
Communicating and migratable interactive
multimedia documents

Cyril Concolato & Jean-Claude Dufourd &

Jean Le Feuvre & Kyungmo Park & Jaeyeon Song

# Springer Science+Business Media, LLC 2011

Abstract In ubiquitous computing environments, new interactive multimedia applications
need to be mobile, device independent, potentially distributed across devices and to
leverage existing services in the environment. Multimedia documents, when combined
with scripting technologies, can represent complex interactive multimedia applications.
However, they are still not appropriate for the creation of migratable, distributed
applications in dynamic environments. We present a framework for interactive
multimedia documents, which enables the communication of documents with a changing
environment, the mobility of documents and the distribution of communicating
document components in this environment. This framework uses an original approach,
which describes communication processing outside of the document. It is based on: an
abstraction model for dynamic network services; the definition of a binding description
language that describes how to connect the network processing with the multimedia
document processing; and on associated script programming interfaces. An implemen-
tation is presented and several examples, demonstrating in particular document mobility
and document modularity, are discussed.

Multimed Tools Appl
DOI 10.1007/s11042-011-0805-2

C. Concolato (*) : J.-C. Dufourd : J. Le Feuvre
Telecom ParisTech, Paris, France
e-mail: concolato@telecom-paristech.fr

J.-C. Dufourd
e-mail: dufourd@telecom-paristech.fr

J. Le Feuvre
e-mail: lefeuvre@telecom-paristech.fr

K. Park : J. Song
Samsung Electronics Co. Ltd., Suwon, South Korea

K. Park
e-mail: kyungmo.park@samsung.com

J. Song
e-mail: jy_song@samsung.com



Keywords Multimedia documents . Dynamic networking . Multimedia communication .

Migration . Mobility . Interactive application . Distributed applications

1 Introduction

In today’s multimedia environments, users have access to a wide choice of multimedia
devices (e.g. mobile phones, digital cameras, television sets, computers, tablets…) and they
want to use these devices seamlessly. In particular, users want the applications running on
their devices to communicate and exchange information or multimedia content with the
environment, following ubiquitous or pervasive visions [9]. This requires interoperable
communications between applications, across devices.

Users can access multimedia content almost everywhere through wireless networks. For
example, users would expect, when entering a restaurant, that the menu of the restaurant be
automatically presented onto their phone. Such a scenario requires not only service
discovery, but also connections between the network and the application layer. We believe
that an explicit description of the connections between service and discovery protocols and
multimedia applications, as proposed in this paper, can ease the development of
applications satisfying such a scenario.

Users also do not want to be tied to one device. They want to use only the most
appropriate one, or possibly several devices together to interact with a complex service [3].
When watching a TV program, a user may want to use her tablet to consult associated
information without disturbing the other viewers [17]. Our proposal addresses this use case
by enabling the mobility of the multimedia applications, or parts thereof, across devices and
by allowing modular design of mobile multimedia applications.

At the same time, the Internet is witnessing a change in the way content is created. The
difference between application and content is blurring. Traditional web pages evolve into a
more and more expressive and capable form of interactive content, i.e. web applications,
also called WebApps. WebApps are made of the same types of content as previous web
pages: they rely on XML, HTML or XHTML for structuring the content and on CSS for
styling it. They reference media elements such as images, audio-video clips or text, and use
JavaScript heavily to provide advanced interactive features. Full-fledged applications can
now be run over the network in modern browsers. In this paper, we describe our work
related to WebApps. We call them “interactive multimedia documents”, or in short
“documents”, to focus on the structure of the content rather than on the media elements and
to emphasize the fact that they can run also where there is no Web access.

As modern browsers are available on many platforms from PC to set-top boxes,
mobile phones and embedded devices, interactive multimedia documents are potentially
portable applications. However, current documents have limited communications
capabilities. Most of them rely on the AJAX programming style and communicate
with the “origin server” through the XMLHttpRequest object. We found only one very
recent example [18] of a scripting library for documents communication with devices in
the local/home environment. The reason for these limitations, as the authors of [9]
indicate, is that there are two distinct research communities working on either interactive
multimedia documents or on networking aspects for device discovery or session mobility.
In this paper, we propose an approach which links the two communities, tries to overcome
the limitations of document communications and enriches documents with dynamic
communication capabilities.

Multimed Tools Appl



As a consequence of these considerations, this paper presents a proposal for the use of
multimedia applications in dynamic environments, designed using document technologies.
This proposal is formed of three sub-proposals:

& First, the need for the interoperable communication between documents in a dynamic
environment is addressed. For that purpose, a communication engine and a binding
description language are introduced.

& Second, context configuration and context information documents used for the
migration of interactive multimedia documents are proposed.

& And third, special re-usable documents, called components, are defined to enable the
creation of distributed interactive multimedia documents.

This paper is a synthesis of previous work published in [4] and [11], but extends its
scope from widgets to communicating documents, gives more details on the implemen-
tation and proposes additional aspects, such as document components.

The rest of this paper is organized as follows. Section 2 presents some scenarios and
highlights the requirements behind this work. Section 3 introduces the architecture at the
foundation of our proposal. Section 4 surveys existing service and discovery protocols
and proposes a model abstracting the technical details of these protocols for use at the
document level. Section 5 presents the concepts underlying interactive multimedia
documents, extracting the assumptions we make on these documents. Section 6
exposes the XML language for the binding between documents constructs and service
and discovery protocols. Section 7 addresses the specific aspects of migration of
documents. Section 8 extends the proposed XML language and describes new tools for
the migration of modular documents. Finally, section 9 concludes this paper and describes
future work.

2 Scenarios & requirements

In order to understand the goals of our work, we present in this section some scenarios of
interest, featuring the use of communicating interactive multimedia applications in dynamic
environments. From these scenarios, we then derive some requirements that have guided the
design of our proposal.

2.1 Scenarios

2.1.1 Scenario A

A user downloads an interactive multimedia application onto her phone to control
different devices in her home environment, which includes home appliances (e.g. lights)
and multimedia devices, such as her DLNA media center and TV set.

This simple scenario illustrates the fact that documents should be able to communicate
with their environments. Documents need to have a dynamic access to the services and
devices in their environment. Hard coding, in the document, the IP addresses of the devices
to be controlled should not be required. Additionally, the document communication
capabilities should not be tied to a single protocol, and not only to home networking
protocols.

Multimed Tools Appl



2.1.2 Scenario B

A user is listening to her favorite radio station with a Web Radio application on a desktop
PC. While listening, she changes the settings of her preferred radio stations. Because she
has to leave, she wants to migrate this application, including all settings, to her mobile
phone and to continue listening to the radio on the phone.

