
1

Probabilistic template-based chord recognition
Laurent Oudre,Member, IEEE,Cédric F́evotte,Member, IEEE,Yves Grenier,Member, IEEE

Abstract—This paper describes a probabilistic approach to
template-based chord recognition in music signals. The algorithm
only takes chromagram data and a user-defined dictionary of
chord templates as input data. No training or musical information
such as key, rhythm or chord transition models is required.
The chord occurrences are treated as probabilistic events, whose
probabilities are learned from the song using an Expectation-
Maximization (EM) algorithm. The adaptative estimation of these
probabilities (together with an ad-hoc post-processing filtering)
has the desirable effect of smoothing out spurious chords that
would occur in our previous baseline work. Our algorithm is
compared to various methods that entered the Music Information
Retrieval Evaluation eXchange (MIREX) in 2008 and 2009, using
a diverse set of evaluation metrics, some of which are new. The
systems are tested on two evaluation corpuses; the first one is
composed of the Beatles catalog (180 pop-rock songs) and the
other one is constituted of 20 songs from various artists and
music genres. Results show that our method outperforms state-
of-the-art chord recognition systems.

Index Terms—chord recognition, music signal processing, mu-
sic signal representation, music information retrieval

I. I NTRODUCTION

DESCRIPTION of music signals with relevant and com-
pact representations has been one of the main fields of

interest in Musical Information Retrieval (MIR) in the lastfew
years. One of the most common representations of pop songs
is chord transcription, which returns the musical content of a
piece. This representation, whilst not precisely reproducing all
the notes played by the instruments, allows musicians to easily
playback songs. As such, a chord can be defined as a set of
harmonically-related notes played simultaneously. In reality,
there are many ways to define and classify chords, depending
on the application context, time period or music type [1]. In
this paper, we shall follow the conventions used for Western
popular music, where a chord can be written by using two
notions:roots and types. The root is the note upon which the
chord is built, while thetype gives the harmonic structure of
the chord (i.e., the harmonic relationships between the notes
within the chord). For example, a C major chord (composed
of notes C, E and G) is described by its root noteC and
its type major, implying the presence of the major thirdE
and the perfect fifthG in the chord construction. The chord
transcription output by our automatic chord transcriber isa
sequence of chord labels with their respective start and end
times. This output can be used for song playback - which
constitutes the main aim of our system - but also in other
applications such as song identification, query by similarity or
structure analysis.
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Template-based chord recognition methods are based on the
hypothesis that only the chord definition is necessary to extract
chord labels from a musical piece. A chord template is a 12-
dimensional vector representing the 12 semi-tones (orchroma)
of the chromatic scale. Each component of the pattern is given
a theoretical amplitude according to the chord definition. The
most simple and intuitive chord template [2], [3], [4] has a
binary structure, with amplitudes of 1 for the chromas within
the chord definition and 0 for other chromas. More complex
patterns have been considered, for example taking into account
the harmonics of the chord notes [5], [6].

The first template-based system for audio chord recognition
was developed by Fujishima [2]. This method is the first one
that considers chords not only as sets of individual notes, but
rather as entities whose structure is determined by one root
and one type. The chord transcription process is based on the
extraction from the signal ofPitch Class Profiles (PCP)or
chroma vectors. The chroma vectors are 12-dimensional vec-
tors where each component represents the energy or salienceof
one of the 12 semi-tones within the chromatic scale, regardless
of the octave. The temporal evolution of these chroma vectors
is called chromagram: it has been widely used in literature
for chord or key estimation [5], [7]. In Fujishima’s approach,
324 chords are detected, each of them modeled by a binary
Chord Type Template (CTT). The chord detection is performed
by first calculating scores for every root and chord type,
then selecting the best score. The scores are computed from
chroma vectors and hand-tuned variations of the original CTT.
Two matching methods between PCP and CTT are tested:
the Nearest Neighbor Method (Euclidean distance between
chroma vector and hand-tuned CTT) and the Weighted Sum
Method (dot product between chroma vector and hand-tuned
CTT). The hand-tuning is done by trial-and-error and accounts
for the chord type probability and the number of notes within
the chord type. Two post-processing methods are introduced
in order to take into account the temporal structure of the
chord sequence. The first attempt is to smooth over the past
chroma vectors to both reduce the noise and use the fact that
a chord usually lasts for several frames. The second attempt
is to detect chord changes by monitoring the direction of the
chroma vectors.

Harte & Sandler [3] use a very similar method to Fu-
jishima’s. The chromagram extraction is improved by apply-
ing a frequency tuning algorithm. They define binary chord
templates for 4 chord types (major, minor, diminished and
augmented) and then calculate a dot product between chroma
vectors and chord templates. The temporal information is
captured by applying low-pass filtering on the chromagram
and median filtering to the detected chord sequence.

Lee [4] also uses binary chord templates, this time for the 24
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major/minor triads. He introduces a new input feature called
Enhanced Pitch Class Profile (EPCP) using the harmonic
product spectrum. The chord recognition is then carried outby
maximizing the correlation between chroma vectors and chord
templates.

These template-based methods often have difficulties to
capture long-term variations of chord sequences, as well as
to generate compact chord transcriptions. In particular, these
methods can give good frame-to-frame results but often pro-
duce fragmented transcriptions, hardly usable for immediate
song playback. Complex probabilistic methods have been
built in order to incorporate musical information such as key,
chord transitions models, beats or structure. This high-level
information can for instance be extracted from music theory
and introduced in Hidden Markov Models (HMM) [8], [9], in
Dynamic Bayesian Networks (BDN) [10], [11] or in rule-based
systems [12], [13]. It can also be obtained from the trainingof
HMM with audio data (annotated or not) [14], [15], [16], [17],
[18]. Finally, some methods combine these two approaches, for
instance using hypothesis search algorithms [19], [20].

