting observation as these errors were related t

The fragmentation is evaluated thanks to the ACL (th#te template-based character of our methods, in which shord
better be as close to 1 as possible). Some methods seeene likely to be mistaken one for another when they had
to slightly overestimate the chord length (RK, KO1, KO2 &notes in common. The improvement on this aspect is probably
PCR/Poisson), but most of them tend to over-fragment tleeplained by the capacity of our system to efficiently evedua
chords. Some methods (PVM, OGF1) even detect chords witte chord vocabulary, leading to a lower number of major-
half their real duration. On the contrary, our PCR methodsinor confusions.
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TABLE Il
COMPARISON WITH THE STATEOF-THE-ART ON THE QUAERO CORPUS

MIREX 2008 MIREX 2009 PCR methods
BP RK PVM KO1 KO2 DE OGF1 | OGF2 Gaussian| Gamma | Poisson
[ Average Overlap Score (AOS) [[ 0699 [ 0.730 | 0.664 |[ 0.670 | 0.665 | 0.719 [ 0.707 | 0.682 0.739 0.773 | 0.760
| Average Hamming Distance (AHD) [ 0.142 [ 0.117 [ 0.175 [[ 0.153 [ 0.156 [ 0.127 [ 0.142 | 0137 [ 0131 [ 0124 [ 0130 |
| Average Chord Length (ACL) [ 0.003 [ 1.021 [ 0.494 |[ 1.084 [ 1.109 [ 0.823 [ 0.565 | 0.683 [| 0.835 | 0.896 | 0.806 |

Average Chord Label Number (ACLN) 1559 | 1.516 | 2.323 1549 | 1.351 | 1.906 | 2.297 | 1.970 1.529 1.336 1.138
Average False Chord Label Number (AFCLN) 3.650 | 3.250 | 7.850 || 3.600 | 2.550 | 5.300 | 7.700 | 5.850 3.150 2.150 1.150

2) QUAERO corpusRecent publications such as [11] havésamma multiplicative noise model appeared to lead to best
discussed the necessity of testing chord recognition nisthaesults. This model requires the tuning of an extra shape
on other corpus than the popular Beatles corpus. We hgerameter that we handled by trial-and-error. The autamati
therefore also run all the tested systems on the QUAERStimation of this parameter is not trivial but could be envi
corpus and the results are displayed on Table IIl. aged with numerical methods. This may improve even more

A first observation is that except for RK, PVM,recognition scores and also yield another relevant descrif
PCR/Gamma and PCR/Poisson, all the methods get lowke song. Secondly, in this work we have taken into account
AOS on this corpus than on the Beatles data. Once agdime long-term variations in the song using an ad-hoc post-
our probabilistic methods give the best results: in paldicu processing filtering of the states posterior distributidasgture
PCR/Gamma performs even better than on the Beatles corpusrk will consider more sophisticated models that improve
Although the small number of songs in the corpus does nibie probabilistic model so as to more adequately model the
allow one to perform a real significant difference test, tl@SA rhythmic structure of music.
obtained by PCR/Gamma is 4% higher than the best state-of-
the-art method (RK), which is a large difference when logkin ACKNOWLEDGMENT
at the scores. As far as segmentation is concerned, the RKhe authors would like to thank J. Bello, D. Ellis, M.
method gives the best results but nevertheless PCR/Ga dkevich, J. Pauwels and M. Rygmen for making their

gives the sec_o_nd best AHD result. Once agan, most of t Gde available. We also wish to thank C. Harte for his very
chord recognition methods tend to underestimate the Ch‘?fgeful annotation files

length: however PCR/Gamma gives the fourth best ACL score.1ic \vork was supported in part by ANR-09-JCJC-0073-

Fhinally, we obser\;]e dWith,ltlhe ACI;N andhAFCLN rr;et::icsm TANGERINE (Theory and applications of nonnegative
that our PCR methods still outperform other state-of-the-g,, ., factorization) and by the Quaero Programme, funded

methodg on the chord vocabulary estimation. by OSEO, French State agency for innovation.
More importantly, these results tend to answer the overfit-

ting concern related to the Beatles corpus, since our method
achieve better performances on the QUAERO corpus than En
the Beatles one. In addition, music genre and style do no
seem to influence our systems, as all the calculated scares fo

APPENDIX
PRESSIONS OF STANDARD PROBABILITY DISTRIBUTIONS

(w—p)?
the Beatles corpus and the QUAERO corpus are close. Gaussian| N (a:;u, 02) = ;ﬂge’ 202
Gamma G(z;0,8) = Lo =P
VI. CONCLUSION (. 8) F;;)e _
. e Poisson P(x; ) = =~——e~
In this paper we presented a novel probabilistic framework @) = TG
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