This scenario is a classical example of Session Mobility [5] but with the difference that
our focus is not on media session mobility but rather on document mobility. The task of
migrating a document, which may be highly structured information, requires different tools
than those used for migrating media sessions as will be shown in this paper.

2.1.3 Scenario C

During the broadcast of a TV show, an interactive voting application related to the show is
broadcasted. This application has been designed so that a part of it can be migrated to
secondary devices, either to show additional information about the voting or because
several viewers want to vote using their phones.

In this scenario, inspired from [17], if a TV needs to move a part of the interactive
application to a remote device, it needs:

& To be aware of the surrounding devices and of their capabilities,
& To exchange content with these devices,
& And to communicate with them.

Yet, we believe that a master/slave relationship between devices (TV/phone), as
described in [17], is not required.

2.2 General considerations about the scenarios

All these scenarios can more or less be achieved today with native applications, i.e. not
relying on interactive multimedia documents. However, realizing all of them within a
unified framework is a challenge, namely because of application porting. If one considers
the range of devices from a PC, to a set top box, to mobile phones based on Android, iOS,
Windows or other operating systems, the cost of development of an interactive application
supporting all these devices is very high.

The current trend is to create interactive applications using Web technologies such as
HTML, JavaScript, etc. Such applications run in all modern browsers, which are mostly
interoperable. Using such a document approach to design applications is indeed a solution
to the problems of interoperability and development cost. However, several problems
remain, such as adaptation of the document to the device characteristics (e.g. screen size,
input capabilities) or the communication limitations. In this work, we focus only on this
latter problem.

One aspect of this problem is that current web applications have limited
communication capabilities because they assume a centralized architecture where one
or more servers, identified at authoring time, hold the information that the application
will access. In dynamic environments, possibly not even connected to the Internet, this
is a severe limitation.

A second part of the problem is communication capabilities checking. We want to
avoid loading a document if it cannot run properly due to the lack of some

Multimed Tools Appl



communication capabilities. A communication capabilities check should take place
before loading the document rather than at runtime. This check can also be done by the
user agent to filter discovered services. Additionally, it may be used for security
considerations, warning a user of potential threats due to uncertified communication
capabilities.

2.3 Requirements

From the above scenarios and considerations, we have based our work on the following
requirements:

& It should be possible to interface interactive multimedia documents with networking
protocols;

& This interface should be independent from the presentation language used in the
document (HTML, SVG, SMIL, MPEG-4 BIFS or LASeR, X3D);

& It should be possible to interface scripted and non-scripted interactive multimedia
documents;

& This interface should be independent from the network protocol used for service
discovery and message exchanges (UPnP, Bonjour, XMLRPC);

& It should be possible to interface interactive multimedia documents with remote
services in dynamic environments;

& It should be possible to move an interactive multimedia document from one device to
another;

& The system should minimize the modifications to the existing presentation engines;
& The system should not require modifications to existing devices and network stacks;
& The system should enable easy-to-check and static declaration of all communication

interfaces used by a document;
& It should be possible to connect an interactive multimedia document to multiple entities

and to connect multiple documents to the same entity.

3 Architecture

In order to enable the proposed scenarios while satisfying the above requirements, we
developed a framework for interactive multimedia documents that enables communication
with the environment and the mobility of documents or parts of documents called
components. This framework is based on the use of a separate layer for handling
communication, migration and component management. This layer is driven by a
declarative language, as opposed to solutions based on scripting APIs. The use of this
declarative language structures documents through a clean separation of the communication
code from the presentation/user interface, in the same manner XForms1 separates the
presentation/user interface from the service logic.

The use of an additional declarative layer implies some modifications to the architecture
of traditional interactive multimedia documents user agents. Such user agents are usually
composed of a network engine (NE), including an HTTP stack, and a presentation engine
(PE), sometimes including a scripting engine. The PE is in charge of rendering the

1 XForms 1.1, W3C Recommendation 20 October 2009, http://www.w3.org/TR/2009/REC-xforms-
20091020/

Multimed Tools Appl

http://www.w3.org/TR/2009/REC-xforms-20091020/
http://www.w3.org/TR/2009/REC-xforms-20091020/


document and handling animations and user interactions. We propose to define a new
component called Communication Engine (CE). The architecture of the modified user agent
we consider is presented in Fig. 1.

The CE acts as a broker between the NE and the PE. The behavior of the CE
depends on the messages it receives from the network and on the interactive multimedia
document that uses these messages. We argue that this behavior cannot simply be
inferred from the message structure or the document structure. Hence, authors must be
able to describe how the communication engine should forward messages to the PE and
how messages and replies can be sent. To this end, we define a new language, the
Binding Description Language, and an associated new type of document, called Binding
Description, described in Section 6. In order to process a communicating document, in
our architecture, the PE reads the document and the CE reads the binding description. The
CE establishes bindings between matching interfaces of two documents or of one
document and one external service. The CE propagates input messages to the PE and
creates output messages based on events received from the PE according to those
bindings. Bindings may need to be added (resp. removed) whenever a new document is
added to (resp. removed from) the PE, or when the CE detects changes in the availability
of services on the network.

4 Service and discovery protocols

In this section, we present first an analysis of the existing service and discovery
protocols and then we present our contribution to separate the networking and
interactive part of an interactive multimedia document that consists in an abstraction
of these protocols and services and that can be used generically within our
architecture.

Fig. 1 User agent architecture for interactive multimedia documents communication

Multimed Tools Appl



4.1 Existing protocols

Our everyday networking environment has been evolving in the last decade from a static
environment where communicating entities were pre-configured, pre-identified devices to a
dynamic one in which devices join and leave the network at any time. At the same time,
devices have evolved from information consumers to information providers, and can assist
other devices with various functionalities such as printing, storage, rendering or home
automation control. These functionalities are referred to as services, and are largely
deployed in corporate networks with Web Services infrastructure, or in the home
environment with Bonjour2 or UPnP3 infrastructures. Most of these protocols are based
on IP networking, but similar functionality is available in other networking environments,
such as Bluetooth and its Service Description Protocol [1].

In a similar approach to device addressing in a network, service addressing can be
classified in two categories: static and dynamic. Static approaches, such as UDDI,4 rely on
a centralized architecture in which a server acts as a repository of services available in the
environment. The drawback of such systems is a frozen centralized design, requiring a
client to know at least one server location. Dynamic approaches, on the other hand, rely on
discovery mechanisms between clients and service providers, with no a priori knowledge of
the network components.

