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ABSTRACT not always correspond to the reality of western music siheditm-
ing of most musical pieces is given relatively téemnpoprocess (in

In this paper, we present the Hidden Discrete Tempo Modeéfan beats), which can be both unknown and variable.
fective Dynamic Bayesian Network for audio to score matghits For this reason, more elaborate models for audio-to-score
main feature is an explicit modeling of tempo, which dirgdti-  matching [4, 5, 1] introduce another random process reptiesg
fluences the timing model of the musical performance. Thadoks the tempo. In such systems the note duration probabilitesten
a diSCI’etization Of the tempO Set, |t a”OWS f0r an effICIeetmﬁlng dependent on the current tempo Va|ue. In [4]1 the duratiodeho
which directly depend on the local tempo. We take advantdge oygjues (‘fast’, ‘medium’ and ‘slow’). As a result, the tempoocess
this property by using the cyclic tempogram descriptor idiioh  goes not strongly constrain the note duration. In [5] and {tg
to chroma vectors and onset detection features. Experimaran tempo is modeled by a continuous variable. This potentasltyws
both classical piano and pop music show the very high acgwhc  for g flexible modeling of the tempo. However, the introdantbf
this model for audio to score alignment, as well as the usefis of  this continuous variable prohibits the use of dynamic paogming

the tempo feature used. methods for exact decoding of the probabilistic model. Caipt
Index Terms— music information retrieval, automatic align- USes an adaptive framework which updates a tempo estimeseiat
ment, dynamic Bayesian networks, acoustic features step of the algorithm. Raphael [5] takes advantage of theifspe

transition probabilities of his model to calculate the eatrtempo
probability corresponding to each partial path in the score
1. INTRODUCTION In this work, we introduce the Hidden Discrete Tempo Model
(HDTM), which exploits a discretization of the tempo set.isThas
Audio-to-score alignment, which is the task of matching eital  two main advantages compared to a continuous model. FRiegt, i
performance with the corresponding score, can lead toalekieds  lows for a practical inference of all the model variablesnitsto
of applications. In a real-time context, it can be used ferttacking  dynamic programming techniques. This model also allowster
of a live performance (see for example [1]), which then alidar  use of acoustic features characterizing the local tempaddiition to
interactions between the musicians and a computer. the pitch and onset descriptors. We show that, thanks tertbiel,
Other applications, which do not require the real-time t@st  the use of theyclic tempogranfeatures [6] improves the alignment
can also be found in the field of Music Information RetrieWdIR). precision on a large database of both popular and classigsitm
Indeed, a music-to-score synchronization provides a geeand The rest of this paper is organized as follows: the Hidden Dis
meaningful indexing of the audio content, with high-levelisital  crete Tempo Model is introduced in Section 2. We then detail i
information. Consequently, it allows for an intuitive brsiwg in a  Section 3 the observation models. Experiments on the akgihm
musical piece, musicological analyses such as chord tigtisa precision obtained with this model and the influence of thtetdea-
or even score-informed source separation. The presencéaajea  ture are presented in Section 4 before suggesting someusoocs
number of freely available scores on the Internet makes $keofi  in Section 5.
music-to-score alignment for these indexing applicatioossible.
In the recent Iiteratqr_e,_many real-tin_1e score foIIowingtsy_ns 2. THE HIDDEN DISCRETE TEMPO MODEL (HDTM)
have employed probabilistic models which belong to the Dyica
Bayesian Network (DBN) class [2]. In such systems, hiddedeoan 2 1. Timing Model
variables represent the current position in the score,deraio take
into account the uncertainty of the matching. The most widsed A polyphonic musical score can be segmented aftords defined
of these models is probably the Hidden Markov Model (HMMY (fo @s sets of notes that sound at the same time. Eyery time appte a
example [3]). pears or (_jisappears, anew chord is created. This segnoenpat-
However, the Markovian property of HMMs can be a weaknessYides a “linear” representation of the score as a sequenckads,
for the modeling of the note durations. Indeed, in an HMM,ribee @ displayed in Figure 1. Given this representation, aligian audio
lengths are supposed to be independent, and their prioibgisons ~ "ecording to the score boils down to finding the time indexethe

that can be introduced are “absolute” (in seconds). Thisahddes ~ chord onsets, or equivalently the length of these chords.
Let ¢ be a chord index and I€t“ be a random variable repre-

