
Usages of DASH for Rich Media Services
Cyril Concolato Jean Le Feuvre Romain Bouqueau

Telecom ParisTech; Institut Telecom; CNRS LTCI
46, rue Barrault

75634 PARIS CEDEX 13

{concolato, lefeuvre, bouqueau}@telecom-paristech.fr

ABSTRACT
In recent years, audio-visual distribution over Internet has
witnessed the growing usage of HTTP based delivery systems.
While these systems have their drawbacks for some use-cases,
they also have many advantages, the most important one being
reusing the existing delivery infrastructure such as HTTP servers,
proxies and caches. The MPEG group has started the
standardization of the Dynamic Adaptive Streaming over HTTP
(DASH) of major transport formats, MPEG-2 TS and ISO Base
Media File, and mostly focuses on audio, video and subtitle
formats. We believe Rich Media services have a role to play in
this landscape, as a presentation layer for the audio-visual content
first, but also as a dedicated media in the DASH content for real-
time media-synchronized interactive services. In this paper, we
present a study on usages of DASH for Rich Media Services.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols – Applications. H.3.2 [Information Storage and
Retrieval]: Information Storage – file organization. H.5.4
[Information Interfaces and Presentation]:
Hypertext/Hypermedia – architectures.

General Terms
Design, Experimentation, Languages, Standardization.

Keywords
Adaptive Streaming, HTML 5, HTTP, Interactivity, MPEG, Rich
Media.

1. INTRODUCTION
In the past few years, new types of multimedia devices have
emerged, in particular smartphones, tablet PC or connected
SetTop Boxes and TV sets. These new devices have brought new
usages for the consumption of audio visual services. Indeed, users
now want to view the same audiovisual service either at home, in
front of their TV or on their tablet PC in their bedroom, or on the
move, with 3G services. These changes imply that methods for the
efficient delivery of audiovisual services to a large number of

users and devices have to be found. The number of audiovisual
providers has drastically increased with the upcoming of Web
videos, and technologies such as broadcast, which assumes that a
return channel is not available, or RTP in unicast or multicast,
which assumes that UDP traffic is available, are no longer
appropriate for all providers. Recent developments in the
industry [1] or in standardization bodies such as 3GPP [2] or
MPEG [3] have defined new technologies for streaming of audio-
visual resources over HTTP.

In the meantime, users’ expectations with IP-based applications
have risen. They are now used to consume audiovisual services as
part of larger rich media services providing additional resources
with the content. The upcoming HTML 5 standard is a good
example of how video content can be enriched with graphics,
animations, textual meta-data or community services.

At the same time, content providers need to ensure that their meta-
data can be tightly synchronized with the content, as is usually the
case in traditional broadcast environment for DTV systems for
various use cases such as advertisements, voting, or annotations.

In this paper, we are interested in the usage of DASH in this
environment. DASH [3] stands for Dynamic Adaptive Streaming
over HTTP and acts as a superset of existing streaming
technologies defined by other standardization bodies. We study
how DASH can be useful to rich media technologies and how rich
media technologies can be useful to DASH.

The remainder of this paper is organized as follows. Section 2
presents several scenarios where DASH and rich media
technologies coexist. Section 3 describes what the state-of-the-art
work in this area can achieve. Section 4 presents our study on the
use of DASH and our proposals to improve DASH or existing rich
media technologies. Section 5 presents some implementation
considerations. Finally, Section 6 concludes this paper and
presents future work.

2. SCENARIOS
In this paper, rich media services are defined as services that
feature multiple media elements (audio, video, images, text,
graphics) organized in a specific 2D/3D manner, with some
dynamicity either in the organization of the media elements or in
the content of the media elements (e.g. changing text, animated
graphics) and with an interactive part. Such dynamicity may need
to be finely synchronized with media elements.