4.2 Service abstraction model

To enable service and discovery protocols within interactive multimedia documents as
proposed in our requirements, we created a service abstraction model for documents, which
aims at supporting dynamic networking and at being generic and usable with existing
document or service discovery technologies. This model provides an abstraction for the
service, as well as an abstraction for the underlying service discovery protocols. Our model
is derived from the observation that, from the document point of view, there is no difference
between a service offered by the device running the document or offered by a remote
device; only the presence or absence of this service matters to the document. Our model
therefore considers that the addressing and DNS resolution process, whether static or
dynamic, is handled by the network layer and does not need to be controlled, or even
known, by the document. We thus consider that the service discovery protocol is handled at
the network layer. Our only assumption is that services are uniquely identified by a string
identifier (e.g. URI). The document is only aware of services appearing and disappearing,
through their unique identifiers, and optionally of the location (address or host name) of the
device hosting the service.

A document declares which services are needed or required, using their unique
identifier, and may then be notified when each service becomes available or
unavailable. As several devices may offer a service of a given type, a document can
be notified multiple times of a service binding. For example, in scenario A, several
lights may be controlled at a time. The document then uses the addressing information
to distinguish between the various service sources.

When designing a communicating document, it is not so unusual that the document not
only consumes a service, but also provides its own services to other documents. For

2 Bonjour is Apple’s implementation of ZeroConf protocols (see www.zeroconf.org)
3 Universal Plug and Play specifications (see www.upnp.org)
4 Universal Description Discovery and Integration (see www.uddi.org)

Multimed Tools Appl

http://www.zeroconf.org
http://www.upnp.org
http://www.uddi.org


example, a virtual keyboard exposes a text input service to the network, or an electronic
program guide exposes alert services on selected shows, or in our scenario C, the
voting part of the application provides a service (the vote) to the rest of the application.
This is reflected in our model by the notion of service provider. This notion allows a
document designer to instruct the CE to publish the document as a service on the
network using underlying service discovery tools, by giving it a specific identifier (e.g.
‘urn:example:keyboard’).

To interface services with a document independently of the service type, we abstracted a
network service as a uni- or bi-directional communication pipe carrying messages. Each
service is uniquely identified by a string identifier which may be used to define which
low-level service infrastructure should be used (e.g. UPnP, Bonjour or Web service).
Each message in the service is identified by a unique name within the service scope,
and is a high-level view of a protocol datagram (e.g. a web service function or UPnP
action or event). Each message has an associated direction, input (from service to
document) or output.

Enabling bi-directionality of messages means supporting synchronous or asynchro-
nous communication. While simpler to implement, synchronous communication may
suffer long, unpredictable delays between client and service provider. In non-threaded
execution environment, as is typically the case with web-based application, this can
result in application freezes, which is not tolerable for the user. We therefore designed
an asynchronous communication model, where the document gets notified when a reply
message is received. For the author, the main drawback of asynchronous communica-
tion is the need to set up dedicated callback mechanisms, which leads to higher code
complexity. However, we believe most web-based application designers are familiar
with this approach, since it is quite similar to AJAX application development.

5 Document communications

In this section, our contribution is twofold. First we study the communication options of
existing interactive multimedia documents formats. These options should enable the readers
to understand how this proposal is applicable to other non-reviewed formats. Then we
survey the communication capabilities of these existing formats to highlight the limitations
that we propose to overcome.

5.1 Interacting with documents

Interactive multimedia documents may be found in several formats: (X)HTML, jointly
used with CSS and JavaScript, that is the core of the web; SMIL, a language for
integrating media elements and defining a spatio-temporal presentation; SVG, which
inherits from SMIL its animation features and can also be used with CSS and
JavaScript; Flash, the de facto standard for animations on the Internet; MPEG-4 BIFS
or XMT, the binary and XML representations of an MPEG-4 document; VRML, a
textual language used for describing 3D worlds; NCL, a declarative language for
interactive TV applications in Brazil; etc.

Documents in all these formats are structured as trees of objects that may be
tagged with an ID and that have named properties. All these formats have an event
model, some with implicit event propagation up or down the tree, some with explicit
event propagation along routes or links. All have explicit or implicit event listeners.

Multimed Tools Appl



And all may include scripts. Data input into a document may thus be achieved
generically by:

– writing a property of an object in the tree;
– triggering an event;
– or calling a script function defined in the document.

Data output from a document may thus be achieved generically by:

– listening for changes of a property of an object;
– listening for an event;
– a script function defined in the document being called as part of the execution of the

document.

5.2 Communication capabilities and limitations

Most of the formats listed above already support some communication capabilities, mostly
using ECMAScript with the XMLHttpRequest object. This object enables the document to
make asynchronous requests to a server and the result may be XML code, as in the AJAX5

model. A similar approach is to retrieve new script code, as in the JSON6 model. Using
these approaches is not satisfactory in terms of communication, mostly because the
dynamic resolution of servers is not possible. Moreover, in order to communicate with a
remote service using this system, web applications would have to format messages
according to the service protocol, which can be complex and costly if several protocols
must be handled in a single application, even if the protocol support could be provided by a
specific JavaScript library, such as the one described in [18] for the UPnP protocol.

For document-to-document communication, the latest development of the future
HTML 5 standard introduces a cross-window messaging system7 that should enable
such communications. While interesting, this solution relies only on scripting, and does
not support dynamic addressing. In a similar way, Sire et al. [16] have proposed a
scripting interface to enable widget-to-widget communication within a single page, but it
also relies on scripting and is focused on communications resulting from a drag and drop
operation. In this context of single page communication, one could also imagine solutions
based on the use of single JavaScript context to share messages or on a central repository
for information as proposed in [7], but these solutions do not enable cross device
communications. To the best of our knowledge, there is no solution compatible with web
technologies for device-to-service communication that supports service discovery and
abstracts the protocols used, as per our requirements, as the recent formation of the W3C
Web and TV interest group8 seems to indicate.

6 Linking documents and protocols

This section presents our main contribution to linking service and discovery protocols, as
exposed in Section 4, with interactive multimedia documents presented in Section 5. The

5 Asynchronous Javascript and XML (see http://en.wikipedia.org/wiki/Ajax_%28programming%29)
6 Javascript Object Notation (see http://www.json.org/)
7 See http://dev.w3.org/html5/postmsg
8 http://www.w3.org/2010/09/webTVIGcharter.html

Multimed Tools Appl

http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://www.json.org/
http://dev.w3.org/html5/postmsg
http://www.w3.org/2010/09/webTVIGcharter.html


contribution consists in a declarative language used to drive the communication engine
introduced in Section 3. In this section, we also present some examples on how to use this
language to enable document communication; we describe an implementation and discuss
the advantages and limitations of this proposal.

