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ABSTRACT scheme. The purpose of this paper is to propose a solution

Sinusoidal modeling is traditionally one of the most popula for joint quantization of amplitude, damping and phase, the
techniques for low bitrate audio coding. Usually, the sinu-Pitrate constraint being formulated in terms of entropy of
soidal parameters are kept constant within a time segmént biuantization indexes. For the moment, we do not consider the
the exponentially damped sinusoidal (EDS) model is also aifint quantization of frequency, neither the repartitidrtize
efficient alternative. However, the inclusion of an additib  bitrate between several sinusoids. This method can be seen
damping parameter calls for a specific quantization schem@s an extension of the work by Vafin et al. [3] for constant-
In this paper, we propose an asymptotically optimal entmpyamplitude sinusoids. First, we present the EDS model. Then,
constrained quantization method for amplitude, phase ande describe our quantization scheme. Finally, we evalhate t
damping parameters. We show that this scheme is near[gprformance of our method on both synthetic and real data.
optimal in terms of rate-distortion trade-off. We also showVVe compare our scheme with a trained vector-quantizer and
that damping consumes the smallest part of the total entrop)fith @ polar quantizer associated with an independent damp-
of quantization indexes, which suggests that the EDS moddPd quantizer. We also consider the distribution of entropy

is truly efficient for audio coding. between parameters.
Index Terms— Parametric audio coding, Exponentially
damped sinusoids, Quantization, Entropy. 2. EDS SIGNAL MODELING
1. INTRODUCTION The modeling of a signal(t),t € [0, 7] can be written as
For low bitrate audio coding applications, parametric ¢ede (t) = = sk(t) +(t) (1)
are an efficient alternative to transform coders. Many para- N pors k

metric models were proposed, but the sinusoidal model re-

mains the most popular, because most real-world audio sigvhere K is the model order? is the length of the analy-
nals are dominated by tonal components. Traditionally, irsis window and:(t) is a white noise.s;, is an exponentially
sinusoidal models used for parametric coding, the am@ituddamped sinusoid (EDS) defined as

of each component is kept constant within a time segment.

Both parametric codecs included in the MPEG-4 Audio stan- [ s;,(t) = aj e®*®/T=1 gilwst+or) — if §, > 0, )

dard, HILN and SSC, use a sinusoidal model combined with | s,(t) = aj, e!/T eilwrt+or) if 5, < 0. @

a noise model (and an additional transient model in SSC).

However, some studies have shown that an exponentiallgach EDS is characterized by a set of 4 parameters: amplitude
damped sinusoidal (EDS) model is an efficient alternativer,, dampingj,, pulsationv;, and phase,. Note that damp-

for audio modeling [1, 2]. In HILN and SSC, sinusoidal pa-ing can be positive (increasing envelope) or negative @beer
rameters are quantized independently: frequency is qaexhti ing envelope). Using different expressions for positivel an

at Just Noticeable Distortion, amplitude uses a log-unifor negative dampings avoids numerical errors while estirgatin
scalar quantizer, and phase a uniform scalar quantizer. Ramplitudes for high dampings.

cently, more efficient joint-quantizers for amplitude-pha Actually, the most popular schemes for EDS parameter
[3] and amplitude-phase-frequency [4] have been proposeéstimation are subspace methods. During the last yeary, man
which take advantage of the statistical dependence betwestudies have been published about the optimization of these
the parameters. With the EDS model, the inclusion of thenethods. In this paper, we selected the estimation scheme
additional damping parameter calls for a new quantizatioproposed in [5], which was developed for audio signals.



Considering the quantization of a single sinusoid, we omitA; the length of quantization intervals. The mean distortion
index k. The mean square error (MSE) distortion measurever cellC is defined as:
between an EDS and the reconstructed EB®an be written a+Da /2 d+DL/2 i AS/Q
using the continuous-time signal model: de = / / / p) dadpds (6)
Ay /2 =Ny /2 JO—-As5/2

= _/ | dt. (3)  whered(p,p) is given by (4). Assuming thak,, A, andA;

are small, expression (6) can be developed in Taylor series.
Keeping only the most significant terms, we get:
N " N 1 2 2 (98 ~2 2
d = a®h(26) + a2h(26) — 2aacos(d — )h(5 +3)  (4) de ~ 75 {h(%)A W (20)A% + a%h(20)A%|  (7)
whereh” (x) denotes the second order derivativé.(f). The
length of quantization intervals are related to the QCDs:

Ag=ga(p)™" As=go(P)" As=ga(®™" (8)