The method presented in this paper builds on the determinis-
tic template-based method described in [21], [22] while offer-
ing a novel statistical framework that explicitly models chord
occurrences in songs as probabilistic events. The probability of
each of the candidate chords in a song is learned directly from
the song, i.e., in a data-driven way. Hence, the probabilistic
approach allows one to extract a relevant and sparse chord
vocabulary for every song. By vocabulary, we mean the
subset of thedictionary that contains the chords played in the
song. The term dictionary refers to the set of all user-defined
chord candidates. The notion of vocabulary is not necessarily
linked to key: for example, in the case of modulations, the
chord vocabulary can contain chords from various keys. Our
previous systems [21], [22] tended to produce fragmented
chord transcriptions, and to detect chords that were not present
in the ground-truth files. This phenomenon was mostly due to
a large number of parallel errors (major-minor confusion).The
main effect of the introduction of the chord probabilities in the
model is the elimination of most spurious chords detected by
our previous methods (i.e., the probability of chords absent
from the song tends to zero). This leads to more compact and
readable, in other wordssparser, chord transcriptions while
improving the detection scores. Contrary to other probabilistic
chord recognition methods, our method can still be classified
within the template-based methods, since the only information
given to our system is the chord definition (i.e., the chord
dictionary).

Besides the novel probabilistic chord transcription frame-
work, another contribution of this paper is the large-scale
comparison of our method with numerous state-of-the-art
systems. Many metrics are considered, some of them new,
and we propose a complete evaluation of several aspects of
the chord recognition task.

Section II introduces notations and provides a short descrip-
tion of the main concepts of the deterministic baseline method
[21], [22]. Section III describes our probabilistic approach and
how it is built on the baseline method. Section IV presents the

metrics and the two song corpus used for evaluation. Finally,
Section V reports the results obtained by our probabilistic
and deterministic methods, along with some state-of-the-art
methods.

II. D ETERMINISTIC BASELINE METHOD

This section describes the deterministic baseline method and
introduces the main concepts of our chord recognition system.
More details can be found in [21], [22].

A. Principle and notations

Let C be a 12 × N chromagram, composed ofN 12-
dimensional successive chroma vectorscn. Let W be our
12×K chord dictionary, composed ofK 12-dimensional chord
templateswk. Again, the dictionary is the set of all user-
defined chord candidates. In this paper we will only consider
major and minor chords built from the chromatic scale, hence
K = 24.

Intuitively, the chordγn ∈ [1, . . . ,K] detected at framen
should be the one whose defining templatewγn

is theclosest
to the chroma vectorcn, given a certain measure of fit. Of
course we assume that only one chord is played at each time
frame. The fit betweencn and every possible templatewk has
to be measured up to a scale parameterhk,n that accounts to
energy variations, so that

cn ≈ hγn,nwγn
. (1)

Given a measure of fitD ( . ; . ), the scale parameter is defined
as

hk,n = argmin
h

D (cn;hwk) , (2)

and must satisfy

∇hD (cn;hwk)|h=hk,n
= 0. (3)

Given the set of computed scale parameters, the detected chord
γ̂n for framen is finally chosen as the one yielding best overall
fit, i.e.,

γ̂n = argmin
k

{D (cn;hk,n wk)}k. (4)

B. Chord templates

Chord templates are 12-dimensional vectors that can be
considered as theoretical chroma vectors, reflecting the con-
tribution in amplitude of each chroma in the chord. Chord
recognition methods often rely on chord templates, which are
either fixed [2], [3], [4], [6], [8], [23] or learned from audio
data [14], [16], [17]. We here consider fixed templates as they
are easier to obtain (there is no need for annotated data) anddo
not depend on the training corpus. Hence, our chord templates
are simple binary masks: an amplitude of 1 is given to the
notes present in the chord and an amplitude of 0 is given to
the other ones.1 For example aC major chord is given an
amplitude of 1 to chromasC, E and G while other chromas
have an amplitude of 0. By convention, in our system the chord

1In practice a small value is used instead of 0, to avoid numerical
instabilities that may arise with some measures of fit.
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Fig. 1. Chord templates for C major and C minor (x-axis: note, y-axis:
amplitude).

templates are normalized so that the sum of the amplitudes is
1 but any other normalization could be employed, as scale
factors are refitted. Examples forC major andC minor chord
are presented on Figure 1.

C. Measures of fit

In [21], [22], we considered for our recognition task several
measures of fit, which are popular in the field of signal
processing. The well-knownEuclidean distancedefined by

DEUC (x|y) =

√

∑

m

(xm − ym)
2 (5)

has already been used by Fujishima [2] for the chord recog-
nition task. TheItakura-Saito (IS) divergence defined by

DIS (x|y) =
∑

m

xm

ym
− log

(

xm

ym

)

− 1 (6)

was introduced in [24] and presented as a suitable measure of
the goodness of fit between two spectra. It is popular in the
speech community and has recently proven useful for source
separation based on nonnegative matrix factorization of the
spectrogram [25]. TheKullback-Leibler divergence [26] is a
well-known measure of the dissimilarity between probability
distributions. It has been widely used in information theory
and has given rise to many variants: in the present paper, we
use the generalized Kullback-Leibler (KL) divergence (also
known as I-divergence) defined by

DKL (x|y) =
∑

m

xm log

(

xm

ym

)

− xm + ym. (7)

These three measures of fit have probabilistic interpretations
that will be discussed in Section III. Furthermore, they behave
differently with respect to scale (taken here as the relative
contribution of small energy observations with respect to
higher energies), and in particular the IS divergence is scale-
invariant (see [25] for further discussion).

