
 1

Model-based approach for IMA platform early exploration

Michaël Lafayea,b, David Fauraa, Marc Gattia, Laurent Pautetb

b TELECOM ParisTech
LTCI

46 rue Barrault
75634 Paris Cedex 13, France

{lafaye, pautet}@telecom-paristech.fr

a THALES Avionics
ACS/DTEA

18 avenue du Maréchal Juin
92366 Meudon-la-Forêt Cedex, France

{david.faura, marc-j.gatti}@fr.thalesgroup.com

Abstract

The avionics platform are now developed according
to the Integrated Modular Avionics concept, allowing
one processing module to host some applications in
order to reduce weight, space and costs. This concept
increases the development and certification complexity,
while time to market tends to decrease. So new
development processes are needed. Model-based
approaches are now mature enough to design
embedded critical systems and perform architecture
exploration.

In this paper we propose a new modeling approach
that aim to size an execution platform architecture (OS
and hardware) according to the applications it has to
process, and achieve early platform exploration.

Keywords : modeling, avionics systems, real-time,
simulation, AADL, SystemC

1. Introduction

Avionics systems are critical real time systems
composed of applications, real-time operating system
and hardware modules. To reduce the environmental
footprint in term of weight and space, and also the
costs, the Integrated Modular Avionics (IMA) concept
was developed in the 2000s. It defines integrated
architectures, where one calculator hosts some
applications. So the number of modules aboard is
reduced. Following this evolution, suppliers developed
network architectures in which modules are
interconnected and communicate through a
deterministic network. However, this evolution entails
an increase of complexity in avionics platform design,
verification and certification processes, while time to
market tends to decrease. These developments require
an early modeling of the system to validate and
maximize the use of the future platform, while ensuring
the critical level required by current standards in
aviation (DO-178B, MILS-CC…).

To model IMA platform and perform early
validation, Model-Driven Engineering approaches
[1,2] are now suitable to describe system high-level
functionalities. Many projects aim at modeling these
platform with Architectural Description Languages as
AADL [3] or MARTE [4], or with synchronous
languages such Lustre or Signal [5]. However, they
often focus on the applications description, model the
hardware as connected blackbox components with a
few properties, and perform static simulation.
Moreover, there actually is no automated process for
complete platform modeling and simulation.

We propose a new modelling approach that aims to
design a complete avionics system (hardware,
operating system and the applications), and perform
dynamic simulation. It is a component-based approach,
relying on two languages and taking advantages of
both: AADL and systemC. AADL[8] is, as MARTE,
an ADL particularly adapted for software architecture
description [4,6], enabling the modeling of ARINC 653
embedded real-time system [7]. In view of the
experience of partners who especially developed the
ARINC 653 AADL annex and the Ocarina tool suite,
we choose the AADL rather than MARTE. SystemC
[9] is an IEEE standard widely used in industry for
hardware platform description, and including a
simulation kernel for architecture simulation and
exploration.

In this paper we first present real-time system
modeling works with ADL before introducing IMA
concept, then we detail our method, and conclude with
perspectives of our work.

2. State Of The Art

Some projects aimed at modeling real time critical
systems with ADL. The SPICES project [3] and
MARTES project [4] both tried to use a combination of
an ADL (MARTE for MARTES, the AADL for
Spices) and the systemC language. Their goal was to
model at high level a real-time system, and generate by
code translation a systemC platform. The idea of using

 2

such a combination seems relevant, but the part of code
translation from the ADL to systemC platform model is
a harder operation, because there are lots of cases to
manage. Moreover, the systemC hardware description
does not allow enough accuracy in execution platform
performances analysis for our approach.

Our approach is also partly based on the ARINC653
system modeling works with AADL, that led for the
development of the AADL ARINC653 annex [7]. It
enables the description of the spatial and temporal
partitioning method, secure inter and intra partitions
communications, and applications deployment on the
execution platform. However, there is no behavior
specification for the hardware part, and no dynamic
simulation. Our approach looks at fulfill these lacks.

