Université Pierre et Marie Curie
Paris 6 - Jussieu

Manuscrit

présenté pour 'obtention d’une

Habilitation a Diriger des Recherches

Spécialité: Informatique

Interactive Multimedia Content

par

Jean-Claude Dufourd

Paris, Octobre 2010

Table des matieres:

T T U T 3
2. SUMMAIY cuiiuiiuiieiiiieittaiatantastastastsstestostestestessssssssssssssssssssssssssssassassasssssasssssssssssesssssssse 4
3. RapPOrt SCieNtifiqUe..c.ccieecieecieecreecreierecereiereeereneerensereaserenserenserasernsssenssensesensesennene 5
R 700 R § 1 o 1o L (i o) o PO PPN 5
3.2. Interactive GraphiCs FOIMALS ... seessesssssssessssssss s sessssssesaees 5
32,1, MPEG-4 BIFS oeoeevsereseriseserisss s ssessisssessssesesssssssassessasssessssssessssss s st ssssssssssssssssnssssansesssnesesssnasesanssssssns 5
32,20 MPEG-4 XMTAeooeereererereserreresersosesesissssesissssssasssessasssesssssssssssssssassssssssssssssssssssssssssssssssssssessssesesssssssansssssanssesess 10
3.2.3. W3C SVG TINY 1.2eeeeerreerseerisssrseersecsissasisssssssssssssessssessssessssssssssssssssssssesanssssssssassssssnsesasssansssassssssssssnses 11
3.2.4. MPEG-4 LASER.....cooeeeeereerieerisseri s enasecsissasissssessssssssessssesassssassssssss s ssssesassssassssasssssssesassssansssasssasssssanees 13
3.2.5. 3GPP DIMS ANA OMA RMEooeeeeereeretrieerisssevsssesissesissesissssssssssssessnsesasssssssssssssssssessssssansssasssssssssnses 17
3.2.6. Formats Review and OPLIMIZATIONc..ceveerurrecessserssersserissesissssssssesssesissesssssssssssssssessssessssssassssssssssnses 18
3.2.7. Service-ENADIING EXEENSIONS ...ccvvverreerrecrirserisserissscssssessssessssesasssssssssssssessnsesassssssssssssssssesssssssssssassssssssssnses 19
1 T0C TR 00) 14§ 0] 1) [0) o 21
B0 Y B 27) O S 21
B Y = S 22
3.4, Multimedia PACKAZIIIG ... rerermreerersersereer s sesssses s s s sess s sesss s eens 24
34,1, MP4 fIl fOIMAL c..eorevrrcrieerireerisserisssssssessssesissesissessssssssssessssessssssassssssssssssssssesassessssssssssssssessssssansssassssssssssnees 24
3.4.2. Multimedia StreAmMING WILR SAF .. ceeerssecessserssersserssesisssssssesssesssessssssssssssssessssessssssasssssssssnses 25
R T0S TR UL L Vo) oV . 27
3.5.1. GUI £0 CONEONL .courrvreerrrcrieerireerisserisssssssesassesissesissessssssssssessssessssssasssssss s s sesansssassssasssssssssasssansssassssssssssnees 27
3.5.2. GUI-ASSISEOA LEMPIALES ...courererererrrreersecriseerissesisssessssesissesissesasssssssssssssessssesasssssssssssssssssessssesssssassssssssssnses 29
3.5.3. SIMPILE EOXE £0 CONEONT .ounverereereerrseersecriseerissestsssesssesissesassesas s sssss s sassssasss s sssssssesassssassssassssssssssnses 32
3.5.4. PIrOGTAIM £0 CONEONE.coucruerereerirseriessssserssesissesissessssssssssessssessssessssssssssssssssssnsessssesssssssssssssssesssssansesasssassssssnses 35
R T ST Ve =01 7=t o) o VO PP 37
3.6.1. Adaptation of content to reNdering CONLEXLmrmeromirmmermsmeerimserinsisissssssmsessmsesssesssesasssssssssnses 37
3.6.2. FOrMQAL LPANSIATION cccvverorerirerireerisesseersecrissesissestsssessssesassessssesas s s s sesassssssssssssssssssessssssasssassssssssssnses 39
R TN =5 o U =)' DY PTP 42
3.7.1. RENAEIING fOI QOS....ooerrirreerireerirssesssersscsssesissesssssesssesassessssesassssssssssssssssnsesasssssssssssssssssessssssansssasssssssssssnses 42
3.7.2. MUILi-fOTMAL TENACTING ...cvurererererrrrseerseerisserissesisssessssessssessssesassssssssssssssssssesasssssssssssssssssessssessnsssasssssssssnses 14
3.8, WIdeNiNg the SCOPE ... er s ss s s ss s s s s 45
3.8.1. Compound DOCUMENT FOIMQALccueereerreerirserissscussserssesssesissssssmssssssessnsessssessssssssssssssesssssssssssassssssssssnses 45
3.8.2. WHAQGOLS.erueerireerieerisserssscrssesissesissesissssssssessssesissesasss e sesssssssssssassssssss s s sesassssassssassssssssesansssansssassssssssssnses 46
B T & 2] 1 PN 48
R 700 TR 01 4 o LT (o) U 49
700 L =5 =) (=) o L= 49
4. Curriculum ViItaeccceeieiiieemmmmnmniiiiiiiiiiiiiiiiieieeiieeneesssssssssmiieieeeeesssesees 55
g S oo] T 0T 0 o 1< PP 55
N - 1 U £ o (PP 57
TG TR s 1§ o U n (o) o FOU PP 57
T 010§ ot L 0 o F PP 58
4.5. Contrats de recherche (ENST) . sessssssesssssss s sssssssssesssssssesans 62