D. Post-processing filtering

Frame by frame chord recognition does not take into
account the influence of adjacent frames, which may be
considered suboptimal as it does not exploit the available in-
formation redundancy between the frames. In order to correct
this, we introduced in our baseline work a post-processing
filtering step that works upstream on the recognition criterion
{D (cn;hk,n wk)}n. Two types of filtering have been tested
for our baseline system:low pass filtering, that smoothes the
output chord sequence and reflects the long-term trend in the
chord changes, andmedian filtering, that has been widely
used in image processing, is efficient to correct random errors
while respecting transitions.

Note that this type of filtering is innovative, since it is
applied to the recognition criterion itself, and not to the
chromagram (as in previous work [2], [7], [8]) or to the
detected chord sequence [8].

III. PROBABILISTIC FRAMEWORK

In this section we describe the main methodological contri-
bution of this paper, a novel probabilistic template-basedchord
recognition system. Our approach is built on the deterministic
baseline system described in Section II, but now the measures
of fit are turned into likelihood functions and the chord
occurrences are treated as probabilistic events. In particular,
the probability of each chord is learned from the song, and this
will be shown tosparsifythe chord vocabulary (elimination of
spurious chords), which in turn greatly improves transcription
accuracy.

A. Generative model forcn

When the Euclidean distance, the KL divergence or the
IS divergence is used as the measure of fit, the criterion
D (cn;hk,n wk) defined in Section II is actually a log-
likelihood in disguise. Indeed, the latter measures of fit re-
spectively underlie Gaussian additive, Poisson and Gamma
multiplicative observation noise models and they may be
linked to a log-likelihood such that

− log p (cn|hk,n,wk) = ϕ1 D (cn|hk,n wk) + ϕ2, (8)

wherep (cn|hk,n,wk) is the probability of chroma vectorcn
(now treated as a random variable) given chord templatewk

(a fixed deterministic parameter) and scalehk,n (treated as
an unknown deterministic parameter), and whereϕ1 andϕ2

are constants w.r.t.hk,n andwk. The exact correspondences
between each measure of fit and its equivalent statistical
observation model are given in Table I.

The distributionp (cn|hk,n,wk) represents the probability
of observingcn given that the chord played at framen is
the kth one, i.e., the one modeled by templatewk. Let us
introduce the discrete state variableγn ∈ [1, . . . ,K] which
indicates which chord is played at framen, i.e, γn = k if
chordk is played at framen. Hence, we write

p (cn|γn = k, hk,n) = p (cn|hk,n,wk) . (9)
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TABLE I
CORRESPONDENCES BETWEEN THE MEASURES OF FIT AND THEIR EQUIVALENT STATISTICAL OBSERVATION MODEL OF THE CHROMAGRAM

Noise structure Observation modelp
(

cn|hk,n,wk

) Log-likelihood
− log

(

p
(

cn|hk,n,wk

)) Scale parameterhk,n

Additive Gaussian noise
cn = hk,nwk + ǫ

∏M

m=1
N
(

cm,n ; hk,nwm,k, σ
2
)

1
2σ2 d

2
EUC

(

cn;hk,nwk

)

+ cst

∑

M

m=1
cm,n wm,k

∑

M

m=1
w2

m,n

Multiplicative Gamma
noisecn = (hk,nwk) · ǫ

∏M

m=1
1

hk,nwm,k
G

(

cm,n

hk,nwm,k
; β, β

)

β dIS
(

cn|hk,nwk

)

+ cst 1
M

∑M

m=1

cm,n

wm,k

Poisson noise
∏M

m=1
P
(

cm,n ; hk,nwm,k

)

dKL

(

cn|hk,nwk

)

+ cst
∑M

m=1
cm,n

whereN , G andP are the probability distribution defined in Appendix
andcst denotes terms constant w.r.t.hk,nwk.

We are slightly abusing notations here aswk should also
appear on the left-hand side of Eq. (9), but as this is a fixed
parameter as opposed to a parameter to be estimated, we will
drop it from the notations. Now let us denote byαk the
probability of occurrence of chordk in the song. Hence we
have

P (γn = k) = αk, (10)

where we so far assume that the frames are independent.
Let us introduce the vector variablesα = [α1, . . . , αK ]T

(vector of all chord probabilities) andhn = [h1,n, . . . , hK,n]
(vector of all scale parameters at framen). Averaging over
all possible states (chords), the statistical generative model of
the chromagram defined by Eq. (9) and (10) is written more
concisely as

p (cn|α,hn) =

K
∑

k=1

αk p (cn|hk,n,wk) , (11)

which defines amixture model.

To recapitulate our model, given a dictionary of chordsW

with occurrence probabilitiesα, a chromagram framecn is
generated by 1) randomly choosing chordk with probabil-
ity αk, 2) scalingwk with parameterhk,n (to account for
amplitude variations), and 3) generatingcn according to the
assumed noise model and the vectorhk,nwk.

The only parameters to be estimated in our model are the
chord probabilitiesα and the set of amplitude coefficients
H = {hk,n}kn. Given estimates of these parameters, chord
recognition at every framen may be performed by selection
of the chord with largest posterior probability, i.e,

γ̂n = argmax
k

{p(γn = k|cn, α̂, ĥn)}k. (12)

Next we describe an EM algorithm for maximum likelihood
estimation of parametersα andH.