3. Integrated Modular Avionics Platform

An IMA platform, as illustrated in figure 1, is
composed of avionics applications running on
execution modules including embedded operating
system and the underlying hardware. These modules
communicate through a deterministic network, the
AFDX (Avionics Full DupleX).

Figure 1. IMA platform

A processing module hosts some applications at
different criticality levels, it is then necessary to respect
safety constraints. That's why OS ARINC 653 standard
was defined, which specifies space and time
partitioning. To ensure space partitioning and prevent
failure propagation, each application is enclosed in one
or some partitions, isolating it from each other. Each
partition is bound to a part of memory, so it only access
its own memory area (figure 2). The standard also
defined secure intra and inter-partitions
communications. To ensure time partitioning, each
partition has its own execution time window, during
which the application has access to all dedicated
resources (processing, memory, dedicated I/O, etc.).

Figure 2. ARINC 653 spatial partitioning

4. IMA Platform Modeling

4.1. Overview
Model-Driven Engineering approaches are now

mature enough to serve as a basis for building
embedded systems and perform early validation. They
are especially suitable for modeling high-level
functional architecture (description of the
functionalities offered by the system) and logical
architecture (description of how the system is
structured into logical components cooperating by
communications) [10]. But at platform architecture
level, these approaches describe both hardware and
software as static blackbox elements with some
properties.
 Some projects [3,4,5] aim at building more accurate
platform models, but they mainly focus on the software
behavior, and model hardware as one or a few
blackbox components without behavior information.
They after perform static analysis on the model. So
there is no method to retrieve dynamic performances
from the hardware in order to validate it according to
the applications requirements.
Our method develops a new approach for avionics
platform modelling, that refines architecture
description at platform decomposition level, specially
the hardware. In order to refine this later, our approach
models and sizes the execution platform according to
applications requirements. As we can see in figure 3,
this approach consists of different tasks:

- system high level modeling;
- applications characteristics extraction;
- platform generation according to requirements;
- platform simulation and performances analyses.

 3

Figure 3. Modeling Approach

4.2. Applications modeling

An important point at this step is that we have not

necessarily access to the applications code, so we can
not directly generate the applications characteristics
files (Figure 4). Consequently, we define the main
applications characteristics we need in order to
generate stimuli to simulate the platform. These
characteristics are for example parallel code
percentage, I/O access, processes duration and
deadline…which can be obtained by code profiling or
extracted from the applications configuration files.

Figure 4. Application modeling.

These characteristics are first used to model the
applicative part of the platform with the AADL.
Partitions are modeled with the AADL processes, and
ordered according to a given pattern called Major
Frame, as in figure 5, where P1 represents the partition
1 and so on. The AADL threads represent the ARINC
653 processes of the applications. They are configured
(deadline, priority etc.), bound to an AADL processor
and a part of the main memory. Previous works defined
rules to model ARINC653 system with the AADL [7].

Figure 5. Example of Major Frame

These applications characteristics files is our input.
We defined a set of macro-instruction (for example
dram_read_command) which target the different
modules of the platform. Thus we translate the
different characteristics into these systemC macro-
instruction. These instructions will be injected into the
simulation kernel when simulating the future platform.

4.3. High level system modeling with AADL
Contrary to the applications, described with AADL

threads, the operating system is defined by some
properties dispatched in the different hardware
components. For example, scheduling policy is set in
the processor module, partition security level is defined
in the virtual processor, etc. To model an ARINC 653
operating system, we use the AADL 653 annex, and
the method described in this article [7].

Each hardware component is modeled with the
AADL corresponding component, or with the device
element. Some more complex components, like
network, are modeled as a sub-system containing other
components. We first model hardware component as a
pseudo blackbox element, where behavior is not
defined. We set interface information like ports, and a
few properties (memory size, bus transfer latency etc.).
In order to refine those hardware properties, we defined
or completed some AADL property sets, by
introducing behavior and specific properties like cache
hit rate for cache component, or refresh time for
DRAM component.
The user models the avionics system with the AADL,
and choose which viewpoint(s) will be set when
analyzing the platform. Viewpoints can be for example
timing performance, power consumption etc., and
enable the platform investigation under different
angles. We then parse the AADL model to retrieve
properties, connections and deployment information,
that are configuration information for the next step.