With that definition, we can envisage the following types of
scenarios: some where the rich media service is static and does
not need to be streamed per se; and some where the rich media
data (e.g. graphics, layout) changes rapidly. In the first scenario
presented in this paper, we consider the usage of DASHed media

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MMSys’11, February 23–25, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0517-4/11/02...$10.00.

in a rich media service. In the second one, we consider that the
rich media data can be DASHed. The third scenario is a combined
approach of the first two scenarios, where only the dynamic part
of the rich media content is DASHed.

2.1 Controlling a session from a Web page
In this scenario, we consider that a presentation is available with
multiple video streams, one for each different camera angle,
multiple audio streams for each language, and multiple subtitles
streams. We envisage that an author wants to use a Media
Presentation Description (MPD), defined by DASH, within a rich
media document, for example an HTML 5 page. This page
features some controls to enable the selection of a camera angle,
the selection of a sound track, the activation/deactivation and
selection of a subtitle track, and the ability to seek into the media
presentation time line.

2.2 Visual Web Radio
In this scenario, we envisage an extension of traditional Web
radios. Indeed, Web radios deliver their audio content over HTTP
using Ice cast, Shout cast or over similar protocols. The extension
of Web Radio into Visual Web Radio consists in adding a visual
(non video) component to the audio component. The visual
component carries additional visual information associated with
the audio component. Some information can be synchronized and
change more or less rapidly (lyrics, news headlines, quiz items).
Some information can be quite static for example the weather
forecast, the stock quotes. In this scenario, we consider that the
service is integrated, in the sense that there is only one
application/one window handling the visual and audio parts, as
this is easier to ensure synchronization.

Figure 1 - Visual component of a Web Visual Radio when the
speaker speaks about President Obama

We can illustrate the concept of visual radio with the following
figures. During the news report, when the speaker speaks about
President Obama, the visual component will show Figure 1. When
he reports about the weather, the visual component will show
Figure 2. At any time, the user can interact on the left-side text to
display some non-synchronized information (e.g. horoscope,
program grid).

2.3 Interactive Service Design Switching
In this scenario, we consider a TV program consisting of audio
and video streams delivered in DASH with an associated

interactive application, for example an SVG file. In order to avoid
overloading the bandwidth by resending the SVG content on a
regular basis, as it would be done in traditional broadcast
application, the SVG content is made available on a Web server
and downloaded by each user upon connection to the TV channel.

Figure 2 - Visual component of a Web Visual Radio when the
speaker reports about the weather

The broadcaster wants to synchronize parts of the interactive
application with the audio-visual content, such as active speaker
name and biography in a talk show, as seen in the previous
scenario. This requires tight synchronization between the
interactive application and the DASH streams.

Although the DASH session is well structured into pre-identified
periods, each corresponding to a single show and its associated
interactive application, the content provider wants to be able to
handle unpredictable events in its live broadcast:

• Red Alert Codes triggered by government agencies, for
which the broadcaster wants to present an interactive
application allowing fast phone call dialing or emailing,

• Failure of the contribution network, in which case the
broadcaster may have to switch to a different program
and change the current interactive application.

For these reasons, the broadcaster needs to be able to switch at
any time between interactive programs during the lifetime of the
DASH session.

3. RELATED WORKS
The WhatWG has started drafting some thoughts around the usage
of Adaptive Streaming technologies in HTML5 [4], using the
M3U8 format [1]. Their work is focusing on the control of quality
of service at the player, including video layer switching or buffer
management. Specific JavaScript APIs are proposed to handle
stream switching at the browser level, based on various live
parameters such as download rate, media buffer levels or frame
drops. It does not take into account the possibility that a single
session can be composed of many resources such as one video,
several audio and several meta-data tracks (e.g. subtitles), all of
them available in different resolutions, viewpoints and/or quality.
Therefore, the proposed interaction with the underlying adaptive
streaming subsystem is not sufficient to cover our scenario 1. The
3GPP group has also standardized a mapping between the MPD
syntax and the SMIL syntax, but this syntax does not provide

ways for an upper presentation layer, such as an HTML <video>
element, to select media representations based on user criteria
such as language or viewpoint.