Assuming that pulsation is not quantized, we get:

whered, (b ands are respectively the reconstructed amplitude
phase and damping.is the real-valued function defined as

h(z) = T Vo € R\{0}, h(0)=1. (5 Thus, equation (7) can be re-written as:
g e th . e i L h(28)  a2h”(26) N a2h(26) ©)
Cc~ 5 - - B )
We assumed that andé have the same sign. A sufficient 12 | 200 20 20

condition is that the damping quantizer is symmetric around
zero. In practiceg(t) is a discrete-time signal, but (4) is still The mean distortion over all quantization cells is:

a good approximation as long ag7" is small compared to

the sampling frequency. D=> pnde, (10)

wherep, = probgd P € C,}. Assuming that the proba-
bility mass functionpp(p) is constant in each cell, we get

In this section, we propose an asymptotically optimal metho ?» = PP (Pn) Va, whereV;, is the volume ot’,,. Combining
for high-resolution quantization, (i.e. assuming a largen  PrEVious equations leads to:

3. OPTIMAL QUANTIZER IN HIGH RESOLUTION

ber of quantization cells). Basically, we follow the same 1 (26 ) d2h”(23n) dzh(23n)
method as in [3] and [4], which is similar to the one in- D = D pr (Dn) l 5N T —57= + 5 V-
troduced by A. Gersho [6]. The quantizers are defined by 4(Pn) 94 (Pn) 95(Pn)

their quantization cell density (QCD), which can be seen as (11)
the inverse of the quantization step-size. In order to (-‘berlvThe sum can be approximated by an integral:

an expression for the optimal QCD, we make a simplifying 1 h(26) = a®h”(26)  a®h(26)
assumption: amplitude, damping and phase are quantlzedD 12/ P (p) {9,24(?) 92 (p) 92 (p) ] dp-
with scalar quantizers, but depending on one another. $his i (12)

calledjoint-scalar quantization The QCD can be split in 3
scalar functionsyg, ga andge respectively for amplitude, 3 5 Entropy constrained quantizers
damping and phase.

We defmep = {a 0, ¢} as the set of EDS parameters. The JOInt entropy of quantlzatlon indexes can be appI'OXI-
We denotep = {a,¢,4} the set of reconstructed parame- mated by [6]:
ters andi = {i,, 14,75} the set of quantization indexes as-
sociated withp. We noteP, P andI the random variables H(I) = H(P) +/pp(p) logy [94(p)ga(p)ge(p)] dp (13)
associated respectively with p andi. The optimal quan-
tizer minimizes the mean distortioR = E[d(P, P)] under
the constrainf{ (1) < R, whereH (I) denotes the entropy of

guantization indexes anfd the target entropy. H(P) = _/pp(p) log, (pp (1)) dp. (14)

whereH (P) is the joint differential entropy of EDS parame-
ters defined as

3.1. Mean distortion A Lagrange optimization technique finally leads to the QCDs
which minimizeD under the constraif (I) < R:

h(26)2 25(R=0)
a h”(26)% 23(R=2) (15)
a h(26)z 25 (B=9)

We consider the quantization céllassociated t@g. In high
resolution, quantization cells are centered on recontsbmc ga(9)
values because the probability mass function of paramisters

approximately constant over each cell. We natg A, and
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The constant is defined as independently generated using the distributions destribe
above. Results are plotted on figure 1. Compared to the the-
o=H(P)+ /pA(5) log, (h(26)h7 (26)2 )dS oretical relation given by equation (17), one can obserge th
the practical curve diverges in low resolution but converge
in high resolution. We also compared our method with an
+2 / pa(a)logy(a)da (16)  entropy-constrained vector quantizer (VQ) as described by

) N Chou et al. [7]. The VQ is slightly better at medium res-
wherep 4 (a) andpa (0) are respectively the probability mass gytion, but has similar performance in very low and high

functions of amplitude and damping. One can observe thagsolution. However, in terms of complexity, the joint sgal
the amplitude and phase quantizers are uniform with reSPeahantizer clearly outperforms the VQ.

to the quantized variable, but parametrized respectively b
and(a,d). The damping quantizer is parametrizeddybut

not uniform: the QCD is higher whefiis small. This can  Trained Vector Qz, measure
be explained by the fact that an EDS with a high dampir _ ool —oe— Joint Scalar Qz, measure
affects only a small part of the analysis segment, and th — — —Joint Scalar Qz, theory
does not contribute much to the MSE and can be quantiz 5§ _;,|
more roughly. Note that far = 0, our solution reduces to the g
polar quantizer described in [3]. 2 _40