1. Résumé

J'ai travaillé sur de nombreux projets situés tout au long de la chaine de traitement du
«rich media ». Certains projets étaient dans un contexte de financement européen ou
national, d’autres dans des contextes de théses : ceux-ci ont été publiés. D’autres projets
encore ont eu lieu dans le contexte de la création d’'une entreprise nommée Streamezzo
dont j’ai été co-fondateur, et donc ont été peu publiés. D’autres enfin ont eu lieu dans des
organisations de standardisation et la forme du résultat dépend de I'organisation :

- Formats:
o MPEG-4 BIFS : conception de format de description de scene
o XMT-A: format de description de scéne basé XML pour BIFS
o W3CSVG Tiny 1.2
o LASeR: format de description de scene pour mobiles
o OMA Rich Media Environment et 3GPP Dynamic Interactive Multimedia
Scenes
o Optimisation de format
o Extensions pour faciliter les services
- Compression:
o Encodage de scenes binaires: BIFS
o Encodage LASeR
- Packaging:
o Format de fichier MP4
o Format de streaming SAF
- Création, outils auteur:
o MPro: une interface graphique pour la création de contenu
o Harmonia: des templates assistés par une interface graphique
o B4: création de contenu a partir d'un format texte
o RSP: création de contenu a partir d'un langage de programmation

- Adaptation/traduction:
o Adaptation de contenu au contexte de rendu

O

(@)
(@)

Traduction vers un autre format: SVG vers BIFS, Flash vers « tout », PPT

vers « tout »
- Rendu:

Qualité d’expérience
Multi-format: GPAC

- Elargir le spectre:

o Compound Document Format
o Widgets
o HbbTV

Le rapport scientifique ci-dessous est un ensemble de sections décrivant mes
contributions et celles de mon équipe sur chacun des sujets ci-dessus.

2. Summary

I have worked on many projects along the rich media chain. Some have been in the
context of European or national projects, some in the context of PhD theses: these have
been published. Some projects have been done in the context of the creation or running
of a company called Streamezzo that I co-founded, and as such, have scarcely been
published. Some have taken place in standards organization, and the form of the result
depends on the organization:

- Formats:
o MPEG-4 BIFS: scene description format design
o XMT-A: XML-based scene description for BIFS
o W3CSVG Tiny 1.2
o LASeR: scene description for mobiles
o OMA Rich Media Environment and 3GPP Dynamic Interactive Multimedia
Scenes
o Format optimization
o Service-enabling extensions
- Compression:
o Scene binary encoding: BIFS
o LASeR encoding
- Packaging:
o Multimedia packaging: MP4 file format
o Multimedia streaming: SAF
- Authoring:
o MPro: GUI to content
o Harmonia: GUI-assisted templates
o B4:simple text to content
o RSP: program to content

- Adaptation/translation:

o of content to rendering context

o to another format: SVG2BIFS, Flash2any, PPT2any
- Rendering:

o Quality of Experience

o Multi-format: GPAC
- Widening the scope:

o Compound Document Format

o Widgets

o HbbTV

The scientific report below is a set of sections on my contributions and my team'’s
contributions to each of the above subjects.

3. Rapport Scientifique

3.1. Introduction

My work has been focused on interactive content since 1995. I chose to restrict this
document to this subject, and not to speak about signal analysis on micro-computers
from my PhD, speech synthesis with diphonems or VLSI computer aided design through
symbolic design (analysis with the Stickizer or generation with Préforme).

I chose the term interactive content rather than interactive documents. There are two
rather separate communities, one on content and one on documents. Content is closer to
a video or audio stream: it may be subject to streamed modifications. Content evolves
with time, whereas a document stays “the same”, even if its internal state may change.
Recently, using AJAX allows streaming modifications within documents, which reduces
the difference in results, but not in design.

Along the work on interactive content, came a new buzzword, Rich Media, which we
used and overused.

[have always been interested in graphics and interaction. VLSI computer aided design is
all about user interfaces for browsing and editing large quantities of graphics. Entering
the MPEG world, I soon focused on the mixing of media and interactive graphics,
motivated for example by the creation of interfaces for the access to media (DVD). The
state of the art of graphics formats in '95 was quite small. We had to start with
description formats, compression, rendering and conformance. Then trying to promote
the adoption of the format, the availability of authoring tools became an issue. Then the
mobile world and its myriad of devices made adaptation, translation and quality of
experience into major issues. Of course, progress was not linear, and different
opportunities dictated the timing of going deeper into this or that aspect: available
funding, meeting people... I tried to group projects into coherent aspects below, rather
than keep a strict time line.

3.2. Interactive Graphics Formats

[have been involved in the design of many interactive graphics formats from ‘95 to now:
BIFS (contributor), XMT-A (leader), SVG Tiny 1.2 (participant), LASeR (leader), RME
(participant), DIMS (participant). I have also started a more in-depth study of these
formats, trying for a sort of unification. And I have worked on a companion service-
enabling format, necessary to the success of any interactive graphics format.