In the broadcast world, several technologies already offer the
possibility to deliver interactive applications to the end user,
including audio/video-synchronized events. Most are based on
MPEG-2 Transport streams carrying either the application as files
in object carrousels, such as in DVB-MHP [6] or HBBTV; or as
rich media streams in MPEG-4 BIFS format, such as in T-DMB.
Other technologies rely on an IP layer for transport [7], and carry
the applications as a collection of files (using FLUTE) and data
streams (using RTP) in SVG/3GPP DIMS format, such as DVB-H
or ATSC-M/H. One key notion in all these systems is the carousel
of media files. It allows users to download an application over a
broadcast link in a reasonable time, but it is bandwidth costly. It
also allows changing the complete application in all connected
terminals if the broadcaster needs to.

In the Internet world, many technologies exist to allow dynamic
modifications of a multimedia document such as HTML or SVG.
We can classify these technologies in two categories. Pull
techniques allow the client to request new data from the Web
server; the most known example is AJAX-based technologies
using the XmlHTTPRequest JavaScript object. Push techniques
allow the server to send new data to the client. For a long time,
these techniques were relying on script, either through progressive
download or long-polling HTTP request from the client, and are
often referred to as COMET [5] technology. Rich Media
standards such as MPEG-4 BIFS, MPEG-4 LASeR or 3GPP
DIMS, and more recently HTML 5 with its EventSource interface
[8], have the ability to define data streams used by the server to
send updates to the client. All these techniques are suitable for our
Rich Media use cases, but we should keep in mind that AJAX,
COMET or HTML5 techniques are heavier as they require
scripting support even for simple operations such as text
replacement and have no support for audio-video synchronization.

4. STUDY OF DASH FOR RICH MEDIA
4.1 Linking MPD from a Rich Media
Document
In DASH, a given media resource as delivered by the network is
called a representation. A representation can be a multiplexed
MPEG-2 TS or ISO Base Media File, for example containing
video and audio tracks, or can be a single-media file, for example
containing only audio in a given language. Single-media
representations can be assigned to a given group. A group is a set
of alternate media representation, and a DASH player is expected
to play at most one representation from each group; therefore,
groups have to be carefully defined. The possible combinations
can be restricted by defining subsets, for instance to disallow a
particular audio track when playing the Director’s cut version of a
movie. For our scenario, it must be noted that only groups and
representations have associated identifiers.

We consider in this paper that the MPD we want to manipulate is
made of single-media representation, since multiple-media
representations do not offer any flexibility regarding audio or
subtitle track selection, as they are all part of the same
representation. We also only consider the use case where the
MPD file is the same for all users and is not negotiated based on

user preferences: although this later case may offer a pre-selection
of tracks, it does not solve the case of interactive switching
between tracks unless a renegotiation for a new MPD occurs,
which is precisely what we want to avoid.

One simple approach for media selection in DASH would be to
identify representations to be played from the HTML content.
However, this would force the DASH player to select one given
representation and we will lose the capability of DASH to switch
between representations when bandwidth conditions change. In
other words, the HTML author would have to manage the stream
switching logic in its content, which is a real burden and requires
monitoring many real-time parameters of the network stack.

