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ABSTRACT

In this paper, we present the Hidden Discrete Tempo Model, anef-
fective Dynamic Bayesian Network for audio to score matching. Its
main feature is an explicit modeling of tempo, which directly in-
fluences the timing model of the musical performance. Thanksto
a discretization of the tempo set, it allows for an efficient decoding
by the Viterbi algorithm, and facilitates the introductionof features
which directly depend on the local tempo. We take advantage of
this property by using the cyclic tempogram descriptor in addition
to chroma vectors and onset detection features. Experimentrun on
both classical piano and pop music show the very high accuracy of
this model for audio to score alignment, as well as the usefulness of
the tempo feature used.

Index Terms— music information retrieval, automatic align-
ment, dynamic Bayesian networks, acoustic features

1. INTRODUCTION

Audio-to-score alignment, which is the task of matching a musical
performance with the corresponding score, can lead to several kinds
of applications. In a real-time context, it can be used for the tracking
of a live performance (see for example [1]), which then allows for
interactions between the musicians and a computer.

Other applications, which do not require the real-time constraint
can also be found in the field of Music Information Retrieval (MIR).
Indeed, a music-to-score synchronization provides a precise and
meaningful indexing of the audio content, with high-level musical
information. Consequently, it allows for an intuitive browsing in a
musical piece, musicological analyses such as chord transcription
or even score-informed source separation. The presence of alarge
number of freely available scores on the Internet makes the use of
music-to-score alignment for these indexing applicationspossible.

In the recent literature, many real-time score following systems
have employed probabilistic models which belong to the Dynamic
Bayesian Network (DBN) class [2]. In such systems, hidden random
variables represent the current position in the score, in order to take
into account the uncertainty of the matching. The most widely used
of these models is probably the Hidden Markov Model (HMM) (for
example [3]).

However, the Markovian property of HMMs can be a weakness
for the modeling of the note durations. Indeed, in an HMM, thenote
lengths are supposed to be independent, and their prior distributions
that can be introduced are “absolute” (in seconds). This model does
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not always correspond to the reality of western music since the tim-
ing of most musical pieces is given relatively to atempoprocess (in
beats), which can be both unknown and variable.

For this reason, more elaborate models for audio-to-score
matching [4, 5, 1] introduce another random process representing
the tempo. In such systems the note duration probabilities are then
dependent on the current tempo value. In [4], the duration model
is quite rudimentary, since the tempo variable can only takethree
values (‘fast’, ‘medium’ and ‘slow’). As a result, the tempoprocess
does not strongly constrain the note duration. In [5] and [1], the
tempo is modeled by a continuous variable. This potentiallyallows
for a flexible modeling of the tempo. However, the introduction of
this continuous variable prohibits the use of dynamic programming
methods for exact decoding of the probabilistic model. Cont[1]
uses an adaptive framework which updates a tempo estimate ateach
step of the algorithm. Raphael [5] takes advantage of the specific
transition probabilities of his model to calculate the current tempo
probability corresponding to each partial path in the score.

In this work, we introduce the Hidden Discrete Tempo Model
(HDTM), which exploits a discretization of the tempo set. This has
two main advantages compared to a continuous model. First, it al-
lows for a practical inference of all the model variables thanks to
dynamic programming techniques. This model also allows forthe
use of acoustic features characterizing the local tempo, inaddition to
the pitch and onset descriptors. We show that, thanks to thismodel,
the use of thecyclic tempogramfeatures [6] improves the alignment
precision on a large database of both popular and classical music.

The rest of this paper is organized as follows: the Hidden Dis-
crete Tempo Model is introduced in Section 2. We then detail in
Section 3 the observation models. Experiments on the alignment
precision obtained with this model and the influence of the latter fea-
ture are presented in Section 4 before suggesting some conclusions
in Section 5.

2. THE HIDDEN DISCRETE TEMPO MODEL (HDTM)

2.1. Timing Model

A polyphonic musical score can be segmented intochords, defined
as sets of notes that sound at the same time. Every time a note ap-
pears or disappears, a new chord is created. This segmentation pro-
vides a “linear” representation of the score as a sequence ofchords,
as displayed in Figure 1. Given this representation, aligning an audio
recording to the score boils down to finding the time indexes of the
chord onsets, or equivalently the length of these chords.