Combining equations (12) and (15), we get the entrop' §
distortion function: = 50t -

1 _2,_ ‘ ‘ ‘
b~y 28R, (17) % 5 10 15 20

Total entropy of quantization indexes (bits)

4. PERFORMANCE EVALUATION _ . . .
Fig. 1. Joint-scalar quantizer (vs) trained VQ.

4.1. Implementation details

Quantizers defined by equations (15) can be implementegl 3 Comparison with a simpler quantization scheme
with compression/expansion functions and a scalar uniform

quantizer, the QCD being the slope of the compression fund® simpler alternative is to apply a polar quantizer (as de-
tion [6]. For amplitude and phase, the compression funstionscribed in [3]) to amplitude and phase, and an indepen-
are linear. For damping, computing the compression functiodent entropy-constrained scalar quantizer to dampings Thi
is not straightforward. So we pre-computed numerically anethod requires an a-priori distribution of the entropy be-
sampled version of the compression function, and interpotween the two quantizers. We tested 5 values of the damp-
lated between the samples. For each scalar quantizer, Weg/polar entropy ratios and plotted the entropy-distortion
choose zero as the central reconstruction value, and for eagurve on figure 2. One can see that the joint scalar quansizeri
value of the amplitude, the step-size of the phase quantiz&ways better. Furthermore, with the two-quantizers smyt

is slightly modified in order to cove), 27| with an integer ~ the optimal entropy ratio depends on the target entropylewhi
number of quantization cells. our quantizer automatically adjusts the entropy balance.

4.2. Entropy-distorsion function -10

First, we evaluate the performance of our quantizationrsehe -15¢
on synthetic data. Like in [3] and [4], we assume that ampl
tude, phase and damping are statistically independenteln
literature, the amplitude is usually Rayleigh distributetd
the phase is uniformly distributed ovigx, 2]. With the EDS
model, we found out that the amplitude is more likely Gamm

—+— Polar+d Qz, r=0.1 _
|| —— Polar+d Qz, r=0.2 ©
Polar+d Qz, r=0.3
Polar+d Qz, r=0.4

Mean distorsion (dB)
N
ol

distributed ¢ = 1 andé = 0.21). For damping, because of -35!| — & Polar+d Qz. r=0.5 o
equation (5), only the distribution ¢4| is significant. Exper- —<— Joint scalar Qz

iments showed thavg(|d|) follows approximately a centered 40, 2 4 6 8 10 12
Gaussian distribution (of variance 1.2). Using equatid) (1 Total entropy of quantization indexes (bits)

we computedr = —5.66 bits.
We evaluated the entropy-distorsion curve Sn= 10%  Fig. 2. Joint-scalar quantizer (vs) polar + damping quantizers.
sets of parameters where amplitude, phase and damping are



4.4. Distribution of entropy between the parameters

-10 ; ‘
We also considered the distribution of entropy between ti X]{,‘f‘n‘?‘;"c;ﬁg;@
quantization indexes associated to the three parameters. 2 15

different values of the target entropy, we computed the r g o0l

tio H(I.|l,,1.)/H (I, 1,,1.),  being amplitude, phase or 2

damping, andy, z} the other two parameters. Theresultsar 2 .

plotted on figure 3. One can notice that phase always requil g

the greatest part of the entropy (which is consistent with tt = _30t

results reported in [4]), and the damping always requires tl

lowest part, especially in low resolution. Asymptoticatiy -35, ‘ ] ‘ ‘

; 2 4 6 8 10
three parameters seem to contribute equally. Total entropy of quantization indexes (bits)

0.45 : : : : : : Fig. 4. Entropy-Distortion function on real audio data.
04 scheme for amplitude, phase and damping. We showed that
% 0351 | our method performs better than a more simple scheme, and
2 almost as well as a trained vector quantizer, which is theore
.g 0.3l [ cally the best solution, although practically not suitahléhe
w - B amplitude context of audio coding. We also showed that the additional
025f _ -~ phase |1 damping parameter requires fewer coding bits compared to
-~ damping amplitude and phase. This suggests that the EDS model is an
0.20 s 0 s 20 s 2 35 efficient alter_nanve_ to co_nstant amplltude_ S|_nusp|dal msd_
Total entropy of quantization indexes (bits) for parametric audio coding. However, this is still a work in
progress: we will extend our study to include the quantiza-
Fig. 3. Distribution of entropy between parameters. tion of frequency, and consider the repartition of the cgdin
bits between several sinusoids using a hearing model.
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