6.1 The binding description

The Binding Description is the declaration of all communication interfaces that the
document may use. It defines which services the document may connect to, how the
document may initiate output messages, how input messages are to be connected to the
document and where to read or write the values of the arguments of the messages. Its
syntax is defined by the Binding Description Language (BDL), a declarative, XML-based
language presented below.

6.1.1 Interface

An interface element primarily describes a service that the associated multimedia document
can use. Since a multimedia document may require communication with multiple services,
the Binding Description may contain multiple interface elements. The interface element has
the following attributes:

– type : this attribute is the string uniquely identifying the service type desired by the
multimedia document

– bindAction, unbindAction : these attributes describe what should happen
when this interface is bound or unbound. Two options exist: an event to trigger, or a
script function to call.

– multipleBindings: documents may accept connections from multiple concur-
rent services (e.g. when controlling several light sources with a single button). This
attribute indicates if the associated document supports multiple bindings of this
interface.

– seviceProvider: documents can be sources of information for other documents
(e.g. virtual keyboard). This attribute indicates that the associated document will
provide the service corresponding to this interface, and instructs the CE to publish the
service on the network using the supported network stacks.

Figure 2 shows an interface from a Binding Description, which describes how to
connect a UPnP AVTransport service with a document, for instance to realize our

<interface type="urn:schemas-upnp-org:service:AVTransport:1"

bindAction="bindAVTransport"

unbindAction="unbindAVTransport"

multipleBindings=”false”>

<messageOut name="Play">…</messageOut>                  

<messageOut name="Stop">…</messageOut>                  

<messageOut name="Pause">…</messageOut>                  

…

</interface>

Fig. 2 An interface element in the Binding Description Language

Multimed Tools Appl



s c e n a r i o A . Up o n d e t e c t i o n b y t h e CE o f a s e r v i c e o f t y p e
urn:schemas-upnp-org:service:AVTransport:1, the CE will ask the PE
to call the script function bindAVTransport. Through the PE, the document can then
instruct the CE to issue Play, Stop, Pause… messages to the bound service. Upon
notification by the NE that the service is no longer available, the CE will ask the PE to
call the script function unbindAVTransport.

6.1.2 Messages

In the BDL, an interface element groups all messages that the document requires the service
to handle. Messages have a name, a set of arguments, some triggers and a direction, in or
out.

An input message is declared with a messageIn element, and first has a set of
inputs, then, if an answer is necessary, a set of outputs. The action that the PE
should perform for an input message or for the reply to a sent message is specified using an
inputAction attribute, which indicates the target of the action in the interactive
multimedia document: an attribute to modify, an event to trigger or a script function to call.

An output message is declared with a messageOut element and first has a set of
outputs, then if an answer is expected, a set of inputs. The trigger that the PE should
monitor for an output message or for the reply to an input message is specified using an
outputTrigger attribute: this can be an event or the modification of an attribute.
Figure 3 shows how a CE is instructed on how to process an incoming message.

In this example, whenever an input message named MessageA is received,
the PE is notified and the document is modified. First, the value of the
parameter Param1 (resp. Param2)  in the message is used to set
t h e a t t r i b u t e attribute1 (resp. attribute2) o f e l e m e n t
elt2 (resp. elt3) in the document. Then, an event activate is triggered
on the element elt1 in the document, as indicated by the inputAction attribute on
the messageIn element. inputAction may contain, as shown here, an event to be
triggered, but it may also contain an attribute to modify.

For advanced handling of the messages, using a script function name in the
inputAction attribute is possible. In that case, the values of the message parameters
are passed, in document order, as arguments of the function. This is illustrated in Fig. 4.
Another attribute scriptParamType is specified on the input elements. This
optional attribute indicates how the value of the associated parameter should be passed to
the function. We define four types: number, string, binary or boolean. It helps checking that
the interface matches the function signature and reduces the parsing process in the script.

In Fig. 5, the binding description declares that whenever the value of the attr2
attribute changes on the elt1 element in the document, a new message of type
MessageB shall be created. This message shall contain two parameters ParamX and

<messageIn name=“MessageA” inputAction=“elt1.activate”>

<input name=“Param1” setAttribute=“elt2.attribute1”/>

<input name=“Param2” setAttribute=“elt3.attribute2”/>

</messageIn>

Fig. 3 Input message with two parameters

Multimed Tools Appl



ParamY whose values are taken from the attr3 (resp. attr6) attribute of the
elt3(resp. elt4) element.

In terms of implementation, this means that the PE needs to attach a listener to the
elements and attributes specified in the interface. As discussed in Section 5.1, this design is
believed to be generic and independent from the interactive multimedia document format.

6.1.3 Handling replies

When communicating with external entities, interactive multimedia documents may need to
reply to previously received messages or to process a reply to a message they sent before.
In both cases, as discussed in Section 4.2, replies are asynchronous. The CE, in charge of
receiving or sending the messages for the document, needs to be informed that an input
(resp. output) message is related with a previous output (resp. input) message. Hence, we
use input and output elements within the same messageIn or messageOut
element as in Fig. 6.

6.1.4 Scripting

We have presented, so far, examples of how a purely declarative description can be used to
specify the behavior of the CE. For more advanced use cases, when scripting is used in the
interactive multimedia document, scripting programming interfaces are defined, as shown
in Fig. 7, in order to provide similar functionality. Examples of use of these interfaces are
omitted for brevity.

6.2 Applicability to the scenarios

Let us consider scenario A, in which an interactive multimedia document is downloaded to
control a TV set equipped with a UPnP DLNA Media Renderer as shown in Fig. 8.

We have implemented this scenario using a document based on the SVG language for
the control panel (with buttons for play, pause, etc.), an excerpt of which is shown in Fig. 9;
a script file which implements the control behavior using the binding interfaces as in
Fig. 10; and a binding description associated with this script and document as in Fig. 11. In
this example, a click on the image will call a script function which will in turn call the

<messageOut name=“MessageB” outputTrigger=“elt1.attr2”>

<output name=“ParamX” attributeModified=“elt3.attr3”/>

<output name=“ParamY” attributeModified=“elt4.attr6”/>

</messageOut>

Fig. 5 Output message with two parameters

<messageIn name=“MessageA” inputAction=“processMessageA”>

<input name=“Param1” scriptParamType=“Boolean”/>

<input name=“Param2” scriptParamType=“String”/>

</messageIn>

Fig. 4 Input message with two parameters declared for usage by a script

Multimed Tools Appl



CE to format the “stop” message of the given UPnP service and send it to the
appropriate device.

6.3 Implementation

We have implemented our proposal in the GPAC player [10]. The implementation is
divided into two modules written in C, C++ and JavaScript: one for the management of
UPnP communications, one for the communication engine.