Let c be a chord index and letT c be a random variable repre-
senting the current tempo (expressed in seconds per beat). The “the-
oretical” length (if performed perfectly in time), in seconds, of the
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Fig. 1. Score Representations. Top: The original graphical score.
Middle: “Homophonic” version of the same score. Bottom: Chord
indexes.

given chord isλcT c, whereλc is the duration, in beats, indicated by
the score. However, in order to account for the discretization of the
tempo set and for the performance imprecision (due to interpretation
choices or possible human errors), a deviation is allowed. More for-
mally, let Lc denote the random variable representing the length of
chordc (in seconds). We set a gaussian-like probability distribution:

P (Lk|T k) =
1

Z1
exp



−
(Lk − λkT k)2

2(λkT k)2σ2
l

ff

(1)

whereσ2
l is a parameter which controls the tolerance to the timing

deviations andZ is a normalizing factor. As in [7], we expect the
possible deviation to increase with the note duration. Thatis why
the variance is proportional to the theoretical length.

As implicitly used in equation (1), we suppose that the tempo
is constant over a chord’s duration and only changes at chordtran-
sitions. In Raphael’s model [5], the tempo values are modeled by a
Gaussian random walk process. Instead of that, we assume that the
tempo changes are relative rather than absolute and that forexample,
the probability is the same for doubling the tempo and for halving it.
Thus, similarly to [8] the transition probabilities are Gaussian with
respect to the logarithm tempo values:

P (T k+1|T k) =
1
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whereσt controls the tempo variation tolerance andZ2 is a normal-
izing factor. In practice, we consider that in the case of strong, abrupt
tempo changes, any tempo can be reached with the same probability.
Hence, we limit the tempo ratio in equation (2) to 2.

2.2. Dynamic Bayesian Network Representation

For a practical representation of the HDTM, we use the Dynamic
Bayesian Network (DBN) formalism [2]. We suppose that the
recording is divided into a discrete sequence of short-timeframes.
Let N be the number of frames. For each time framen, let Cn and
Tn be random variables representing respectively the currentchord
and the current tempo. Note that, ifCn = c, we haveTn = T c. For
notation simplicity, this will be denoted byT Cn . We also use anoc-
cupancyvariableDn whose value is equal to the number of frames
since the beginning of the current chord. Hence, we haveDn = 1
iff the framen corresponds to a chord onset. The relations between
the variables are:

Dn+1 =



1 if LCn = Dn

1 + Dn otherwise,

Cn+1 =



1 + Cn if Dn+1 = 1
Cn otherwise,

Tn+1 =



T C
n+1 if Dn+1 = 1

Tn otherwise,

whereLCn denotes the length of chordCn. The corresponding
probabilities are calculated thanks to equations (1) and (2).

In order to characterize the variations that can occur inside a
chord, in particular between theattackandsustainphases, we also
introduce a Bernoulliattack indicatorvariableAn. The eventAn =
1 indicates anattack phase. We assume that the first frame of an
“attacking chord” (whose beginning corresponds to a newly entering
note) is always in anattackphase. The second frame can be either
in an attackor in a sustainphase. Since a note attack is supposed
to be short, we assume that all the following frames of the chord
correspond to thesustainphase. Thus, the probability to be in the
attack phaseis:

P (An = 1|Cn, Dn) =

8

<

:

1 if Cn attacking andDn = 1
1
2

if Cn attacking andDn = 2
0 otherwise.

3. OBSERVATION MODELING

Similarly to [9], we use chroma features to characterize thepitch
content, and an onset feature derived from the spectral flux to detect
the note attacks. These features are denoted respectively by Vn and
Fn. However the HDTM allows for the consideration of yet another
kind of information, regarding the current tempo. Hence we intro-
duce the use of the cyclic tempogram feature, denoted byGn in an
alignment system. The complete dependency structure of themodel
is represented in Figure 2.

We suppose that these observations only depend on their “cor-
responding” hidden variables, so that the conditional probability of
the observations given the hidden variables is:

P (Vn, Fn, Gn|Cn, An, Tn) = P (Vn|Cn)P (Fn|An)P (Gn|Tn)

Dn−1 Dn Dt+1

TnTn−1 Tn+1

GnGn−1 Gn+1

Cn−1 Cn Cn+1

Vn−1 Vn+1

Fn+1FnFn−1

An+1AnAn−1

. . .