This work has been partly supported by the Quaero Programefilby ~ Senting the current tempo (expressed in seconds per béwt)1fie-
OSEO, French State agency for innovation. oretical” length (if performed perfectly in time), in seds) of the
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where LS~ denotes the length of chor@,,. The corresponding
probabilities are calculated thanks to equations (1) ahd (2
0 . In order to characterize the variations that can occur ésid
e 5 e chord, in particular between thatack and sustainphases, we also
introduce a Bernoullattack indicatorvariableA,,. The eventd,, =
1 indicates amttack phase. We assume that the first frame of an
“attacking chord” (whose beginning corresponds to a newtgrng
note) is always in amttackphase. The second frame can be either
n anattackor in asustainphase. Since a note attack is supposed
to be short, we assume that all the following frames of ther¢ho
correspond to thsustainphase. Thus, the probability to be in the
attack phases:

given chord is\“T“, where\“ is the duration, in beats, indicated by
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Fig. 1. Score Representations. Top: The original graphical scorq
Middle: “Homophonic” version of the same score. Bottom: &ho
indexes.

the score. However, in order to account for the discretiratif the L if € attacking andD;, = 1
tempo set and for the performance imprecision (due to inéémfion P(An =1|Cn,Dy) = § 5 if C attacking andD,, = 2
choices or possible human errors), a deviation is alloweakeMor- 0 otherwise.
mally, let L¢ denote the random variable representing the length of
chordc (in seconds). We set a gaussian-like probability distrdmit 3. OBSERVATION MODELING
ki 1 ( ARTF) - i
P(LHIT") = 7, &P {*W} (1)  Similarly to [9], we use chroma features to characterizepiteh
l

content, and an onset feature derived from the spectraldldetect

whereo? is a parameter which controls the tolerance to the timingthe note attacks. These features are denoted respectivély and

deviations andZ is a normalizing factor. As in [7], we expect the F». However the HDTM allows for the consideration of yet anothe

possible deviation to increase with the note duration. Thathy  kind of information, regarding the current tempo. Hence mteor

the variance is proportional to the theoretical length. duce the use of the cyclic tempogram feature, denote@byn an
As implicitly used in equation (1), we suppose that the tempoalignment system. The complete dependency structure ohtiuel

is constant over a chord’s duration and only changes at dnand  is represented in Figure 2.

sitions. In Raphael’s model [5], the tempo values are matlblea We suppose that these observations only depend on thei “cor

Gaussian random walk process. Instead of that, we assuinh¢ha responding” hidden variables, so that the conditional ability of

tempo changes are relative rather than absolute and thestdanple,  the observations given the hidden variables is:

the probability is the same for doubling the tempo and fovinal it.

Thus, similarly to [8] the transition probabilities are Gaian with P(Vo, Fn, Gn|Cry An, Tn) = P(Va|Cn) P(Fn|An) P(Gn|Th)

respect to the logarithm tempo values:

L1 1 TN
P = fon{- ()} @ @ ‘

whereo; controls the tempo variation tolerance anglis a normal-
izing factor. In practice, we consider that in the case afrgir abrupt
tempo changes, any tempo can be reached with the same pitybabi T, Tis
Hence, we limit the tempo ratio in equation (2) to 2.
2.2. Dynamic Bayesian Network Representation
DH»l

For a practical representation of the HDTM, we use the Dynami
Bayesian Network (DBN) formalism [2]. We suppose that the
recording is divided into a discrete sequence of short-firames.
Let N be the number of frames. For each time framéet C,, and
T, be random variables representing respectively the cuctesd
and the current tempo. Note that(if, = ¢, we haveT,, = T°. For
notation simplicity, this will be denoted By . We also use anc-

cupancyvariable D,, whose value is equal to the number of frames
since the beginning of the current chord. Hence, we Haye= 1
iff the framen corresponds to a chord onset. The relations between @
the variables are: Q
1 if L9 = D, @
Dn+1 = {