B. Expectation-Maximization (EM) algorithm

Let us denote byΘ = (α,H) the set of parameters. Our
task is to maximize the following objective function

log p (C|Θ) =
∑

n

log p (cn|α,hn) , (13)

which may routinely be done with an EM algorithm [27]
using the set of chord state variables as missing data, which
we denoteγ = [γ1, . . . , γN ]. The EM algorithm involves
computing (E-step) and maximizing (M-step) the following
functional

Q (Θ|Θ′) =
∑

γ

log p (C,γ|Θ) p (γ|C,Θ′) (14)

where log p (C,γ|Θ) is referred to as thecomplete data
likelihoodandp (γ|C,Θ′) is themissing data posterior. Each
of the two EM steps is described next.

a) E-Step: Under the frame independence assumption
the functional (14) can be written as

Q (Θ|Θ′) =

N
∑

n=1

K
∑

k=1

log p (cn, γn = k|Θ) p (γn = k|cn,Θ
′) .

(15)
Let us denotēαk,n the posterior probability of state variable
γk,n (the notation is chosen in analogy with the notation
chosen for its prior probabilityαk), i.e.,

ᾱk,n = p (γn = k|cn,Θ) (16)

=
αk p (cn|γn = k,Θ)

∑K
l=1 αl p (cn|γn = l,Θ)

, (17)

where the second equation comes naturally from the applica-
tion of Bayes theorem and from the fact that the probabilities
sum to 1. In the following, we denote bȳα′

k,n the posterior
state probabilities conditioned on parameter iterateΘ′. Hence,
by expanding the complete data likelihood as

log p (cn, γn = k|Θ) = log p (cn|hk,n,wk) + logαk, (18)

the E-step amounts to evaluating the EM functional as

Q (Θ|Θ′) =

N
∑

n=1

K
∑

k=1

[log p (cn|hk,n,wk) + logαk] ᾱ
′
k,n,

(19)
which we recall is to be maximized w.r.t toΘ = (α,H) and
subject to

∑K

k=1 αk = 1.
b) M-Step: The derivative ofQ (Θ|Θ′) w.r.t to hk,n

writes

∇hk,n
Q (Θ|Θ′) = ᾱ′

k,n∇hk,n
log p(cn|hk,n,wk), (20)



5

so that updatinghk,n amounts to solving

∇hk,n
log p(cn|hk,n,wk) = 0, (21)

which does not involve the current parameter estimateΘ′.
Therefore, the parameterH can be precomputed and does
not need to be updated during the EM iterations. Note that
the estimationH is equivalent to that of Eq. (3) in the
deterministic baseline method. The expressions of the scale
parametershk,n are presented on Table I.

Regarding the optimization of parameterα, the sum con-
straint can be handled with the introduction of a Lagrangian
term, leading to the following update:

αk =

∑N

n=1 ᾱ
′
k,n

∑K

l=1

∑N

n=1 ᾱ
′
l,n

. (22)

The resulting EM algorithm is summarized below. In the
following we will refer to our probabilistic approach as PCR
(standing for probabilistic chord recognition).

Algorithm 1: EM algorithm for probabilistic template-
based chord recognition

Input : Chromagram dataC = [c1, . . . , cN ], chord
templatesW = [w1, . . . ,wK ]

Output : Chord probabilitiesα = [α1, . . . , αK ]

Initialize α

Compute scale parametersH as in Eq. (21)

for i = 1 : niter do

ᾱ
(i−1)
k,n =

p(cn|hk,n,wk) α
(i−1)

k
∑

K

l=1
p(cn|hl,n,wl) α

(i−1)

l

// E-Step

α
(i)
k =

∑

N

n=1
ᾱ

(i−1)

k,n
∑

K

l=1

∑

N

n=1
ᾱ

(i−1)

l,n

// M-Step

C. Chord recognition under the probabilistic model

As already discussed in Section III-A, our chord recognition
criterion is based on the frame-by-frame maximum state
posterior probability, i.e.,

γ̂n = argmax
k

{ᾱk,n}k. (23)

Note that the state posterior probabilities are readily available
from within the EM algorithm. Just like in the baseline
method, this frame-by-frame chord recognition system can
be improved by taking into account the long-term trend
in the chord changes. We therefore propose to use anad
hoc filtering process that implicitly informs the system of
the expected chord duration. The post-processing filteringis
performed on the state posterior probabilitiesᾱk,n and not on
the chromagram, as in [2], [7], [8], or on the detected chord
sequence as in [8].

IV. EVALUATION

A. Corpus

As for evaluation, we first consider the Beatles corpus,
composed of all 13 albums of the Beatles (180 songs, PCM

44100 Hz, 16 bits, mono). This database has been extensively
used for the evaluation of many chord recognition systems, in
particular those presented at MIREX 2008 and 2009 for the
Audio Chord Detection task [28], [29]. The annotation files
are provided by Christopher Harte [30]. A total of 17 types
of chords are used (maj, dim, aug, maj7, 7, dim7, hdim7,
maj6, 9, maj9, sus4, sus2, min, min7, minmaj7, min6, min9)
among with one ‘no chord’ label (N) corresponding to silences
or untuned material. The alignment between annotations and
audio files is performed with an algorithm also provided by
Christopher Harte.

The second corpus was provided to us by the QUAERO
project2. It consists of 20 musical pieces from commercial
recordings annotated by IRCAM (PCM 22050 Hz, 16 bits,
mono) from various artists (Pink Floyd, Queen, Buenavista
Social Club, Dusty Springfield, Aerosmith, Shack, UB40, Fall
Out Boy, Nelly Furtado, Justin Timberlake, Mariah Carey,
Abba, Cher, Phil Collins, Santa Esmeralda, Sweet, FR David
and Enya) and various genres (pop, rock, electro, salsa,
disco,...). The corpus only contains major and minor labels.
More details about this corpus can be found in [31].