3.2.1. MPEG-4 BIFS

In ‘95, there were few scene formats. Flash was just starting. Apple lovers were either
swearing by HyperCard [73] or by Director. 3D people were working on VRML. CD-I was
the interactive solution for CDs, coupled with the MPEG-1 standard. OpenTV was just
starting. The work on SVG did not start until '98.

The MPEG-4 Systems group, influenced by a wave of 3D enthusiasm, chose to base what
became BIFS (Binary Format for Scenes) on VRML [65]. Because VRML did not have any
2D capability, the main extensions of BIFS over VRML are the set of 2D capabilities and
2D-3D mixing capability, and of course the binary encoding, the updating mechanism

and improved audio/video support [25]. The bulk of our contribution was on the 2D
capabilities and on interactivity.

Based on a study of existing scene formats at the time, we proposed various sets of 2D
objects:

- what we thought then as PowerPoint objects and properties,

- Bitmap, an unlimited surface that stays parallel to the screen, and is insensitive to
transformations (even 3D), on which images and videos can be mapped
efficiently (without a need for rescaling),

- Layout and Form, i.e. flexible layout primitives, Layout to be able to lay text and
paragraphs out, including images for symbols, and Form for relative positioning
and form-like layouts. The main drive was to be able to lay objects of an unknown
size out at authoring time.

On interactivity, an analysis of the need for non-scripted interactivity led to the design of
3 nodes:

- Conditional

- Valuator

- InputSensor

3.2.1.1. Automatic Layout of Objects

The success of HTML as a standard is now obvious, but in 96, the emphasis was still on
absolute object placement and fixed layout by the author. Layout determinism was the
dogma. Still, we championed and got the addition of features allowing automatic layout
of objects in the BIFS 2D renderer: automatic layout of text in paragraph, possibly
interspersed with graphics such as symbols or inline images; and automatic layout of
forms, as a very frequent use of interactive graphics. This work is one of the
contributions of the PhD of Frédéric Bouilhaguet, together with the implementation of
those nodes in the MPEG-4 Systems reference software [1].

Layout

The Layout node provides a simple paragraph of flowing text. Its parameters thus are
the size of the region in which to lay the paragraph out, the characteristics of the
paragraph (line spacing, writing direction, line progression, justification), whether the
text should be wrapped and text strings broken if too long. They also include parameters
for scrolling, speed and direction, by line or smooth.

The Layout node clips text and other objects that lie outside its region. It is a relatively
straightforward feature, and the scroll feature makes it simple to create ticker tapes.

Form

The Form node provides relative layout (alignment of edges or centers) and spreading
of objects, inside a region. The only complex part of this node is the mapping of the
constraints onto the BIFS string or integer arrays. Each Form node has a set of children,
a size and a set of constraints. All objects start at the center of the Form container. Each
constraint is applied consecutively in the order defined. Each constraint applies to a set
of objects. The constraints are the same as the ones that can be found in any graphical
development tool. With an authoring tool, using this node is a breeze; this node is hard
to use without an authoring tool.

3.2.1.2. Interactivity without Scripts
Conditional

One of the most important assets of BIFS is its update mechanism. I designed,
implemented and proposed an update system for BIFS that was very close to the
accepted one, albeit not as complete. I also pioneered authoring of scenes using scene
updates in very innovative ways, without recourse to scripting, thanks to the
Conditional node, which is a container of updates that can be triggered interactively.
Usually, updates are grouped in an Access Unit, and stamped with a Composition Time. A
Conditional basically contains an Access Unit with no time stamp, waiting around for the
user to trigger it. A suitable event source, e.g. a TouchSensor (in the case of a button), is
routed to the Conditional, which implements the changes in the scene required when the
user touches the button.

In terms of equivalent script, a Conditional is equivalent to a script where you can only
use element creation, element removal, element replacement and property change,
excluding variables, loops, conditions, etc... [t seems very restricted, but it is amazing
what can be done with this, compared to the negligible cost of implementation
(negligible when compared to the cost of implementation of a scripting language and the
DOM API [53]). In terms of efficiency, a study at Streamezzo found that Conditional was
between one and two orders of magnitude faster than scripting.

Here is a real-life example of Conditional use. In order to create a button, we need three
images: the normal image of the button, the image of the button when the mouse is over
it, and the image of the button when the mouse button is pressed, i.e. when the button is
pushed. Since the XMT listing is quite verbose, the repetitive parts of the listing are given
in a kind of shorthand:

1 <Group>

2 <children>

3 <TouchSensor DEF="N6" enabled="true"/>
4 <Switch DEF="N2" whichChoice="0">

5 <choice>

6 . normal state image ...

7 . over image ...

8 . down image ...

9 </choice>
10 </Switch>
11 </children>

12 </Group>
13 <Conditional DEF="N10">

14 <buffer>

15 <Replace atNode="N7" atField="whichChoice" value="0"/>
16 </buffer>

17 </Conditional>

18 ... Conditional N11 with value 1 ...

19 ... Conditional N12 with value 2 ...

20 <ROUTE fromNode="N6" fromField="isOver"

21 toNode="N11" toField="activate"/>

22 ... ROUTE N6.isOver to N10.reverseActivate ...
23 ... ROUTE N6.isActive to Nl2.activate ...