The UPnP module is using the Platinum UPnP SDK.9 Using this module, the user agent
is augmented with a UPnP control point that monitors the devices and services available on
the network and performs UPnP action and event subscription.

The CE is in charge of validating whether discovered UPnP services can be used with
the document, by first checking the UPnP service type and then comparing the BDL with
the UPnP service description (SDCP) document.

We have tested our implementation across desktops/laptops, mobile phones and a TV.
We have designed many communicating interactive multimedia documents: scripted/non-
scripted, in MPEG-4 BIFS/XMT or SVG, with 2D or 3D graphics, including local or
streamed audio-video data, controlling other documents or remotely controlled. Interested
readers may view some of these examples on this YouTube video.10

6.4 Results, discussions and limitations

Using this implementation, we have created interactive multimedia documents communi-
cating with third-party UPnP devices such as Intel Media Server and Intel Media Renderer.
Then, we have validated that this communication approach indeed works in dynamic
environments, when e.g. DLNA players appear or disappear in a LAN. Then, we have also
validated the fact that a document may be connected with several services at the same time.
The same validations have been made with services provided by documents marked as
service providers. As a result, we believe that this system should work with many protocols
for discoverable services.

Additionally, we have been able to create interactive multimedia documents mixing
AJAX communications and the proposed communication method, in a complementary
way:

– The document uses XMLHttpRequest when communicating with well-identified
services on the Internet.

<messageIn name=“MessageA” inputAction=“elt1.activate”

outputTrigger=“elt9.attr12”>

<input name=“Param1” setAttribute=“elt2.attribute1”/>

<input name=“Param2” setAttribute=“elt3.attribute2”/>

<output name=“ParamA” attributeModified=“elt4.attribute6”/>

<output name=“ParamB” attributeModified=“elt5.attribute7”/>

</messageIn>

Fig. 6 Input message with a reply

10 See http://www.youtube.com/watch?v=XNIBuUXLJbw

9 See http://www.plutinosoft.com/platinum

Multimed Tools Appl

http://www.youtube.com/watch?v=XNIBuUXLJbw
http://www.plutinosoft.com/platinum


– And the same document uses our framework whenever the service location or presence
cannot be predicted at authoring time.

In terms of authoring, although manually written, the overhead of creating the binding
description was found negligible compared to the usual development of AJAX-enabled
documents. Finally, we found that one advantage of our system is to be able to work with
devices, which cannot afford embedding a scripting engine.

7 Interactive multimedia document migration

In the previous section, we have presented our solution for the communication between
documents. However, with an increasing number of interactive display devices in her
environment, a user may want to move a running communicating application (or document)
between devices for a better experience, for example switching from a mobile phone to an
interactive TV. This concept is often called “Session Mobility” [5] [12] or “Service
Mobility”. In this paper, to avoid confusion with device mobility, we call “migration” this
process of moving the application between devices.

Fig. 8 Communication between an interactive multimedia document (Media Player Control Panel) and a
remote service (DLNA Media Renderer)

interface CommunicatingDocument { 
InterfaceHandler[] getInterfaceHandlers(DOMString

interfaceType);
attribute Function onInterfaceBind;
attribute Function onInterfaceUnbind;

}
interface InterfaceHandler { 

readonly attribute DOMString boundHost; 
readonly attribute DOMString type; 
MsgHandler msgHandlerFactory(DOMString name, 

Function callBackFunction);
void invoke(MsgHandler msgHandler, …);
void invokeReply(MsgHandler msgHandler, …);
MsgHandler msgHandlerFactory();

}
interface MsgHandler { 

readonly attribute DOMString msgName;
readonly attribute InterfaceHandler interfaceHandler;

}

Fig. 7 Overview of the Binding Programming Interfaces

Multimed Tools Appl



As explained in [5], when migrating a running application, it is important to be able to
restart the application in the same state. This implies the notion of application context, e.
g. the set of parameters an application will save when being stopped and restore when
being restarted. This context can be saved on the device persistent storage and restored for
regular application restart not involving migration, or sent over the network during
application migration.

When migrating a communicating document, it is also important to reestablish
communication after the migration. Depending on the situation, devices previously
connected will rediscover the migrated document or the document will rediscover
previously connected services, and similar bindings will be restored according to the
Binding Description described in Section 6.1. In this respect, our contribution exposed in
this section is the definition of configuration and context information enabling the
migration of communicating documents.

7.1 Related work

Migration has been covered by several related research works in the last decade. Some
approaches have focused on socket APIs for application migration [8] or on protocols
for migration of streams such as voice or video (Mobile IP [13], RTP or SIP [15][14]).
Other approaches looked at the migration of applications between virtual machines like
Java. Some other work used a distributed approach for partial mobility. A good example
of this latter approach can be found in the AURA platform [6], where each user task is
abstracted as a service. When migrating, the originating device can suspend any task and
instruct the target device to resume the task. Our approach is slightly different since we do
not attempt to provide a model for user tasks but rather give context restoration tools to
the application designer. Moreover, we focus on being able to use the same application
during the migration and not on finding applications that could perform the same task on
the target device.

Our approach towards preference storing is very similar to HTML cookies or the more
recent WebStorage11 specification. However, these tools do not take into consideration
application migration, and would require an external server to store and retrieve the data (e.
g. using XMLHttpRequest), which is not always possible (local network with no outside
link) or desirable (user privacy).

7.2 Context configuration and information

In our framework, a context configuration, describing the different parameters used to save
and restore the state of the application, is given in a simple XML language (similar to the
context digital item in [5]), and the user agent manages the saving and restoring of these

11 See http://dev.w3.org/html5/webstorage/

…<g>    
<image xlink:href="media-playback-stop.png" x="205" y="5"

width="50" height="50">      
<handler ev:event="click">stop();</handler>    

</image>
</g>…

Fig. 9 Excerpt of interactive multimedia document

Multimed Tools Appl

http://dev.w3.org/html5/webstorage/


parameters. We use the saved state of the interactive multimedia document for later
restoration either on the same device (persistent storage) or on a remote device (migration).
These two cases do not necessarily require saving the same set of parameters. Therefore,
each parameter is assigned, by the application author, a migration type indicating in which
condition the parameter should be saved and restored: persistent storage only, migration
only or both of them, as shown in Fig. 12.

When the interactive multimedia document is migrated, the user agent serializes the
context according to the context configuration into a special description called Context
Information. This process is depicted in Fig. 13.

This context information is then used to restore the parameters. For that purpose, it may
be transmitted in multiple ways: embedded in the binding description; stored in a file and
packaged and delivered with the binding description and interactive multimedia document;
or retrieved separately. Figure 14 shows a Context Information corresponding to Fig. 12.
One should note that all parameters not taking part in migration, i.e. with their migratable
attribute set to ‘saveOnly’, have been removed.