A better approach would be to identify groups, as each group
constitutes the set of alternative representation for a media.
However there are scenarios for which this is not sufficient. Let us
consider the case of language selection for audio tracks. If all
tracks are set in the same group, there is no way for the HTML
document to select one particular language by using only the
group id. One solution could be to group audio tracks by
language, therefore defining as many groups as they are
languages, and defining subsets in the MPD to avoid playing
together two audio tracks. Each group can then be referenced
through its ID in the HTML document. However, if the HTML
document wants to switch the quality of selected audio track, the
group id is no longer sufficient to identify the possible
representations. Let us now consider the case of multiview video:
a DASH session offers two views at two different resolutions,
each of the videos being encoding at two bitrates. The HTML user
interface needs to be able to select the view, and may need to
switch the resolution when displaying the video at a lower
resolution. The DASH player may not always know the target
resolution of the video, e.g. when the video is used for visual
effects in an HTML 5 Canvas object; only the HTML presentation
layer may hint this. In such a case, either the MPD describes each
representation as a group, restricting their combinations with
subsets, or another selection mechanism should be used for
HTML. If the HTML layer wants to select representations based
on another criteria (e.g. frame rate), more groups would have to be
defined and subsets and selection processing becomes
cumbersome. One final consideration is that the HTML browser
would need to be aware of group and representation identifiers,
which makes designing a generic HTML UI for any MPD harder.
We therefore propose to identify a sub-set of selection criteria
from the MPD schema and expose them to the HTML layer. The
set of criteria is presented in Table 1.

Not all of the various criteria defined in MPD have been exposed.
We assume that bandwidth-related criteria are handled directly by
the DASH player for adapting to bandwidth variation. We assume
that in most cases, the DASH player will automatically handle the
TrickMode criterion, used in slow/fast motion forward/backward,
when the HTML object modifies the playback rate of the content;
in other words the HTML Web author should not have to touch it.
We however expose this parameter to allow non-linear viewing of
video content in HTML, for example when displaying video key
frames when moving the mouse over the media timeline bar. In
such a case, the playback rate of the overlaid video is null (video
is paused) but the DASH player has to be instructed to select a
representation where random access is faster.

Table 1 – MPD Selection Criteria exposed in HTML

Currently, the typical way to embed video/audio resources within
a rich media document is through the use of dedicated elements
and attributes such as the HTML 5 <video> or <audio> elements
and the ‘src’ attribute, or the SVG <video> or <audio> element
and the ‘xlink:href’ attribute, or the BIFS MovieTexture or
AudioSource elements and the ‘url’ attribute. The use of DASHed
media should not deviate from this current practice, but additional
tools are needed to enable scenario 1. It should be possible for
Web page authors to pass parameters to the DASH player, in an
interoperable way. We can envisage three complementary
methods to extend existing documents and achieve scenario 1.

The first method is to define fragment identifiers. Fragment
identifiers are appended to the URL and have the advantage of
being language independent. An example is as follows:

<video src="dash.mpd#viewpoint=1
&width=176&height=144">

The second method is to define specific attributes for the selection
of a particular resource in the MPD. These attributes may be
defined in the host language and namespace or in a DASH
namespace. This is illustrated below.

<video src="dash.mpd">

 <track kind=subtitles src="dash.mpd"

 dash:qualityRanking="1" srclang="en"

 label="English">

</video>
The third method is to define an Application Programming
Interface (API), typically, using a generic Interface Definition
Language (IDL), which can then be mapped onto concrete
languages such as JavaScript. Here we present a possible HTML5
API to create a new TimedTrack object from an MPD
representation.

<script>

 var videoElement =

document.createElement('video');

var track =

createTrackFromDASH(‘subtitles’,‘lang’,’

en’);

videoElement.addTrack(track);

</script>

Given the novelty of DASH and HTML5, there are currently no
available implementations of DASH players in an HTML5
environment, and it is quite hard to predict how close the HTML5
browser and the DASH player will be integrated. This makes it

difficult to choose one of the proposed method rather another. Our
preference goes to the first method, using fragment identifier, as it
is language independent and may therefore be used in non-
HTML5 environment such as CE-HTML-based, SVG-based or
MPEG-4 BIFS. This approach avoids defining extensions in the
host language (new attributes or elements).