B. Chord dictionary

The evaluation protocol we use in this paper relies on the
one used in MIREX 08 & 09 [28], [29]. Since major and
minor chords are prominent in pop music, the evaluation is
only based on a 25-chord dictionary: 12 major chord labels,
12 minor chords labels and one ’N’ label corresponding to
silences or untuned material.

The Beatles annotation files are therefore mapped to major
and minor types following these rules (used in MIREX 08 &
09) [28], [29]:

• major: maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9,
maj9, sus4, sus2

• minor: min, min7, minmaj7, min6, min9

Since the QUAERO corpus contains only major and minor
chords already, no mapping is necessary.

C. Metrics

The chord transcription task is actually the fusion of two
subtasks: a recognition task (find the correct label for each
frame) and a segmentation task (find the correct chord bound-
aries). Also a good transcription is supposed to be compact and
to use a sparse chord vocabulary. We here list some metrics
in order to evaluate not only the quality of transcription but
also the accuracy of segmentation and of chord vocabulary, as
described below.

Let S be a corpus composed ofS songs. In the annotation
files, each songs is segmented withTs temporal segments
U (s) = {u1(s), . . . , uTs

(s)}. For each segmentut(s), the
annotation files provide a chord labellt(s).

Let us denote|u| the duration of segmentu andu ∩ u′ the
intersection of segmentsu and u′. Hence the total length of
the songs is |s| =

∑Ts

t=1 |ut(s)|.

2QUAERO project: http://www.quaero.org
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Annotation (Ts=2)

U (s)

Transcription (T̂s=3)

Û (s)

Overlap Score

OS(s)

Directional Hamming

DHD
(

U(s)|Û(s)
)

Directional Hamming

DHD
(

Û(s)|U(s)
)

l1(s) = Cmaj l2(s) = Amin

u1(s) u2(s)

l̂1(s) = Cmaj l̂2(s) = Amin l̂3(s) = Fmaj

û1(s) û2(s) û3(s)

|u1(s)| −maxt′ |u1(s) ∩ ût′(s)| |u2(s)| −maxt′ |u2(s) ∩ ût′(s)|

|û2(s)| −maxt′ |û2(s) ∩ ut′(s)|

Overlap ScoreOS(s) = 3+1
10 = 0.4

Hamming DistanceHD(s) = 1
2 ×

(

2+1
10 + 1

10

)

= 0.2

Reduced Chord LengthRCL(s) =
3+3+4

3
5+5
2

= 2
3

Reduced Chord Label NumberRCLN(s) = 3
2

False Chord Label NumberFCLN(s) = 1

Fig. 2. Example of calculation of Overlap Score, Hamming Distance,
Reduced Chord Length, Reduced Chord Number and False Chord Label
Number. The figure uses a discrete “clock” for purpose of illustration but
in reality the time scale is continuous up to the sample period.

With our transcription method, each songs is divided into
T̂s segments, and every segmentût(s) is given a chord label
l̂t(s).

1) Performance metrics:Our primary goal is to evaluate the
accuracy of the chord labels attributed by our method.Overlap
ScoreOS(s) is defined as the ratio between the length of the
correctly analyzed chords and the total length of the song, i.e.,

OS(s) =

∑Ts

t=1

∑T̂s

t′=1 |ut(s) ∩ ût′(s)|lt(s)=l̂t′ (s)

|s|
. (24)

This Overlap Score ranges from 0 to 1. The higher the score,
the better the performance.

TheAverage Overlap Score (AOS), which has been used for
MIREX 2008 [28], is the mean of the Overlap ScoresOS(s)
of the corpus:

AOS =
1

S

S
∑

s=1

OS(s). (25)

The chord recognition task can be seen as the joint recog-
nition of chord root and chord type. Another metric can also
be defined: theAverage Root Overlap Score (AROS), which is
defined just like the AOS, but only assesses root detection.

2) Segmentation metrics:In order to evaluate the segmen-
tation quality, recent publications [11] have used theHamming
Distance (HD) calculated from theDirectional Hamming
Divergence (DHD)[32]. The DHD reflects the unfitness of one
segmentation to another. The directional Hamming divergence
between the annotation segmentationU(s) and the transcrip-

tion segmentation̂U(s) is defined as:

DHD
(

U(s)|Û(s)
)

=

∑Ts

t=1 |ut(s)| −maxt′ |ut(s) ∩ ût′(s)|

|s|
.

(26)
The inverse directional Hamming divergence is defined as:

DHD
(

Û(s)|U(s)
)

=

∑T̂s

t=1 |ût(s)| −maxt′ |ût(s) ∩ ut′(s)|

|s|
.

(27)
Finally, the Hamming distance between the two segmentations
is defined as the mean of the two directional Hamming
divergences:

HD (s) =
DHD

(

U(s)|Û(s)
)

+DHD

(

Û(s)|U(s)
)

2
. (28)

The Hamming Distance tends to reflect the dissimilarity of
two segmentations: this metric takes values between 0 and 1
and the lower the value, the better the segmentation quality. In
particular, a value of 0 is obtained when both segmentations
are exactly the same. The mean of all the Hamming Distances
of the corpus is called Average Hamming Distance (AHD).