. . .

. . .

Vn

Fig. 2. Graphical model representation of the presented models.
Simple and double contour lines indicate respectively hidden and
observed variables.



3.1. Chroma Vectors

Chroma vectorsprovide a compact, yet efficient representation of the
harmonic content of a musical signal for audio-to-score alignment
[10]. We use here Zhu’s chroma features [11], with a time resolution
of 50 Hz. For each chord labelc, a chroma vector templateuc is
built, in the same way as in [10]. This template can be considered as
a “theoretical chroma synthesis” of the chord. The chroma model is
then given by

P (Vn = v|Cn = c) =
1

Z3
e

αD(v̄‖ūc)
,

whereD(·‖·) denotes the Kullback-Leibler divergence and the oper-
ator̄· represents a normalization so that a vector can be considered as
a probability distribution (the components sum to 1).α is a positive
parameter andZ3 is a normalization factor.

3.2. Onset Feature

The onset feature used is a straightforward onset detector function
based on spectral flux [12]. It is obtained by subtracting a local
threshold (calculated with a 67% rank filter of length 200-ms) to the
spectral flux values. A logistic model is used in order to calculate
the probability of an onset:

P (An = 1|Fn) =
eβFn

1 + eβFn

whereβ is a positive parameter controlling the “confidence” on the
onset detector. The probabilityP (Fn|An) can then be calculated by
Bayes’ rule.

3.3. Cyclic Tempogram

Thecyclic tempogramfeature has been introduced in [6] for a musi-
cal structure analysis application. It provides a mid-level represen-
tation of the tempo which allows for a robust tempo analysis,since
it takes into account not only the time-lags corresponding to a beat
length, but also the ones corresponding to half or twice thisbeat
length.

In order to calculate this feature, we first compute the local(nor-
malized) autocorrelation of thespectral fluxfeature over sliding 5-s
windows, for time-lags betweenτmin = 200 ms andτmax = 3.2 s.
Let hn(τ ) be the value of this autocorrelation function computed
over a window centered on framen.

Similarly to achromagram, the time lags are separated intooc-
tave equivalence classes: two time-lagsτ1 andτ2 are octave equiva-
lent iff there is ak ∈ Z s.t.τ1 = 2kτ2. The valuegn(τ ) of the cyclic
tempogram for a time-lagτ is calculated by adding all the values of
this autocorrelation function corresponding to the same equivalence
class:

gn(τ ) =
X

k∈Z

hn(2k
τ ).

In practice, the autocorrelation function is “blurred” by aGaussian
filter in order to account for imprecisions induced by the discretiza-
tion of the time lag set.

The observation model is then given by

P (Tn = t|Gn = gn) =
1

Z4
e

γgn(t)
,

whereγ is a positive parameter andZ4 is a normalization factor. The
probabilitiesP (Gn|Tn) are then calculated by Bayes’ rule.

4. EXPERIMENTS

4.1. Database and Settings

For our experiments, we use two databases. The first one contains
59 classical piano pieces (about 4h15), from the MAPS database
[13]. These recordings are the rendition of MIDI files playedby a
Disklavier piano. The second corpus is composed of 90 pop songs
(about 6h) from the RWC database [14]. A ground-truth is provided
as aligned MIDI files. The target scores are built from the same
files. However, we do not consider the tempo values of the MIDI
files, in order to simulate the use of graphical scores (sheetmusic).
Moreover, we discarded the possible percussion parts, because of the
variable quality of their transcription.

A learning database has been built using one hour from each of
these sets. The parameters of the models are set thanks to a coarse
grid search on this learning database. The evaluation is then run on
the rest of both MAPS and RWC datasets.

The chosen evaluation measure is the onset recognition rate, de-
fined as the fraction of onsets which are correctly detected less than
a tolerance thresholdθ away from the real onset time of each note
of the score. The valueθ = 300 ms is based on the MIREX con-
test1. For a more precise alignment evaluation, we use two other
thresholds: 100-ms and 50-ms.