Another problem when performing migration is that the application (e.g., the
interactive multimedia document and its resources) may already be present on the target
device. In most cases, the target device cannot rely on the notified URL to check if the
application is already present, and will have to download the application package to
perform this check. To avoid this situation, each application can be assigned a unique
identifier (UUID) and this unique identifier is inserted in the context information
document, along with some versioning information. This allows the target device to
check whether the corresponding application is already installed only by retrieving the
context information document.

7.3 Applicability to the scenarios

Consider our scenario B. A simple web radio player is described by an interactive
multimedia document, where the user can choose her favorite station. The document acts as
a service provider and exposes a tuner interface, which allows a remote application to select
the current station. The user first loads the interactive multimedia document on her mobile,
controls volume and other audio effects, and later migrates it on the multimedia system of
her living room. The presentation then resumes the previously playing radio with the same
sound settings. If another remote device was originally bound to the tuner interface as
discussed in previous section, it is automatically bound again when resuming the interactive
multimedia document presentation, assuming that the living room multimedia systems
supports the same service discovery protocol as the controlling device. This scenario is
demonstrated in this YouTube video.12

12 http://www.youtube.com/watch?v=rbDddMMGg8U

function stop() {
var instanceID = 0;
var iha = getInterfaceHandlersByType(

"urn:schemas-upnp-org:service:AVTransport:1");
if (iha == null) return; 
iha[0].invoke(iha[0].msgHandlerFactory("Stop"), instanceID); 

}

Fig. 10 Example of use of the binding interfaces

Multimed Tools Appl

http://www.youtube.com/watch?v=rbDddMMGg8U


7.4 Implementation

In our implementation, we have experimented migration of documents based on UPnP.
We initiate the migration using the SetAVTransportURI function of the standard UPnP
MediaRenderer service, which instructs a remote media renderer to play the given
resource. We use the associated mime type of the content to filter regular audio/video
from interactive multimedia document. Context information is serialized by the
originating device and shared through an embedded HTTP server, which also acts as
an UPnP Media Server.

7.5 Results, discussions and limitations

We have tested our migration framework across several operating systems (Windows, Mac OS
X, Linux, Windows Mobile and iOS) in both LAN and WLAN environments. We observed a
large variation in UPnP protocol stack reactivity: on LAN environments, a typical migration,
including Context Information retrieval, between desktop computers would complete in about
one second; the same migration over WLAN between a desktop computer and a mobile phone,
would take much longer to complete, typically a few seconds. This can be explained by the use
of a mobile device, whose low processing power introduces latency in the UPnPHTTP requests
handling. However, migrating between desktop computers over WLAN is also significantly
longer than over LAN (typically a couple of seconds). We have not yet investigated how
redesigning the UPnP stack could reduce this latency.

This latency is one limitation of our system. The Context Configuration data has to be stored
on the originating device until fetched by the target device, which introduces HTTP download
with its own latency. This will have to be addressed in future work, using techniques such as
multi-part MIME HTTP requests in UPnP. Moreover, the context configuration reflects the
state of the application at the time the migration is initiated, which could be different from the
state of the application when it is resumed as explained in [5], for example when animations
are running and the application is migrated to several devices at the same time, such as in our
scenario C. This limitation should be addressed in future works, using techniques such as
Network Time Protocol tagging of the context information.

Finally, we have not yet studied how our migration framework can be used together with
multimedia stream migration using SIP [15][14] or other techniques. This will have to be
addressed in future work on use cases where the application contains animation
synchronized with streamed content (annotations, subtitles).

<contextConfiguration>
<preference name="color" value=”red” migratable=”saveOnly”/>
<preference name="currentPage" value=”0” migratable=”saveAndMigrate”/>
<preference name="lastRequest" value=”foo” migratable=”migrateOnly”/>

</contextConfiguration>

Fig. 12 Context Configuration example

<interface type="urn:schemas-upnp-org:service:AVTransport:1">
…

<messageOut name="Stop">
<output name="InstanceID" scriptParamType="string"/>

</messageOut>                  
…

</interface>

Fig. 11 Example of binding description

Multimed Tools Appl



8 Document modularity

In Section 6, we exposed our proposal to enable communicating documents. In Section 7,
we presented how communicating documents can be migrated. This section shows how
we can leverage communication and migration to design modular migratable and
communicating documents. Our contribution is an extension to the binding description
language presented in 6.1 that enables the modularity of documents and enhances the
communicating and migrating capabilities of the initial document.

8.1 Related work

Document modularity is the capability for designers to create interactive multimedia
documents in pieces or modules, each piece being a simpler, more focused document,
and to link these pieces together to assemble the complete application. Modularity is
important in multiple ways: to reduce complexity during authoring, porting and
maintenance; to allow the creation of libraries of components and thus foster reuse.

When designing an application (i.e. a document) using reusable modules (i.e. sub-
documents), the most important problem is designing a data exchange system between the
application and the modules. Existing approaches usually define exported symbols (X3D13) or
interfaces (X3D Proto, SVG Parameters14) for each module document. These designs imply
that the host document knows the location of the modules and loads them at runtime. This is
not fitting well in a distributed environment, where the modules could be on remote devices.

8.2 The component approach

In order to solve the problem of modularity in communicating and migratable documents, we
reuse the service abstractionmodel defined in Section 4, and define the notion of component: a
document, usable by another document regardless of its network location. The notion of
component document is very loose, in the sense that the defining feature is the ability of a
document to start/stop another document. Whether the two actually communicate is not really
important to the notion of component document, but it can be an added value.

Depending on the designer choice, specific components can be enforced or any
component fitting a set of requested functionalities may be used (e.g., any virtual keyboard

14 See http://www.w3.org/TR/SVGParam/

13 Extensible 3D Format (see http://www.web3d.org/)

Fig. 13 Document Migration and Context Information

Multimed Tools Appl

http://www.w3.org/TR/SVGParam/
http://www.web3d.org/


with the appropriate interface). We furthermore take into account the fact that some
components are required for the document, which cannot be used without them, while
others are optional.

A component element, in the BDL (see Section 6.1), signals that the document
associated with the binding description requires other component documents. The main
attributes of the component element are:

– activateTrigger and deactivateTrigger: these two attributes de-
clare how the requesting document will trigger the activation or deactivation of the
component document. Their value can be a document event or an attribute whose
modification will trigger the action.

– activatedAction, deactivatedAction and activationFailure: t h e s e
attributes declare how the document will be informed of the successful activation,
deactivation or failure of the component. The value may be a script function to call, an
event to fire or an attribute to modify.