3) Fragmentation metrics:A chord transcription is ex-
pected to display “compactness”. Indeed, the presence of
numerous fragmented chords can lead to noisy and hardly
understandable transcriptions. In order to evaluate whether a
chord recognition method produces fragmented transcriptions
or not, we propose a new metric that we coinAverage Chord
Length (ACL). Let us first define for a songs, the Reduced
Chord LengthRCL(s) as the ratio between the experimental
average chord duration and the duration of the ground truth,
i.e.,

RCL(s) =

1
T̂s

∑T̂s

t=1 |ût(s)|

1
Ts

∑Ts

t=1 |ut(s)|
. (29)

Note that this score can also be defined as the ratio between
Ts and T̂s. This metric should be as close to 1 as possible;
when lower than 1, the transcriber tends to overfragment the
piece. We define the Average Chord Length as the mean of
all the Reduced Chord Lengths of the corpus.

4) Chord vocabulary metrics:Another indicator of the
quality of a chord transcription is the compactness of the chord
vocabulary used for the transcription. Remember that for each
song the chord vocabulary is the subset of the chord dictionary
needed to transcribe that song. When the song relates to a
specific key, it reflects by extension the tonal context of the
piece, but by chord vocabulary we mean a wider notion than
key. We define two metrics for assessing the correctness of the
estimated chord vocabulary: theAverage Chord Label Number
(ACLN)and theAverage False Chord Label Number (AFCLN).

Given a songs, we define theReduced Chord Label Number
RCLN(s) as the ratio between the number of different
chord labels used for the transcription and in the ground
truth annotation. Better results are obtained when this metric
approaches 1. When greater than 1, the transcription uses a too
wide chord vocabulary. The Average Chord Label Number is
the mean of all Reduced Chord Label Numbers of the corpus.

The Average False Chord Label Number is the average
number of chord labels that do not belong to the annotation
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files. It should be as low as possible: an AFCLN of 0 would
indicate that the method always detects the correct chord
vocabulary.

These metrics are illustrated on a small example in Figure
2.

V. RESULTS

A. Experimental setup

We use the chromagram proposed by Bello & Pickens [8] as
the input to our system. Other chromagrams were considered
in preliminary studies (in particular the one described in [8],
[7], [33]) but we found Bello & Pickens’ chromagram to
give the best results with our system. We used the code
kindly provided by the authors. The window length is 743 ms
and the hop size is set to 93 ms. Their implementation also
performs a silence (‘no chord’) detection using an empirically
set threshold on the energy of the chroma vectors. More details
about the calculation of the chromagram can be found in [8].

For our new probabilistic methods, two sets of parameters
are to be chosen: the probability distribution parameters (σ2

for the Gaussian model andβ for the Gamma model), and the
post-processing filtering parameters. For each of these obser-
vation distributions, extensive simulations have been done in
order to find the optimal probability distribution parameters.
These parameters are chosen in order to fit the model to the
chord recognition task, i.e., to model the type of noise present
in the chromagrams.

The post-processing methods and neighborhood sizes used
here are chosen in order to optimize the value of the Average
Overlap Score on the Beatles corpus. Nevertheless, there is
not much difference between two filtering methods or close
neighborhood sizes.

The experimental parameters used for our PCR methods are
as follows.

• Gaussian additive noise model: σ2 = 0.02 and median
filtering on 17 frames (2.23s) ;

• Gamma multiplicative noise model: β = 3 and low-
pass filtering on 15 frames (2.04s) ;

• Poisson noise: median filtering on 13 frames (1.86s).
We will respectively refer to the method based on the above
models as PCR/Gaussian, PCR/Gamma, PCR/Poisson.

B. Example on one Beatles song

Before giving the overall results, we propose here to in-
vestigate the differences between the deterministic and prob-
abilistic approaches on one example. We chose the Beatles’
song Run for your life from the albumRubber Soulas its
transcription demonstrates the improvements brought by the
probabilistic approach over the deterministic one. As such,
Figure 3 displays the transcription obtained with PCR/Gamma
and with OGF1, the latter being one of the two deterministic
algorithms that we submitted at MIREX’09.3 A first obser-
vation is that PCR/Gamma gives better results. Indeed, the

3In essence, OGF1 corresponds to the baseline system described in Sec-
tion II based on a KL divergence and median filtering with smoothing window
of size 15 and a dictionary composed only of major and minor chords. For
details see [21], [22], [29].
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Ground truth chord probabilities

Experimental chord probabilities (α)

Fig. 4. Ground-truth and estimated chord probability distributionsα̂ for the
Beatles songRun for your life.

Overlap Scores are respectively 0.733 and 0.919 for OGF1
and PCR/Gamma, showing a clear improvement. A careful
examination of both transcriptions suggests three explanations
for this improvement:

• PCR/Gamma detects chord boundaries more accurately
than OGF1.

• PCR/Gamma seems to detect longer chords while OGF1
gives very fragmented results.

• The chord vocabulary used in the transcription output
by PCR/Gamma is sparser than the one returned by
OGF1, preventing in particular from some major-minor
confusions.

The evaluation metrics computed for this song confirm these
observations:

• The Hamming Distances are respectively 0.206 and
0.060, which reflects the fact that the segmentation pro-
vided by PCR/Gamma is very similar to the one described
in the annotation files.

• The Reduced Chord Lengths are respectively 0.345 and
1.085, which shows that PCR/Gamma better evaluates the
chord length.

• The chord vocabulary used by PCR/Gamma is smaller
than OGF1’s one: the Reduced Chord Label Numbers for
the two methods are 1.75 and 0.75 respectively. Since the
second value is closer to 1 than the first one, the number
of chords used by PCR/Gamma is the most accurate. The
calculation of the False Chord Label Numbers confirms
this: they are respectively equal to 6 and 0, which means
that the transcription provided by PCR/Gamma does
not use any chord labels that were not present in the
annotation files.