4.2 Using MPD to carry Rich Media Services
When the techniques mentioned in Section 3 are used in a
broadcast channel, they require sending the entire service has in a
carousel on regular basis, but take advantage of the tight
synchronization between audio-visual data and the service updates
in the broadcast. When transposed in an on-demand context over
HTTP, the service updates provided by these technologies are
usually carried in a dedicated channel, for instance HTTP for
AJAX or COMET based technologies, or RTP for BIFS or DIMS.
This channel follows a different path than the audio-visual data
presented in the service, and may even originate from a different
server; this introduces important delays in service update
acquisition, such as RTP buffer and transmission times or HTTP
round-trip delay. Such solutions are therefore not suited for tight
synchronization of service data with audio-visual data. In this
section, we investigate how the service updates can be carried in
DASH to guarantee this synchronization while being bandwidth-
friendly. We will take the example of a BIFS service, but our
approach is more generic and can be used for any timed data.

4.2.1 Example of a T-DMB Digital Radio Service
We take the example of a complex service, stored in an MP4 file,
which has duration of 6:40 minutes and is composed of:

• An audio stream, here an AAC sound track

• An MPEG-4 BIFS stream, used to display a visual scene
synchronized with the audio track. The scene uses text,
graphics and images. The scene features a live screen
and some non-live information like the last weather
forecast, the last horoscope, or the EPG.

• An MPEG-ODF stream used to describe when images
are used.

• 41 images, not displayed all at the same time.

The BIFS stream is a continuous stream, hence meaningful for
DASH applications. It is a bit different from typical video stream,
as it is made of only 69 access units, very sparse. The original
sequence contains only one Random Access Point at time 0.

4.2.2 Using DASH to deliver the example content
Our first approach in using DASH for the transport of this
interactive service is to embed BIFS media data in the DASH
session. The DASH session uses ISO Base Media File Format as a
container, and each track is setup to use track fragments. The
segment duration is selected to be 10 seconds. The initialization
segment of the session conforms to the DASH specification and
only contains track declaration with no media data.
To enable random access in the presentation, we recreate a
carousel at the beginning of each segment by generating random
access points in BIFS and OD streams and reinserting images
used during the segment duration. In our tests, the impact of this
content modification on the BIFS bitrate is quite important as can
be seen in Table 2. The image bitrate is of course much more

Criteria HTML Selection Action
width, height Specifies the desired video resolution
lang Specifies the desired language
frameRate Specifies the desired frame rate
qualityRanking Specifies the desired quality
viewpoint Specifies the name of the desired

viewpoint
TrickMode Specifies maximum playback rate desired

for fast forward or rewind

important but this is not really problematic as images could be
moved outside the DASH session, as explained in next example.

Our second approach, which fits our third scenario, is to extract
the static part of the presentation (of the BIFS stream) from the
DASH session and only convey the scene modifications in the
DASH session. This avoids carouseling most of the presentation,
and therefore leads to a BIFS bitrate close to that of the original
file with the initial random access point omitted. Images in the
BIFS scene are referenced through HTTP links rather than using
the OD framework, which allows simple image replacement in the
DASH session by carrying only one link rather than the entire
image. This also greatly reduces the bandwidth of the OD stream
as can be seen in Table 2. This slight increase is due to the fact
that image links to OD are replaced with image links to http
resources, which are larger text strings.

Table 2 – Bit rate of a BIFS Visual Web Radio over DASH

In summary, what we learn from this experiment is that delivering
an interactive application, initially designed for broadcast and
carousels, using DASH requires actual modification of the way
the application is structured. Static elements and dynamic
synchronized elements need to be delivered separately.

4.2.3 Optimizing DASH for Rich Media
The previous experiment showed that it is possible to use DASH
to deliver continuous and dynamic interactive applications, but a
problem remains. The requirement in the DASH specification that
the initialization segment shall not contain any media data forces
the content provider to insert the Rich Media service in a segment.
Since users may start playing at any segment, this implies that the
Rich Media service has to be repeated often in the segments,
which is bandwidth costly as shown previously. If the Rich Media
service structure is the same throughout the DASH session and
only modifications to the content (text data changing, animation
triggering…) are streamed in DASH, such repetition is awkward.
The same remark applies for any meta-data format stored as media
tracks in the file (XML, JPEG files…). We therefore propose to
allow non-empty initialization segments in DASH to carry the
static media data used in the DASH session in order to save
bandwidth. This allows the content to be delivered with the
original bitrate as described in Table 2.