– id : this attribute is used to identify a component when the document uses scripting
interfaces for component management.

The component element syntax offers two ways to link a document with its components:
by using a URL attribute or by listing the type of the interfaces that the component shall
match, indicated in requiredInterface elements.

In both cases, the specificity of using the proposed component approach is that upon
activation, not only the component will be displayed with the main interactive multimedia
document, as processed by the PE, but if the interfaces indeed match, the component will
be bound to the document by the CE and will provide a service to the main document. This
is illustrated in Figure 15.

Figure 16 shows the binding description of a document using a component with two
interfaces. It should be noted that when scripting is used in the document, it could be
interesting to load, activate, deactivate and unload components using scripts. For that
purpose, we have defined a component programming interface that is omitted for
brevity.

Fig. 15 Migration of a component and communication with the main document

<contextInformation uuid="someid" version="1">
<preference name="currentPage" value=”1”/>
<preference name="lastRequest" value=”bar” />
</contextInformation>

Fig. 14 Context information
description

Multimed Tools Appl



8.3 Applicability to the scenarios

Consider our scenario C. A TV channel broadcasts a document branded with the current show.
The document is run on the TV set, and voting for the current TV show can be done with the TV
remote when there is a single active viewer in front of the TV set. But as soon as there are many
people in front of the TV set, each of them having amobile phone capable of document rendering,
and eachwanting to vote, someway of voting needs to be given to the additional viewers. Imagine
that the document is broadcasted with additional resources: an on-TV, “local” voting component,
a touch screen voting component for smartphones and a small-keyboard voting component for
older phones. Only the on-TV component is launched by default. Upon request from the user, the
TV application could send appropriate components to each discoverable mobile phone. In this
case, the main document would expose a voting interface, acting as a service provider, and would
be bound to all voting components using the multipleBindings attribute.

8.4 Results, discussions and limitations

We have experimented with the component approach in several examples. These
experiments showed us that components indeed help in solving interesting scenarios such
as our scenario C. This approach however has some limitations that we would like to
address in the future. For instance, when many documents and components coexist in the
environment, we would like to guarantee that the binding between these documents and
components is indeed the one that solves the user’s problem. In a first approach, this could
be solved by asking the user but we would like to have a deterministic binding algorithm
that helps authors design applications. A related problem concerns the synchronization of
the bindings. In our scenario C, we would like to insure that the binding only happens when
the broadcast show requires voting.

9 Conclusion & future work

In this paper, we have proposed a framework to link interactive multimedia documents with
service and discovery protocols, factoring the network processing out of the document. This
framework is compatible with many document formats and service and discovery protocols.

<interfaces>
<interface type="urn:telecomparistech:serv:confprint:1">

<messageIn name="text" inputAction="addText">
<input name="text" scriptParamType="string"/>

</messageIn>
</interface> 
<interface type="urn:telecomparistech:serv:confpref:1">

<messageOut name="pref" outputTrigger="t5.textContent">
<output name="preference" attributeModified="t5.textContent"/>

</messageOut> 
</interface>

</interfaces>
<component>

<requiredInterface type="urn:telecomparistech:serv:confpref:1"/>
<requiredInterface type="urn:telecomparistech:serv:confprint:1"/>

</component>

Fig. 16 Declaration of a component with two interfaces

Multimed Tools Appl



We have proposed a service abstraction model based on careful analysis of existing protocols,
and defined the Binding Description Language. This language allows application designers to
create documents that communicate with the various services that may appear and disappear in
the network during the lifetime of the application. This language has been designed for low-
complexity, script-less documents as well as full-fledged scripted multimedia applications. We
have also proposed tools for interactive multimedia document migration between devices
allowing for application context restoration. To help developers build powerful, distributed
multimedia applications, we introduce a modular architecture for interactive multimedia
documents with reusable components communicating with the main application.

We have implemented our proposal in a multimedia player and demonstrated several
applications, designed with W3C SVG or MPEG-4 BIFS, communicating with existing
DLNA devices and with other applications through generic UPnP services. We have
demonstrated document migration between various devices (TV sets, mobile phones,
PCs) and distributed applications through our component system.

This work has been standardized by the Moving Picture Expert Group as part of ISO/IEC
23007–1 (MPEG-U). Our implementation of the standard has been publically released as part
of the GPAC project and acts as the reference software. Our framework is also fully compatible
with web-based applications defined in W3C Widgets Packaging and Configuration [2].

In the future, we plan to explore the integration of our tools with other service discovery
protocols (WS-Discovery, Bonjour) and existing web browsers for XHTML/HTML5
support. In particular, we are interested in implementing a communication engine as an
extension of existing web browsers using Javascript. Additionally, we would like to provide
answers to the limitations identified in the paper to improve the latency in migration, to
enable collaboration with media-specific session mobility schemes, or to better handle
complex component based applications.

References

1. Avancha S, Joshi A, Finin T (2002) Enhanced Service Discovery in Bluetooth. Comput 35:96–99.
doi:10.1109/MC.2002.1009177

2. Caceres M (2008) Widgets 1.0: Packaging and configuration. W3C Working Draft 22 December 2008,
available at http://www.w3.org/TR/widgets/

3. Cesar P, Bulterman DC, Jansen AJ (2008) Usages of the secondary screen in an interactive television
environment: control, enrich, share, and transfer television content. In Proceedings of the 6th European
Conference on Changing Television Environments, Salzburg, Austria, July 3–4, 2008. doi:10.1007/978-
3-540-69478-6_22

4. Concolato C, Le Feuvre J, Dufourd JC (2009) Declarative Interfaces for dynamic widgets
communications. In Proceedings of the 9th ACM Symposium on Document Engineering, Munich,
Germany, Sept 15–18, 2009. doi:10.1145/1600193.1600245

5. De Keukelaere F, De Sutter R, Van de Walle R (2005) MPEG-21 Session Mobility on mobile devices. In
Proc 2005 Int’l Conf on Internet Computing, pp 287–293, Las Vegas, USA

6. De Sousa J, Garlan D (2002) Aura: An architectural framework for user mobility in ubiquitous
computing environments. In Proc IEEE-IFIP Conf Software Architecture

7. Jansen J, Bulterman DC (2009) SMIL State: an architecture and implementation for adaptive time-based
web applications. Multimedia Tools Appl 43(3):203–224. doi:10.1007/s11042-009-0270-3

8. Kaneko K, Morikawa H, Aoyama T (2003) Session Layer Mobility Support for 3C Everywhere
Environments. In Proc 6th Int’l Symp Wireless Personal Multimedia Comm. IEEE Press, pp 347–351