24 ... ROUTE N6.isActive to N10.reverseActivate ...

Lines 1 to 12 pertain to the visual part of the button, showing one of three images
according to the value of the “whichChoice” field. A TouchSensor node tracks the
location and state of the pointing device and detects when the user points at a geometry
contained by the TouchSensor's parent group. The Conditional nodes capture three

actions: make visible the normal image, the over image and the down image,
respectively. The TouchSensor fields are routed (lines 20-24) to the Conditionals (lines
13-19), so that mouse movements and clicks trigger the relevant Conditional.

Valuator

Content designers using scripts in VRML will tell you: most scripts are just one
expression long: either just one cast, or one simple expression and a cast. A Valuator
node is just that: one operation and a cast. Again, the benefit of this node is large
compared to its implementation cost, and its efficiency is unrivalled by scripts.

In this example, an image or a video is shown in the middle of the screen. An object can
be dragged with the mouse across it, and behaves as a magnifying glass on top of the
image or video.

The object to drag is a Circle with wide yellow border, placed in a Group together with a
PlaneSensor2D to make it draggable. Then we need the magnifying effect: a
Transform2D with a scale factor of 3 (line 3 below) will have as single child a USE of the
main image (line 4), and in order for the magnified image to follow the area below the
“glass”, we need to translate the USE (i.e. change the translation of the scaling
Transform2D) by the magnifying glass movement multiplied by -3. This can be easily
achieved with a Valuator node (line 8): it allows type casting and simple operations on
events. Here is the XMT fragment for that, followed by the scene on Figure 1:

1 <Transform2D DEF="NO"><children>

2 <Layer2D DEF="N8" size="200.0 200.0"><children>

3 <Transform2D DEF="N6" scale="3.0 3.0"><children>

4 <Transform2D USE="N9”/>

5 </children></Transform2D>

6 </children></Layer2D>

7 </children></Transform2D>

8 <Valuator DEF="N7" Factorl="-3.0" Factor2="-3.0"/>

9 e

10 <ROUTE fromNode="N1" fromField="translation changed"
toNode="N7" toField="inSFVec2f"/>

11 <ROUTE fromNode="N7" fromField="outSFVec2f"
toNode="No6" toField="translation"/>

12 <ROUTE fromNode="N1" fromField="translation changed"
toNode="NQO" toField="translation"/>

) Temnt

Figure 1: the Magnifying Glass scene

3.2.1.3. New Device Interfaces: InputSensor

VRML is poor in input device interfaces, beyond the pure 3D ones: you can interface
scenes with joysticks, sliders, mice, trackballs and even some haptic devices, but the
keyboard interface is desperately poor. Forget mouse wheels. Forget remote controls.
Forget multi-touch or drag-and-drop. The MPEG-4 Systems group recognized this lack
and tried to remedy it, but hit the following difficulty: for each new device, the device

interface may change, and that means a new node, and that means a new BIFS
amendment, with all the weight and inefficiency of that process. Adding a node means:

- changing the BIFS decoder;

- adding a new profile; even though this seems a non technical issue, the fact is that
most standards are referred to through their profiles; as a result, every industry
standard using BIFS will need to be updated before it can use a new device; it is
not practical, specially if many new devices appear.

The design of InputSensor minimizes the size and complexity of BIFS amendments. In
particular, the BIFS decoder does not need to be changed each time a new input device,
with a new interface, is added. Old profiles are still usable. Hence, the problem of adding
new input devices is separated, leaving decoder and profile stable.
For the purpose of InputSensor, an input device is modelled as:

1. a stream of information structured as device data frames (DDF) coming at

random intervals;

2. each piece of data in a frame needs to be injected in the BIFS scene.
The content of a DDF is a set of any of the BIFS simple or multiple type. Here is an
example of a DDF for a mouse with a wheel, which is something not supported by
VRMLO97:

MouseDataFrame [[
SFVec2f position

SFBool leftButtonDown
SFBool middleButtonDown
SFBool rightButtonDown
SFFloat wheel

11

The first field contains the position, the next three contain the state of the three mouse
buttons (true when pressed) and the last contains the wheel movement since the last
frame.

The injection of data into the scene is specified with a command buffer similar to that of
a Conditional. BIFS Commands of type FieldReplacement, IndexedFieldReplacement or
NodeDeletion may be used. A FieldReplacement is used to replace the value of a whole
field with the value from the DDF. An IndexedFieldReplacement is used to modify one
value in a multiple field. A NodeDeletion is used to indicate that the corresponding DDF
value shall be ignored.

Let us go back to the wheel mouse example, and assume that the author will use
TouchSensor to deal with aspects in common with a standard mouse, and is only

interested in managing the wheel through the InputSensor. The content of the command
buffer will be:

SFCommandBuffer
NodeDeletion NULL;
NodeDeletion NULL; ignore left button
NodeDeletion NULL; ignore middle button
NodeDeletion NULL; # ignore right button
Replace NodeID.FieldID with 0; # place wheel info in NodeID.FieldID

ignore position

H o W

The value 0 in the Replace is a placeholder and will be replaced by data coming from the
device when a DDF arrives.

In practice, the +1 or -1 of the wheel will be put in a Valuator, which is routed to a
translation field of a Transform2D node, whose child is e.g. the button of a slider.