One additional limitation we faced to fulfill our third scenario is
that the ISO Base Media File Format does not provide many tools
to reference external, remote resources that may change over time.
We investigated using the capability of the file to define an
external data source for the track using the DataReferenceBox,
which may point to an HTTP URL; however we faced a new
limitation in DASH that forces all data offsets to be relative to the

start of the movie fragment. This makes external data references
for tracks unusable in DASH. We propose to remove this
constraint on relative data offset for track fragments using external
data references, thereby allowing a client to fetch sample data on a
given server outside of the DASHed file. This method gives us the
result presented in Table 2, with a much lower bitrate for the
DASHed part of the Rich Media service.

Finally, as explained in our third scenario, the Rich Media scene
has to be sent, or at least signaled, on a regular basis. We
explained that we reduce the size of this scene by placing its static
content outside the DASH session, but still there remains a
minimal scene. In scenario 3, we want the possibility to
completely replace its content, as in a classical carousel. This is
achieved by sending periodical random access points (RAP), for
example, at the beginning of a segment. However, we must have
the ability to signal that a RAP can be discarded in normal
playback, otherwise a client will reload the scene at each RAP and
loose all the current interactivity (user input, scripting context).

The SampleDependencyBox tool available in the file format is a
good candidate for our needs. This tool allows signaling whether
a media sample depends on another on, whether other samples
depend on this one and is depended on and whether the sample
has redundant. The notion of redundant coding depends on the
coding type, and is not defined for meta-data or scene descriptions
(BIFS, SVG). Our proposal is to define that a sample tagged as
redundant, not depended on and not depending on other samples
can be discarded if a RAP or another such redundant sample has
already been processed. An alternative way could be to add a new
flag in the track fragment header box indicating all samples in the
fragment can be discarded under the same conditions.

This signaling may be redundant with existing features in some
languages, such as the RefreshScene command in MPEG-4
LASeR. However, such signaling would require the client to first
download the sample data and then discard it. Our proposal
simplifies this process by saving some bandwidth and can be used
with any meta-data streams.

Figure 3 illustrates the various cases enabled by our solution. The
BIFS track in the DASH initialization segment uses two data
references, one pointing to the DASH file itself, one referring to a
Web server through HTTP. The figure shows that the DASH
server and the BIFS random access server do not have to be at the
same location. The first segment received in the DASH session
contains a regular BIFS RAP conveying the interactive service
associated with the audio. Its data is contained in the segment and
the client must process it. The ith segment is a simple service
update. The jth segment is a discardable BIFS RAP, which is
ignored by connected clients and processed only by clients
connecting at this time in the session. The data of this RAP is not
included in the segment but made available on an HTTP server,
thereby saving bandwidth in the DASH session even when
inserting the RAP at high frequencies. The kth segment is a regular
BIFS RAP which must be processed by all clients, however the
RAP data is stored on the server rather than in the segment. This
covers the use case of our third scenario where the broadcaster
decides to unexpectedly switch interactive services for all connected
clients.

Our proposal is not restricted to BIFS, it may be used with other
description languages such as LASeR or SVG; it may also be used

 Average bit rate
(kbps)

Peak bit rate (kbps)

Original bit
stream

0.168 27

Dashed bit stream
(Approach 1)

7 147

Dashed bit stream
(Approach 2)

0.195 28

Dashed bit stream
(external RAPs)

0.098 5

with AJAX-based solutions querying a meta-data stream in the
DASH session, as used in DTV environments such as HBBTV.

Figure 3 - Example of BIFS Carousel in DASH

5. IMPLEMENTATION
We have implemented our proposal in GPAC [9], an open-source
multimedia framework supporting many interactive languages
(BIFS, LASeR, SVG, X3D…) and delivery formats (MPEG-2 TS,
ISO Base Media File…). Our implementation concerns both
DASH media generation and playback.