9. Kernchen R, Meissner S, Moessner K, Cesar P, Vaishnavi I, Boussard M, Hesselman C (2010) Intelligent
multimedia presentation in ubiquitous multidevice scenarios. IEEE Multimed, April 2010, pp 52–63.
doi:10.1109/MMUL.2009.75

10. Le Feuvre J, Concolato C, Moissinac JC (2007) GPAC: open source multimedia framework. In
Proceedings of the 15th international Conference on Multimedia, Augsburg, Germany, September 25–29,
2007. MULTIMEDIA '07. ACM, New York, NY, 1009–1012. doi:10.1145/1291233.1291452

Multimed Tools Appl

http://dx.doi.org/10.1109/MC.2002.1009177
http://www.w3.org/TR/widgets/
http://dx.doi.org/10.1007/978-3-540-69478-6_22
http://dx.doi.org/10.1007/978-3-540-69478-6_22
http://dx.doi.org/10.1145/1600193.1600245
http://dx.doi.org/10.1007/s11042-009-0270-3
http://dx.doi.org/10.1109/MMUL.2009.75
http://dx.doi.org/10.1145/1291233.1291452


11. Le Feuvre J, Concolato C, Dufourd JC (2009) Widget mobility. In Proceedings of International
Conference on Mobile Technology, Applications and Systems, Mobility, Nice, France, September 2–4,
2009. doi:10.1145/1710035.1710060

12. Mate S, Chandra U, Curcio IDD (2006) Movable-multimedia: session mobility in ubiquitous computing
ecosystem. In Proc 5th Int’l ConfMobile andUbiquitousMultimedia. ACMPress, doi:10.1145/1186655.1186663

13. Perkins CE, Myles A (1997) Mobile IP. In Proceedings of International Telecommunications
Symposium, pp 415–419

14. Schacham R et al (2007) Ubiquitous device personalization and use: the next generation of IP multimedia
communications. ACM Trans Multimed Comput Comm Appl 3(2), doi:10.1145/1230812.1230818.

15. Schulzrinne H, Wedlund E (2000) Application-layer mobility using SIP. Mobile Comput Commun Rev 4
(3), July 2000. doi:10.1145/372346.372369.

16. Sire S, Paquier M, Vagner A, Bogaerts J (2009) A messaging API for inter-widgets communication. In
Proceedings of the 18th international Conference on World Wide Web, Madrid, Spain, April 20–24,
2009. WWW '09. ACM, New York, NY, pp 1115–1116. doi:10.1145/1526709.1526884

17. Soarez LFG, Costa RMR, Moreno MF, Moreno MF (2009) Multiple exhibition devices in DTV systems.
In Proceedings of the 7th ACM International Conference on Multimedia, Beijing, China, October 19–23,
2009. doi:10.1145/1631272.1631312

18. Web Device Connectivity, Ericsson Labs, https://labs.ericsson.com/apis/web-device-connectivity/

Cyril Concolato is Associate Professor in the Multimedia Group at Telecom ParisTech, Paris, France, where
he received his master and doctoral degree in Computer Science in 2000 and 2007, respectively. His interests
lie in multimedia scene descriptions and in interactive multimedia applications, in particular for the mobile
domain. He is an active participant to the standardization bodies of MPEG and W3C. Finally, he is one of the
project leaders of the Open Source project GPAC.

Jean-Claude Dufourd is currently a Professor at Telecom ParisTech. Before, he was co-founder and Chief
Scientist of Streamezzo, a mobile multimedia software vendor from 2004 to 2008. He has been an active
contributor to MPEG since 1995, editor of MPEG-4 LASeR, chairman of the Integration group from 2002 to

Multimed Tools Appl

http://dx.doi.org/10.1145/1710035.1710060
http://dx.doi.org/10.1145/1186655.1186663
http://dx.doi.org/10.1145/1230812.1230818
http://dx.doi.org/10.1145/372346.372369
http://dx.doi.org/10.1145/1526709.1526884
http://dx.doi.org/10.1145/1631272.1631312
https://labs.ericsson.com/apis/web-device-connectivity/


2006. He is a former student of the Ecole Normale Supérieure de Paris, a graduate from ENST and holds a
PhD and Habilitation in Computer Science of Paris VI.

Jean Le Feuvre received his Ingénieur (M.Sc.) degree in Telecommunications in 1999, from TELECOM
Bretagne. He has been involved in MPEG standardization since 2000, and joined TELECOM ParisTech in
2005 as Research Engineer within the Signal Processing and Image Department. His main research topics
cover multimedia authoring, delivery and rendering systems in broadcast, broadband and home networking
environments. He is the project leader and maintainer of GPAC, a rich media framework based on standard
technologies (MPEG, W3C, and Web3D).

Kyungmo Park Kyungmo Park received BS and MS degrees in Electronics from Kyunghee University in
2003 and 2005, respectively. He has been with Samsung Electronics Co., Ltd. since his graduation in 2005
and has been involved in many multimedia standard developing organizations (SDOs) including MPEG,
CEA and DLNA. Since 2007, he has been involved intensively in MPEG standardization, and has
contributed more than 30 contributions in areas of MPEG-U widgets, Digital Item Adaptation, Dynamic
Adaptation Streaming over HTTP and stereoscopic file format. His research interest areas include multimedia
processing and communications, as well as interactive multimedia services.

Multimed Tools Appl



Jaeyeon Song received her B.S., M.S. and Ph.D. degrees in Electronic Engineering from Hong-ik
University, Korea in 1995, 1997 and 2001 respectively. She joined Samsung Electronics, Co., Ltd as a senior
engineer in 2001. She has participated in many projects for mobile broadcast service standardization. Her
research interests include Smart TV and interactive rich media service. She is a director for multimedia
standarization in Samsung.

Multimed Tools Appl


	Communicating and migratable interactive multimedia documents
	Abstract
	Introduction
	Scenarios & requirements
	Scenarios
	Scenario A
	Scenario B
	Scenario C

	General considerations about the scenarios
	Requirements

	Architecture
	Service and discovery protocols
	Existing protocols
	Service abstraction model

	Document communications
	Interacting with documents
	Communication capabilities and limitations

	Linking documents and protocols
	The binding description
	Interface
	Messages
	Handling replies
	Scripting

	Applicability to the scenarios
	Implementation
	Results, discussions and limitations

	Interactive multimedia document migration
	Related work
	Context configuration and information
	Applicability to the scenarios
	Implementation
	Results, discussions and limitations

	Document modularity
	Related work
	The component approach
	Applicability to the scenarios
	Results, discussions and limitations

	Conclusion & future work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