14+ D, otherwise,

Cn+1

14+Cn if D1 =1 Fig. 2. Graphical model representation of the presented models.
Cn otherwise, Simple and double contour lines indicate respectively éndédnd

- B TOn+1  if Dypyy = 1 observed variables.
b= T,  otherwise,



3.1. Chroma Vectors

4. EXPERIMENTS

Chroma vectorgrovide a compact, yet efficient representation ofthes 1 patabase and Settings

harmonic content of a musical signal for audio-to-scorgratient
[10]. We use here Zhu's chroma features [11], with a timeltgm
of 50 Hz. For each chord label a chroma vector template. is
built, in the same way as in [10]. This template can be comeitias
a “theoretical chroma synthesis” of the chord. The chromdehis
then given by

PV, =v|Ch=¢) = Lemr)@H”IC),

Z3

whereD(-||-) denotes the Kullback-Leibler divergence and the oper
ator- represents a normalization so that a vector can be condidere
a probability distribution (the components sum to d)is a positive
parameter and’s is a normalization factor.

3.2. Onset Feature

The onset feature used is a straightforward onset deteatatibn
based on spectral flux [12]. It is obtained by subtracting llo
threshold (calculated with a 67% rank filter of length 200-toghe
spectral flux values. A logistic model is used in order to ckte
the probability of an onset:

oBFn
P(An = 1|F,)

1+ efFn

where( is a positive parameter controlling the “confidence” on the

onset detector. The probabilif§( F,| A, ) can then be calculated by
Bayes’ rule.

3.3. Cyclic Tempogram

Thecyclic tempogranfeature has been introduced in [6] for a musi-
cal structure analysis application. It provides a mid-leepresen-
tation of the tempo which allows for a robust tempo analysis;e
it takes into account not only the time-lags corresponding beat
length, but also the ones corresponding to half or twice Iieiat
length.

In order to calculate this feature, we first compute the I¢oai-
malized) autocorrelation of thepectral fluxfeature over sliding 5-s
windows, for time-lags betweefiin = 200 ms andrmax = 3.2 S.

Let h,,(7) be the value of this autocorrelation function computed

over a window centered on frame

Similarly to achromagram the time lags are separated itto-
tave equivalence classesvo time-lagsr; andr, are octave equiva-
lent iff there is ak € Z s.t. 7, = 2F7. The valuey,, () of the cyclic
tempogram for a time-lag is calculated by adding all the values of
this autocorrelation function corresponding to the samavaetpnce

class:
k
gn(1) =D ha(2"7).
kEZ
In practice, the autocorrelation function is “blurred” byGaussian
filter in order to account for imprecisions induced by thecti$iza-
tion of the time lag set.
The observation model is then given by

1
—e

Za

Ygn (t)

P(T = 1Gn = g.) =

wherev is a positive parameter ari}, is a normalization factor. The
probabilitiesP (G, |1, ) are then calculated by Bayes’ rule.

For our experiments, we use two databases. The first oneigsnta
59 classical piano pieces (about 4h15), from the MAPS databa
[13]. These recordings are the rendition of MIDI files playsda
Disklavier piano. The second corpus is composed of 90 pogsson
(about 6h) from the RWC database [14]. A ground-truth is joled

as aligned MIDI files. The target scores are built from the sam
files. However, we do not consider the tempo values of the MIDI
files, in order to simulate the use of graphical scores (simesic).
Moreover, we discarded the possible percussion partsubea the
variable quality of their transcription.

A learning database has been built using one hour from each of
these sets. The parameters of the models are set thanks &msa co
grid search on this learning database. The evaluation isrilne on
the rest of both MAPS and RWC datasets.

The chosen evaluation measure is the onset recognitiondexte
fined as the fraction of onsets which are correctly deteessl than
a tolerance threshold away from the real onset time of each note
of the score. The valué = 300 ms is based on the MIREX con-
test. For a more precise alignment evaluation, we use two other
thresholds: 100-ms and 50-ms.