We have extended the MP4Box tool to include a MP4/3GP
fragmenter to generate segments of a given duration. The
fragmenter may truncate the file at RAP boundaries to simplify
content access in the DASHed file. The tool was also modified to
generate random access points in BIFS and OD streams at a given
frequency, in order to estimate the bandwidth overhead of using
BIFS in DASHed without our proposed modifications.

We also have implemented DASH support in Osmo4, the GPAC
player. A description of the implementation is given in Figure 4.
We have validated support of both live sources using MPEG-2 TS
as the DASH transport format, and on-demand sources using ISO
Base Media File as the transport format. It supports both M3U8
formats and a subset of MPD files as defined in DASH.

In our implementation, the DASH player is in charge of parsing
the MPD or M3U8 fetched from the server. It then selects the
representation based on bandwidth criteria and other parameters
set by the browser through the Selection API. The current
implementation uses fragment identifiers in the MPD URL to
configure the DASH player. The DASH player is then in charge of
scheduling the segment downloads and sending them to the
MPEG-2 TS or ISO File readers. We have extended our ISO
reader to support external data references and redundant sample
signaling for scene description.

Our implementation, released under the LGPL license, is available
on the GPAC Web site http://gpac.sourceforge.net.

6. CONCLUSION
In this paper, we have investigated how Rich Media languages can
be used with adaptive streaming over HTTP technologies, especially
MPEG DASH. We have shown the need to provide standard ways
to identify parts of a DASH session for track selection. We have also
presented how Rich Media services can be carried in a DASH
session along with audio and video data to ensure tight
synchronization between the media data and the interactive service.
Finally, we have proposed some light modifications to DASH and

ISO Base Media File to allow building a smart, bandwidth-friendly
data carousel of interactive services and meta-data in a DASH
session.

Figure 4 - DASH Implementation in GPAC

In future works, we will investigate implementation of real-time,
live DASH services including interactive ones. We will evaluate
how Rich Media adaptation to terminal characteristics and user
preferences can be used in DASH, especially in live services.

7. ACKNOWLEDGMENTS
Part of the work presented in this paper has been funded by the
French ANR projects Radio+ and HybRadio.

8. REFERENCES
[1] HTTP Live Streaming RFC,

 http://tools.ietf.org/html/draft-pantos-http-live-streaming-04
[2] 3GPP Adaptive HTTP Streaming, TS 26.234

http://www.3gpp.org/ftp/specs/html-info/26234.htm
[3] MPEG DASH, ISO/IEC 23001-6 CD (N11578)
[4] WhatWG Adaptive Streaming

http://wiki.whatwg.org/wiki/Adaptive_Streaming
[5] E. Bozdag, A. Mesbah, A. van Deursen “A Comparison of Push

and Pull Techniques for AJAX”, WSE 2007. 9th IEEE
International Workshop on Web Site Evolution. DOI:
http://dx.doi.org/10.1109/WSE.2007.4380239

[6] DVB DSM-CC Data Broadcasting, ETSI TR 101 202
[7] P.Leroux, V.Verstraete, F.De Turck, P.Demeester, Synchronized

Interactive Services for Mobile Devices over IPDC/DVB-H and
UMTS, 2nd IEEE/IFIP International Workshop on Broadband
Convergence Networks, 2007. BcN '07. DOI=
http://dx.doi.org/10.1109/BCN.2007.372743

[8] HTML 5 Server-sent Events,
http://dev.w3.org/html5/eventsource/

[9] Le Feuvre, J., Concolato, C., and Moissinac, J. 2007. GPAC:
open source multimedia framework. In Proceedings of the 15th
international Conference on Multimedia (Augsburg, Germany,
September 25 - 29, 2007). MULTIMEDIA '07. ACM, New
York, NY, 1009-1012. DOI=
http://doi.acm.org/10.1145/1291233.1291452