3.2.1.4. Analysis

An equivalent of Layout has been added to SVGT1.2 [51] in the form of the element
textArea, proving the validity of the functionality in the context of a graphics format.
Although the feature of flexible layout was repeatedly asked for, and almost made it into
SVG, there is no equivalent of Form yet in SVG; it is possible to cover some of the Form
functionality with the help of CSS. Our successful contribution of transformBehavior in
SVGT1.2 is an equivalent of the Bitmap functionality. Conditional found its way into
LASeR quite naturally. Valuator did not, because there are few trivial scripts in SVG and
since the attribute types are much more complicated, simple type casting just does not
work. Covered by our patent WO02056595, InputSensor was perfect for the specific
context of BIFS, but would be useless in SVG, where user interaction is done with events;

new types of events are relatively simple to add. Our work with cartoons started then
[25].

3.2.2. MPEG-4 XMT-A

I led the creation of an XML-based format for BIFS, initially designed entirely (and
naively) in binary. Everyone working on BIFS ended up using a format called BIFS text,
which was hacked VRML. An official text format was deemed necessary.

Since XML was trendy and has very nice properties [54], an XML version of BIFS was
created. XMT was created in collaboration with IBM, who was interested in importing
SMIL features in BIFS, through the design of XMT-O. I designed XMT-A4, i.e. the part with
one-to-one equivalence to the existing BIFS nodes.

Among the various motivations for the design of an XML version of BIFS, ours were:

- capability to intermix metadata / authoring information within the content, not
possible directly in BIFS since there is no way to intermix private data within the
binary encoding;

- use of XSL to generate XMT

- use of standard/open source software to ease parsing

- use of XML schema to help checking the syntax

- easy extensibility of the format

The work itself was straightforward, using XML Schema [57] as the format formal
specification. Nodes were implemented as elements. Fields were implemented as
attributes. Even MFFields were implemented as attributes, with lists of SF types
separated by spaces. The only text content is used for the scripts. Children of a node are
wrapped in a <children> element, and so are most sub-elements (geometry, appearance,
etc). This makes for a format that is easy on programs, but very verbose and thus not so
sympathetic with hand authoring. Yet, checking your production with the schema will
catch many construction errors, which would not be the case with a terser but looser
format. For example, any sub-element type restriction error will be caught by schema
validation.

I designed the schema together with a parser and generator within our mp4tool
implementation (Java), constantly testing the applicability of design choices and the
amount/complexity of coding generated by syntax choices.

10

This work was done in parallel with the big push for BIFS conformance, and the use of
XML technologies and related open source software helped both XMT and BIFS
conformance [22].

3.2.3. W3C SVG Tiny 1.2

Scalable Vector Graphics, or SVG, is a W3C standard started in the mid 90s. It had a
development parallel to that of BIFS and finalized its first version in 2001. When we
researched the state of the art in 2003, looking forward to the LASeR call for proposals,
SVG 1.1 was finished, a mobile profile SVGT1.1 was defined, and a version 1.2 was being
developed [51]. Our analysis was:

- SVGT1.1 was too large and complex for current and near-future mobile phones
(in 2003!), and hopeless for Java phones, which were the bulk of the medium
class phones. With hindsight, we were so very right.

- SVGT1.1 did not have video and audio, but SVGT1.2 would have.

- SVGT1.2, even bigger than SVGT1.1, was too large.

[still participated in the SVG working group for a few years, first trying to add features
we deemed necessary, such as scene updates, then trying to convince the group of the
necessity to have a smaller profile, and finally to just liaise with MPEG.

3.2.3.1. Updates

Coming from MPEG, the notion of defining a scene progressively was so natural, but to
the SVG WG document-oriented vision, it was just a bizarre contraption at first, and
rejected. After two years, the pressure and use cases from LASeR led them to try to
define a way to express updates of an XML tree: Remote Events for XML, or REX [55].
The use cases included a travel ticket reservation service, where more elements are
added progressively to the form as is it filled.

When an XML tree is modified, events are fired, such as DOMAttrModified when an
attribute is modified. The principle of REX was: in order to specify a scene update, you
specified the event that the intended update shall generate. Upon reception of a REX
event, the target scene tree is modified so that a similar event is generated. On top of
this, a way to specify timing was added.

REX is now dormant for licensing reasons: the W3C statutes do not allow to publish a
standard that is not “royalty-free” (as defined in its process document), and REX would
not be RF.

3.2.3.2. Image rendering

In SVG 1.1, there is no way to render an image exactly at its media size. An image is
always resampled, even shown at a scale of 1. This is all very well on a PC, with graphical
acceleration, but was impossible on a mobile phone (specially in Java). This was
relatively easy to convince the SVG group of. As a result, SVG T 1.2 includes an MPEG-
inspired attribute called transformBehavior on the video element, which defines
whether the video is resampled or not, and includes rotations of 90, 180 and 270
degrees as a bonus.

11

3.2.3.3. Memory Footprint

We have noticed while implementing SVG that there is a combination of features that
mostly forces a tripling of the memory footprint and slows down the processing. Here is
a simple description:

- upon loading of the scene, the value that is parsed from XML is put in the scene
tree. This value is called the “DOM value”. It needs to be kept around to restore it
at the end of animations, or for scripting, or for serialization.

- because of CSS inheritance of properties [52], a property may “trickle down” the
scene tree onto nodes that do not specify this property but on which the property
has a meaning. This is called the “computed value” and its access is needed
because of scripting access to the tree.