PCR/Gamma efficiently estimate the chord vocabulary
thanks to the parameterα that models, for each song, the
chord probability distribution. This is illustrated on Figure 4
which displays the estimated chord probabilities (vectorα)
on top of the empirical normalized chord length histogram
computed from the annotation file. We may see that they
closely fit, which confirms our assumption regarding the
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Chord transcription with the baseline method
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Chord transcription with the probabilistic method
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Fig. 3. Examples of chord transcription on the Beatles songRun for your life. The estimated chord labels are displayed in black while the ground-truth chord
annotation is in gray. Top figure: transcription with the baseline deterministic approach (OGF1), bottom figure: transcription with the probabilistic approach
(PCR/Gamma).

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART ON THE BEATLES CORPUS

MIREX 2008 MIREX 2009 PCR methods

BP RK PVM KO1 KO2 DE OGF1 OGF2 Gaussian Gamma Poisson

Average Overlap Score (AOS) 0.707 0.705 0.648 0.722 0.734 0.738 0.714 0.724 0.749 0.758 0.744

Average Root Overlap Score (AROS) 0.740 0.763 0.680 0.754 0.761 0.772 0.775 0.783 0.785 0.787 0.775

Average Hamming Distance (AHD) 0.153 0.146 0.209 0.152 0.150 0.156 0.163 0.152 0.146 0.149 0.156

Average Chord Length (ACL) 0.941 1.074 0.422 1.169 1.168 0.890 0.552 0.717 0.872 0.920 1.057

Average Chord Label Number (ACLN) 1.441 1.414 2.285 1.507 1.319 1.667 2.070 1.693 1.314 1.185 1.012

Average False Chord Label Number (AFCLN) 3.560 3.330 8.490 3.760 2.590 4.590 7.390 4.990 2.640 1.860 1.060

Run time (in seconds) 1619 2241 12402 63821 63821 1403 790 796 480 482 486

accurate estimation of the chord vocabulary.

C. Comparison with state-of-the-art

Our methods are now compared to some state-of-the-art
systems according to the metrics defined in Section IV. These
methods have all been tested with their original implementa-
tions and have all participated in MIREX 2008 [28] or 2009
[29].

MIREX 2008:
• BP: Bello & Pickens [8]
• RK: Ryynänen & Klapuri [17]
• PVM: Pauwels, Verewyck & Martens [34]

MIREX 2009:

• KO1 & KO2: Khadkevich & Omologo [18]
• DE: Ellis [14]
• OGF1 & OGF2: ourbaseline method[21], [22]

More details about these methods can be found in the given
references or from the corresponding MIREX websites [28],
[29].

1) Beatles corpus:Table II presents the results obtained by
these 11 chord recognition systems on the Beatles corpus.

Quantitative scores such as AOS or AROS show that our
probabilistic approach slightly outperforms state-of-the art: the
AOS we obtain with PCR/Gamma is indeed 2% larger than the
best score (DE). Since all the scores are close, it is interesting

1As the KO1 and KO2 methods are run together because they share
common resources, we here report the total running time.
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Fig. 5. Tukey-Kramer’s test performed on Overlap Scores calculated on the
Beatles corpus. The x-axis shows the average rank for each chord recognition
method along with the comparison interval.

to figure out whether the methods are significantly different
from each other. We therefore propose to perform a Tukey-
Kramer’s test [35], [36] on the Overlap Scores. This test was
notably run in MIREX 2008 & 2009 and compares the average
rank of every chord recognition method to the average rank
of every other system. Results of the Tukey-Kramer’s test are
displayed on Figure 5. It shows that the improvement brought
by our PCR approach is significant. Indeed PCR/Gamma is
significantly better than all the other tested methods, except
for PCR/Gaussian. The latter method performs significantly
better than all the methods except for KO2, PCR/Gamma
and PCR/Poisson. Finally, PCR/Poisson is significantly better
than BP, RK, PVM and OGF1. In particular, PCR/Gamma
outperforms OGF1 on 148 songs over 180.

The introduction of other evaluation metrics allows us
to compare chord recognition methods according to several
criteria. Indeed, the 4 other metrics tend to evaluate the
segmentation, the fragmentation and the good detection of the
chord vocabulary.

The segmentation, i.e., the detection of the chord bound-
aries, is measured by the AHD (that better be as low as
possible). We notice that, except for the PVM method, all
the AHD values are close (around 0.15). Indeed, statistical
tests are rather inconclusive: a Tukey-Kramer’s test showsthat
except for the PVM method, they are no strong differences
between the chord recognition methods. For example, the
method obtaining the best AHD (PCR/Gaussian), is only
significantly different from PVM, OGF1 & DE.

The fragmentation is evaluated thanks to the ACL (that
better be as close to 1 as possible). Some methods seem
to slightly overestimate the chord length (RK, KO1, KO2 &
PCR/Poisson), but most of them tend to over-fragment the
chords. Some methods (PVM, OGF1) even detect chords with
half their real duration. On the contrary, our PCR methods

21%
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7% 11%
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29%

OGF1

21%
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8%

14%
9%

37%

OGF2
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13%

15%

10%

32%

Gamma

 

parallels
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subdominants

dominants

no chord

others

Fig. 6. Error distribution of OGF1, OGF2 and PCR/Gamma on the
Beatles corpus. As a reminder, the scores of each is 0.714, 0.724 and 0.758
respectively. Refer to [22] for a detailed description of the error types.

seem to avoid this fragmentation effect and the best results
are obtained with PCR/Gamma.