The alignment with the HDTM is performed by estimating the
Maximum a Posteriori(MAP) path in the model, defined as

argmax P (CN
1 , A

N
1 ,D

N
1 , T

N
1

˛

˛ V
N
1 , F

N
1 ,G

N
1 ),

whereCN
1 = C1, . . . , C

N . The MAP sequence is computed thanks
to the Viterbi algorithm, along with the pruning strategy exposed in
[9]. The used set of possible tempo values is, in beats per minute:

T = {28, 30, 34, 40, 48, 56, 64, 72, 80, 88, 96, 104,

112, 120, 132, 146, 160, 176, 192, 208, 224, 240}

The values of the model parameters, estimated on the learning
database, are displayed in Table 1.

Parameter α β γ σ2
t σ2

l

Value 10 10 1 1
20

1
200

Table 1. Estimated model parameter values.

4.2. Alignment Results

In these experiments, we test two different systems in orderto assess
the usefulness of exploiting a feature characterizing the tempo. The
first system uses the model described before, whereas the other does
not exploit the cyclic tempogram descriptor (the parameterγ is set
to 0). The obtained recognition rates are summed up in Table 2.

The alignment obtained by the HDTM are very precise. Indeed,
more than 99% of the chords are recognized less than 300-ms away
from the ground truth, on both databases. As a comparison, the
recognition rate of the (rudimentary) HMM system used in [9]is
about 86%.

The performance is also very high at a finer precision level since
on the MAPS corpus, the recognition rates are higher than 91%for
a 50-ms threshold. Lower scores are obtained on the RWC dataset,

1Music Information Retrieval Evaluation eXchange 2010, score follow-
ing task: http://www.music-ir.org/mirex/wiki/2010:Real-time_
Audio_to_Score_Alignment_(a.k.a_Score_Following)



MAPS Corpus RWC Corpus
Model γ = 0 γ = 1 γ = 0 γ = 1

300-ms 99.34% 99.40% 99.00% 99.22%
100-ms 97.91% 98.03% 94.21% 94.56%
50-ms 91.08% 91.25% 75.18% 75.50%

Table 2. Recognition Rates of the Hidden Discrete Tempo Model,
with the use of the tempo feature (γ = 1) and without (γ = 0). As a
comparison, a HMM system obtains about 86%.
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Fig. 3. Alignments obtained on an example piece. Up: tempo like-
lihoods. Down: chord likelihoods and alignment paths. White indi-
cates high values.

which can be explained by the higher complexity of the music con-
tent in terms of number of instruments, but also by some annotation
errors.

The benefit of using the tempo feature is not always marked. In-
deed the improvement is not statistically significant on theMAPS
database. However, the recognition rate increases obtained on the
RWC corpus are larger than the radii of the 95% confidence inter-
vals (which are respectively equal to 0.07%, 0.15% and 0.28%for
the three thresholds). This can be explained by the steadiertempi
and the percussive contents (mainly drums), which consitute strong
indications about the tempi, in this corpus.

Figure 3 displays the example of the end of a particular pop song
where the benefit of the tempo feature can be seen. On this extract,
the likelihood of the ground truth path is relatively low, because of a
discrepancy between the chroma model and the observation (visible
near 271 s). Thus, the system which does not consider the cyclic
tempogram features drifts to a slower tempo path, whose chroma
templates better fit the observations. However, in this part, the tempo
feature strongly favors the ground truth tempo (and its octaves). This
forces the alternative system to follow a steady tempo, and the re-
sulting alignment is more accurate. Even though this situation is not
frequent (it only happens one three songs out of 75), the tempo fea-
ture does not harm the performance in the other pieces. Thus we
consider it to be worthwhile.

5. CONCLUSION

In this paper, we present the Hidden Discrete Tempo Model, a
tempo-dependent model for audio to score matching. Its mainfea-
ture is a hidden tempo variable, allowing for an explicit modeling
of the timing of the musical performance. The representation as a
Dynamic Bayesian Network with discrete hidden variables makes an
efficient decoding possible through the Viterbi algorithm,and allows
for the consideration of features characterizing the localtempo.

Experiments run on both classical piano and pop music show
the very high accuracy of this model for audio to score alignment,
as well as the usefulness of the cyclic tempogram as a tempo fea-
ture. The tempo precision can be adjusted by changing the char-
acteristics of the discretization grid, which can be non-linear. It is
also worth mentioning that, although we performed off-linealign-
ment, this model could straighforwardly be applied to a real-time
context. Indeed, the complexity of this model can be reducedby
pruning methods such as beam search.
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