- finally, the “animated value”, constructed from the DOM value and the computed
value and evolving with time (as defined in SMIL animation [50]), needs also to
be stored because of the script functions giving access to traits.

In other languages, only one value needs to be stored. In SVG, there are many properties
and with scripting, no assumption can be made at load time about which node will be
animated or not: as a result, the memory footprint of the scene tree is up to three times
larger. Note: It is possible theoretically possible to avoid the x3 increase in storage, at
the cost of extra processing. I have no evidence of a successful and compliant
implementation of that possibility: for example, the GPAC implementation is not 100%
compliant in that area.

3.2.3.4. Processing Overheads

CSS inheritance forces a pass on the scene tree to propagate property values each time
properties change. Properties may be animated, and the animated value may be
inherited. As a result, there is a need for a complex pass, mixing CSS inheritance and
animation.

Node reuse with the use element creates a “shadow tree” (i.e. a live copy) of the reused
node; the shadow tree inherits from its ancestors, not the ancestors of the used node,
but the shadow tree is animated by animations similar to those applying to the used
node. As a result, animations need to be duplicated and applied on properties inherited
in the shadow tree context.

3.2.3.5. Analysis

Rectangular clipping failed to make it into the SVG T 1.2 spec, even though this is, in
practice, very useful for authoring user interfaces. But the SVG conformance text was
very significantly developed as a result of the LASeR liaisons to SVG.

SVG Tiny 1.2 is quite heavy in both footprint and processing: the resistance to profile
these problems away comes from an attempt to keep the number of profiles as low as
possible, and the perception that performance of terminals is going to keep increasing at
a fast pace. The resistance may be similar to that of Macromedia/Adobe, which failed to
appropriately profile Flash into FlashLite for mobiles.

SVG Tiny 1.2 has failed to get significant traction in the industry. There are very few
mobile services in SVG, despite reported hundreds of millions of handsets supporting
SVG. I believe this is the result of a failure to size the SVG mobile profile correctly. But
SVG 1.1 Full is very successful on PCs. All major browsers are implementing it together
with HTMLS5, in a move probably intended to replace Flash.

12

3.2.4. MPEG-4 LASeR

3.2.4.1. Introduction

When in 2001, we wanted to focus on mobile rich media, there was one obvious
candidate: MPEG-4 BIFS [43] [44]. But BIFS has been designed for PCs in mind, and, for
example, a generic processor implementation of BIFS binary encoding requires at least
200Kb just for the decoding tables. Those 200 Kb were definitely a killer for mobile
phones of that time. The hope then was to be able to implement the whole decoder +
compositor + renderer in 200 Kb or less, preferably 50 to 100 Kb. Then started a lengthy
process of trying to tweak BIFS into something suitable for mobile implementations.
BIFS Core2D is an extremely restrictive profile, but it does not fit the bill. The limitations
on drawing only triangle or rectangles are inadequate. Yet all the useful BIFS objects are
in later versions, with longer (and less efficient) tags, requiring bigger decoding tables.
For some time, predefined profiles were investigated as a means to:
- create new objects without the long and inefficient decoding tags of later versions,
and without needing newer and bigger decoding tables;
- reuse the new, more powerful objects of newer BIFS versions, in restricted
situations, framed by the use within predefined profiles;
- have a standard immediately usable in existing, more powerful BIFS renderers on
PCs;
- allowing ad-hoc implementations of the predefined profiles, not as profiles, but as
if they were specific objects. These implementations could be optimized and small
on mobile devices.

The work on predefined profiles made clear that BIFS was really not suitable for
implementation in Java 2 Mobile Edition (J2ME), which represented the largest
addressable market of phones capable of downloading apps. As a result, the LASeR
project was started, with the usual MPEG process: searching for companies to declare an
interest in defining a new, simple and efficient scene description format for mobiles;
writing and sending out a call for proposals; choosing among proposed solutions; and
improving on that solution [11] [14] [15] [47].

Objectives

The main LASeR requirements were to:

- Support an efficient, compressed, streamable, extensible and easy-to-decode
representation of rich media scene data, compatible with SVG Tiny to leverage
existing market traction and content development tools;

- Allow small profiles definition, including one profile for J2ME implementations;
“small” here means leading to compact implementations, compatible with
handheld devices with limited resources;

- Allow the representation of differential scenes, i.e. scenes meant to build on top of
another scene;

- Be designed in such a way that implementations can be as compact and fast as
possible, require as little as possible runtime memory and be implementable, at
least partially, in hardware.

13

Target applications

Six main target applications were considered in the development of LASeR: (a) rich
media portal, (b) interactive mobile TV, (c) interactive screen saver, (d) podcasting, (e)
home convergence nexus and (f) device user interface.

Figure 2: LASeR-based rich media services.

3.2.4.2. Technology
Architecture

Figure 3 describes the architecture of a LASeR implementation. Its modules are
described in the next section. An application first shows to a user an initial scene, which
is an SVG scene (1) with LASeR scene extensions (2). The application then changes what is
shown to the user by way of dynamic updates (3) to the scene tree. A binary encoding for
compression (4) is used to improve transmission delays. Audio, video, image and font
decoders contribute to the LASeR engine rendering. Applications can be built on top of a
LASeR engine. The LASeR engine relies on the services of a transport layer, possibly
complemented by SAF (5) to provide missing packaging and synchronization features.