 4

4.4. Platform integration by generation
We developed a database of configurable systemC

components. They are automata which can be
configured with properties and viewpoints. For
example, on the figure 5, the automata of the DRAM
was configured according to the timing viewpoint, and
then with timing properties (tRefresh = refresh latency
etc.).

In order to generate the refined executive platform,
we retrieve from the AADL model the different
hardware properties and connections, configure the
corresponding systemC element, and connect them.

Figure 6. Dram automata example with timing
annotations

5. Platform Simulation and Results

Currently, this is a work in progress. However, we
have already encouraging results. The AADL part of
the process has been specified and is under
development, while systemC main hardware have been
developed (behaviour, main properties and
communication interface), as the first blocks of a future
model of an ARINC653 OS (scheduler, timer, switch
partition and context). In order to test and refine these
elements, we also developed a minimum hardware
platform and a basic scenario that simulates it in order
to test and refine the elements behaviour and the
platform communications.

To test our future platform, we defined a simulation
and performances analysis method: to see if the
hardware platform built is compliant with the
application requirements, we will perform a simulation
using systemC kernel, which will take the generated
platform, the viewpoint(s) set, and will apply the
simulation(s) scenario(s). The user will be able to
analyze the platform performances by examining
performances graphs and simulation traces. If the
execution platform is not compliant with the
applications requirements, we then will investigate and
try to refine or modify one or some components.

6. Conclusion

Current early platform validation methods center on
software modeling, regarding the hardware as blackbox
components which can't be dynamically simulated. We
have proposed a new early validation approach, that
aims to model a complete avionics platform, software
and hardware. Our method should automatically
generates hardware and simulation scenario. It should
also enables a dynamic simulation of the platform, and
analyzes its performances according different
viewpoints (timing, power consumption or safety). It
takes advantages from the AADL, particularly adapted
for software architecture modeling, and from systemC,
industrial standard for hardware architecture
description.

To validate the accuracy of our modelling
methodology, we will first model electronic evaluation
boards. We will afterwards model a complete IMA
platform to compare the model performances with the
experimental results. Otherwise, we will connect with
existing model-driven engineering methods and
improve the platform development process.

References

[1] J.A. Estefan. "Survey of model-based systems
engineering (MBSE) methodologies". Technical report,
INCOSE MBSE Focus Group, may 2007

[2] Bernhard Schätz, Manfred Broy, Franz Huber, Jan
Philipps, Wolfgang Prenninger, Alexander Pretschner,
Bernhard Rumpe, "Model-Based Software and Systems
Development – a white paper", 2004

[3] Support for Predictable Integration of mission Critical
Embedded Systems project (SPICES), 2009

 http://www.spices-itea.org
[4] Model-Based Approach for Real-Time Embedded

Systems development project (MARTES), 2007.
http://www.martes-itea.org/

[5] C. Brunette, R. Delamare, A. Gamatié, T. Gautier, J-P.
Talpin, "A Modeling Paradigm for Integrated Modular
Avionics Design", IRISA report, 2005.

[6] P. Dissaux, F. Signhoff, "the AADL as a Pivot
Language for Analyzing Performances of Real Time
Architectures", 4th European Congress ERTS
Embedded Real Time Software, 2008.

[7] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F.
Singhoff, F. Kordon, "Validate, Simulate and
Implement ARINC653 systems using the AADL", CM
SIGAda Ada Letters, 2009.

[8] AADL Portal at Telecom Paristech : http://aadl.telecom-
paristech.fr/

[9] Open SystemC Initiative. IEEE 1666: SystemC
Language Reference Manual, 2005. www.systemc.org.

[10] L. Cai and D. Gajski, “Transaction Level Modeling:
An Overview”, Center for Embedded Computer
Systems, University of California, 2003