One of the main contributions of the probabilistic frame-
work is the explicit evaluation of the song chord vocabulary.
The good detection of this chord vocabulary is described by
two metrics: the ACLN (that better be as close to 1 as possible)
and the AFCLN (that better be as low as possible). We notice
that all methods seem to over-evaluate the number of chords.
The two methods PVM and OGF1 seem to be particularly
penalized by this phenomenon. Our 3 PCR methods, on the
contrary, reliably evaluate the chord vocabulary: they obtain
the 3 best scores. AFCLN scores confirm these results: the
introduction of chord probabilities allows to correctly capture
the chord vocabulary of every song.

As the PCR approach does not require any training nor side-
information (besides the chromagram data and the statistical
model specification) its computation time is quite low. Thanks
to some code optimization, our PCR methods perform even
faster than the baseline methods OGF1 & OGF2, and are
therefore twice as fast as other state-of-the-art methods.

In previous work [22], we have presented an analysis
of the errors commonly made by chord recognition meth-
ods: we propose here to conduct the same analysis for our
probabilistic approach. Figure 6 presents the distribution of
error sources for PCR/Gamma and for the two deterministic
methods OGF1 & OGF2. Five types of common errors are
emphasized, corresponding either to structural similarity or
harmonic proximity situations (see [22] for details). We notice
that parallel errors, which were very common with OGF1 &
OGF2, do not seem to be as important with PCR/Gamma. This
is an interesting observation as these errors were related to
the template-based character of our methods, in which chords
were likely to be mistaken one for another when they had
notes in common. The improvement on this aspect is probably
explained by the capacity of our system to efficiently evaluate
the chord vocabulary, leading to a lower number of major-
minor confusions.
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART ON THE QUAERO CORPUS

MIREX 2008 MIREX 2009 PCR methods

BP RK PVM KO1 KO2 DE OGF1 OGF2 Gaussian Gamma Poisson

Average Overlap Score (AOS) 0.699 0.730 0.664 0.670 0.665 0.719 0.707 0.682 0.739 0.773 0.760

Average Hamming Distance (AHD) 0.142 0.117 0.175 0.153 0.156 0.127 0.142 0.137 0.131 0.124 0.130

Average Chord Length (ACL) 0.903 1.021 0.494 1.084 1.109 0.823 0.565 0.683 0.835 0.896 0.806

Average Chord Label Number (ACLN) 1.559 1.516 2.323 1.549 1.351 1.906 2.297 1.970 1.529 1.336 1.138

Average False Chord Label Number (AFCLN) 3.650 3.250 7.850 3.600 2.550 5.300 7.700 5.850 3.150 2.150 1.150

2) QUAERO corpus:Recent publications such as [11] have
discussed the necessity of testing chord recognition methods
on other corpus than the popular Beatles corpus. We have
therefore also run all the tested systems on the QUAERO
corpus and the results are displayed on Table III.

A first observation is that except for RK, PVM,
PCR/Gamma and PCR/Poisson, all the methods get lower
AOS on this corpus than on the Beatles data. Once again,
our probabilistic methods give the best results: in particular,
PCR/Gamma performs even better than on the Beatles corpus.
Although the small number of songs in the corpus does not
allow one to perform a real significant difference test, the AOS
obtained by PCR/Gamma is 4% higher than the best state-of-
the-art method (RK), which is a large difference when looking
at the scores. As far as segmentation is concerned, the RK
method gives the best results but nevertheless PCR/Gamma
gives the second best AHD result. Once again, most of the
chord recognition methods tend to underestimate the chord
length: however PCR/Gamma gives the fourth best ACL score.
Finally, we observe with the ACLN and AFCLN metrics
that our PCR methods still outperform other state-of-the-art
methods on the chord vocabulary estimation.

More importantly, these results tend to answer the overfit-
ting concern related to the Beatles corpus, since our methods
achieve better performances on the QUAERO corpus than on
the Beatles one. In addition, music genre and style do not
seem to influence our systems, as all the calculated scores for
the Beatles corpus and the QUAERO corpus are close.

VI. CONCLUSION

In this paper we presented a novel probabilistic framework
for template-based chord recognition. In comparison with our
previous work the key ingredient of our new approach is the
introduction of chord probabilities, learned from the song.
This tends to produce more accurate chord vocabulary (and
in particular more compact), i.e., to eliminate many of the
spurious chords that appeared in the transcriptions produced
with our baseline deterministic approach. Indeed, the proba-
bility of occurrence of the spurious chords is automatically
driven to zero and the chords are hence smoothed out of
the transcription. This translates into both better recognition
and segmentation scores. Interestingly, the vector of estimated
chord probabilities reflects the “harmonic profile” of the song
and may be of interest for applications such as key estimation
or can serve as a descriptor for MIR tasks.

As for perspective we envisage the following lines of work.
Firstly, of the three considered observation noise models,the

Gamma multiplicative noise model appeared to lead to best
results. This model requires the tuning of an extra shape
parameter that we handled by trial-and-error. The automatic
estimation of this parameter is not trivial but could be envis-
aged with numerical methods. This may improve even more
recognition scores and also yield another relevant descriptor of
the song. Secondly, in this work we have taken into account
the long-term variations in the song using an ad-hoc post-
processing filtering of the states posterior distributions. Future
work will consider more sophisticated models that improve
the probabilistic model so as to more adequately model the
rhythmic structure of music.
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APPENDIX

EXPRESSIONS OF STANDARD PROBABILITY DISTRIBUTIONS

Gaussian N
(

x;µ, σ2
)

= 1
√

2πσ
e
−

(x−µ)2

2σ2

Gamma G (x;α, β) = βα

Γ(α)
e−βx

Poisson P (x;λ) = λx

Γ(x+1)
e−λ

whereΓ is the Gamma function.
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