Application

LASeR
SVG Scene (1) Extensions
()

Audio | Video | Image | Font

Dynamic Updates (3)

Binary Compression (4)

SAF (5)

Transport

Network

Figure 3 — Modular architecture of a LASeR implementation.

Tools

This section describes the most important tools of LASeR:

* SVG Scene Tree Representation - LASeR reuses relevant SVG elements [51].

* LASeR Scene Tree Extensions - We have identified areas where extensions are
needed to allow the development of efficient services with LASeR:

14

- simple pixel-aligned rectangular clipping.

- restricted, non-resampling rotation and a full screen mode for videos.

- multiple synchronization references.

- new events: longAccessKey, repeatKey, shortAccessKey, screen orientation events,
pause and resume, the last two used to pause and resume video, audio and other
timed elements.

- automated generic scrolling.

- incremental scenes, designed as sets of independent scene segments: a scene
segment is either an initial scene, or a set of timed updates to be applied to another
scene.

- a mechanism of local ID and global ID for elements and streams: local IDs are
specific to a scene segment, and cannot clash; global IDs are used on elements and
streams that need to be used across scene segments.

* Dynamic Updates - LASeR has scene updates similar to BIFS as well as commands to
increment properties, to send events, an interface to persistent storage, a tune-in
command and authoring optimizations.

* Binary Encoding - The LASeR binary format is described in a later section.

* Audiovisual support - LASeR includes SMIL2/SVGT1.2 audio and video elements as
well as the additional SMIL2 MediaClipping module for VCR-like media control. Audio
and video streams are carried beside the LASeR stream and referred to by binary
identifiers.

* Usage of Font Information - Both SVG and LASeR allow content creators to embed
font information within the scene. However, the SVG fonts solution was deemed too
limited by MPEG. MPEG recommends the carriage of the font information beside the
scene information as a media stream. The exact format is optional. One option is the
usage of MPEG-4 Part 18, which provides the definition of a font data stream, able to
carry OpenType fonts, possibly compressed.

* Services as Incremental Scenes - Many rich media services rely on a key feature of
LASeR: incremental scenes, made possible by the scene segments. A scene segment is a
LASeR stream containing not an independent scene, but an addition to another existing
scene. From a server-side point of view, the interactive services can be considered as a
series of separate connections, as opposed to the continuous connection of the streamed
services. Interactive services are typically implemented using separate HTTP
connections, since each data burst results from a user request. However, from a LASeR
viewer point of view, it is the same scene/service that is modified, so each server
response is a scene segment rather than a new scene.

Profiles and Levels

Throughout the process of defining LASeR, two objectives have always been difficult to
accommodate: efficiency and SVG compatibility. SVG, Cascading Style Sheet (CSS) and
Synchronized Multimedia Integration Language (SMIL) were designed for the PC
platform, and although SVG Tiny defines a profile that is implementable on mobile
devices, some concerns have been raised by implementors in 3GPP (Third Generation
Partnership Project), OMA (Open Mobile Alliance) and MPEG, that it is not possible to
make implementations small and efficient.

We created a profile of the LASeR specification named ‘LASeR Core’. In order to allow
efficient implementation and high rendering performances, LASeR Core restricts the

15

specification in the following areas: no bitmap resampling, no dash capabilities, no
gradient animation, no inheritance, and animation restricted to a simple mode which
ensures a smaller memory usage, a much faster scene tree management and reasonable
rendering performance even when using video and gradients.

The LASeR Main profile targets LASeR usage on more powerful devices, such as PCs. It
contains most of the features of the third version of LASeR.

Comparison with other standards

LASeR 2nd Edition is a superset of SVGT1.2, adding scene extensions, binary encoding
and LASeR commands. LASeR is also a superset of 3GPP DIMS (Dynamic Interactive
Multimedia Scenes), which has adopted SVGT1.2, some of LASeR scene extensions and
most LASeR commands.

Just like SVG, LASeR does not have the complex layout and timing containers of SMIL,
and thus is much easier to implement. SMIL is missing dynamic updates and
compression to be relevant for fluid mobile services.

BIFS addresses 2D, 3D and mixed 2D/3D scenes, has a very large object set and a
complex encoding. Comparatively, LASeR is focused on 2D scenes only, has a much
simpler object set, its decoding is much simpler (no floating point operation) and its
implementations can be used satisfactorily on devices at least twice smaller in code,
memory footprint and performance.

3.2.4.3. Performance

The main functional improvement of LASeR over SVGT1.2 is the dynamic updates.
Implementing dynamic scenes in SVGT1.2 involves using scripting (mostly with
interpreted ECMA-Script [64]), the DOM (Document Object Model) interface [53], a
dedicated server, TCP connections and lots of XML manipulation. LASeR Commands
allow authors to create dynamic scenes with declarative text rather than programming,
and are multiple orders of magnitude faster and smaller to implement.

The main performance improvement in LASeR over SVGT1.2 and DIMS is the streamable
binary encoding. The LASeR binary encoding achieves on average more than a factor of
2 compression improvement over gzipped SVG/DIMS. The difference is even bigger on
small scenes or fragments. On the client, the author's consistent experience is that
decoding a binary stream is a lot faster than parsing an XML document, thus adding the
advantage of better client reaction time to the shorter transmission delay brought by
better compression.