The alignment with the HDTM is performed by estimating the
Maximum a Posteriorf(MAP) path in the model, defined as

argmax P(C7y,AY, DY, T | VY, F{,GY),

whereCY = C4,...,C". The MAP sequence is computed thanks
to the Viterbi algorithm, along with the pruning strategyeged in
[9]. The used set of possible tempo values is, in beats peutsiin
T = {28, 30, 34,40, 48, 56, 64, 72, 80, 88, 96, 104,
112,120, 132, 146, 160, 176, 192, 208, 224, 240}

The values of the model parameters, estimated on the learnin
database, are displayed in Table 1.
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Table 1. Estimated model parameter values.

4.2. Alignment Results

In these experiments, we test two different systems in dodassess
the usefulness of exploiting a feature characterizingehgob. The
first system uses the model described before, whereas thedubs
not exploit the cyclic tempogram descriptor (the parameter set
to 0). The obtained recognition rates are summed up in Table 2
The alignment obtained by the HDTM are very precise. Indeed,
more than 99% of the chords are recognized less than 300-ms aw
from the ground truth, on both databases. As a comparisen, th
recognition rate of the (rudimentary) HMM system used inif9]
about 86%.
The performance is also very high at a finer precision levelesi
on the MAPS corpus, the recognition rates are higher than f8t%
a 50-ms threshold. Lower scores are obtained on the RWCeadatas

IMusic Information Retrieval Evaluation eXchange 2010,redollow-
ing task: http://ww. music-ir.org/ mrex/w ki/2010: Real - ti me_
Audi o_to_Score_Ali gnnent _(a. k. a_Scor e_Fol | owi ng)



MAPS Corpus RWC Corpus
Model y=0 ] y=1 y=0 1] y=1
300-ms || 99.34% | 99.40% || 99.00% | 99.22%
100-ms || 97.91% | 98.03% || 94.21% | 94.56%
50-ms || 91.08% | 91.25% || 75.18% | 75.50%

5. CONCLUSION

In this paper, we present the Hidden Discrete Tempo Model, a
tempo-dependent model for audio to score matching. Its fieain
ture is a hidden tempo variable, allowing for an explicit ralag
of the timing of the musical performance. The representati® a

Table 2. Recognition Rates of the Hidden Discrete Tempo Model,Pynamic Bayesian Network with discrete hidden variable&esan

with the use of the tempo feature & 1) and without { = 0). As a
comparison, a HMM system obtains about 86%.

efficient decoding possible through the Viterbi algorittand allows

for the consideration of features characterizing the ltaaipo.
Experiments run on both classical piano and pop music show

the very high accuracy of this model for audio to score aligntn

as well as the usefulness of the cyclic tempogram as a tengso fe

ture. The tempo precision can be adjusted by changing the cha

acteristics of the discretization grid, which can be nowrdir. It is

also worth mentioning that, although we performed off-laign-

ment, this model could straighforwardly be applied to a-téak
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Fig. 3. Alignments obtained on an example piece. Up: tempo like-
lihoods. Down: chord likelihoods and alignment paths. \&litdi-
cates high values. B3l
(6]
which can be explained by the higher complexity of the musit-c
tent in terms of number of instruments, but also by some atioot [7]

errors.

The benefit of using the tempo feature is not always marked. In [8]
deed the improvement is not statistically significant on M&PS
database. However, the recognition rate increases obtaimehe
RWC corpus are larger than the radii of the 95% confidence-inte [9]
vals (which are respectively equal to 0.07%, 0.15% and 0.28%
the three thresholds). This can be explained by the stetetigi
and the percussive contents (mainly drums), which cormsgtrong
indications about the tempi, in this corpus.

(10]

Figure 3 displays the example of the end of a particular pogso [11]
where the benefit of the tempo feature can be seen. On thacextr
the likelihood of the ground truth path is relatively lowdagise of a
discrepancy between the chroma model and the observaigihlév
near 271 s). Thus, the system which does not consider thi& cycl
tempogram features drifts to a slower tempo path, whosenwhro [13]
templates better fit the observations. However, in this pagttempo
feature strongly favors the ground truth tempo (and itsvestp This
forces the alternative system to follow a steady tempo, hadé-
sulting alignment is more accurate. Even though this s@nas not
frequent (it only happens one three songs out of 75), the aefeg
ture does not harm the performance in the other pieces. Tlus w
consider it to be worthwhile.

(12]

(14]

context. Indeed, the complexity of this model can be redumned
pruning methods such as beam search.
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