The LASeR Core profile is also a key complexity advantage. SVGT1.2 and DIMS cannot be
implemented realistically on a mobile Java (J2ZME) platform: a pure Java implementation
would be too big, and if it runs at all, would be too slow to be usable. The LASeR Core
profile, by being implementable on J2ME, gives access to a wide range of lower-end
existing and future phones, which despite predictions, still constitute the majority of the
market.

Discussions of Moore's Law and claims that in a few years, performance/code size
problems with SVGT1.2 implementations are going to disappear have been made
irrelevant by the current evolution of devices. Moore's Law remains valid, yet the
perceived performance of new phones is not increasing, but decreasing. Because of
limitations of the batteries, the processors are not growing as fast as they could be,
while display screens are growing very rapidly. The amount of processing power per
pixel is going down: screens have grown by a factor of 4 while the processor speed has
increased by a factor of 1.5 to 2. As a result, the load on processors to drive the larger

16

screens becomes heavier. The only way to compensate this added load is the adjunction
of a graphics/multimedia coprocessor, but this hits the battery too. Since the fluidity of
rendering is a major contribution to the feasibility of graphic animations, an achievable
frame rate dropping by a factor of 2 will render a particular application running well on
one phone, irrelevant for another phone with the same processor but a twice-larger
screen. The same discussion applies to the evolution of set-top-boxes, whether for IPTV
or for broadcast.

3.2.5. 3GPP DIMS and OMA RME

3GPP DIMS (Dynamic Interactive Multimedia Scenes) [67] and OMA RME (Rich Media
Environment) [69] are two attempts to push MPEG LASeR in an industry standard, to
improve its potential. Indeed, MPEG standards need to be picked up by industry forums
and set into larger contexts. 3GPP defines handset environments from radio to media
decoders, and OMA defines application environments for handsets. OMA goes higher
than 3GPP in the OSI reference model, but there is some overlap. After some needed
clarification, it was agreed that 3GPP DIMS dealt with scene and RTP (streaming)
transport, and OMA RME dealt with everything “higher” and non-3GPP, for example the
use in broadcast environments.

Figure 4 shows the respective positioning and main elements of SVGT1.2, LASeR, DIMS
and RME. SVGT1.2 is included in LASeR, and the scene subset of DIMS and RME are
included in LASeR, but both define elements outside of the scene sphere, in Transport.
DIMS defines an RTP payload. OMA defines additional elements, such as UAProf and
application to broadcast.

Rich Media Scene Description : Transport
n
S Non-3GPP Bearers
RTP payload OMA RME
UAProf

Figure 4 - Respective positioning of SVGT1.2, LASeR, DIMS and RME

To get a meaningful idea about the respective sizes of these four standards, the
specification text for SVG T 1.2 is more that 800 pages long, DIMS is 40 pages, RME is 31
pages and LASeR barely over 100 (plus the specification of the binary format, which is
very verbose).

LASeR RME

Figure 5 - Respective sizes of SVGT1.2, LASeR, DIMS and RME

DIMS cherry-picks features from LASeR, including updates, screen orientation
management and preferences saving, but not the binary encoding nor the Core profile.
OMA respects those choices. As a result, DIMS and RME have the already reported
footprint and processing problems of SVG T 1.2.

Figure 6 and Figure 7 give an indication about how LASeR Core tried to solve the
footprint and processing problems: LASeR Core profiles away a relatively small number
of features, hence its “spec size” (i.e. the number of included features) is close to that of
the others. LASeR Core forbids the definition of properties but on the nodes that will use
them, which in effect removes CSS inheritance, because the nodes that use CSS
properties are leaf nodes and CSS stylesheets are not permitted. LASeR Core also
removes the need for keeping DOM values. See previous sections for more detail.

i ________ _/:\W_R—_] T LASeR
1 I

1 I

I I

I I

I I

. SVGT1.2 I SVGT1.2

1 I

I I

I I

1 I

Figure 6 - Spec sizes including LASeR Core profile Figure 7 — Respective footprints
3.2.6. Formats Review and Optimization

This is Cyril Concolato’s PhD [5]. His document consisted in two parts: a review, analysis
and classification of existing formats, and a set of contributions.
In his first chapter, he introduced HTML, Flash, VRML, BIFS, SMIL 2.1, SVG Tiny 1.2 and
LASeR. In his second chapter, he explored animation: by interpolation, frame-based and
by program. In the third chapter, he explored compression techniques: use, prototypes,
templates, number encoding and quantization, and structures such as planar maps. In
the fourth chapter, he explored interactivity: event-based, declarative or program,
client-side or server-side. In the fifth chapter, he explored delivery of scenes: file or
stream.
In his first contribution chapter, he explored all the above in the context of (2D)
cartoons [23], describes experiments in many of these formats [24] and possible
optimisations in compression, delivery, playback footprint and adaptation [20] [21]. In
the next chapter, he described a joint, optimized implementation of BIFS, SVG, LASeR
and some of Flash, and his multiple attempts to obtain a solution that compares
favourably with industry standards.

In MPEG, he spearheaded the work on Advanced Text and Graphics, a BIFS amendment

where many missing features found in SVG and Flash were fitted into BIFS.

Cyril proposed some improvements to scene description formats in his conclusion:

1) use scene updates for streaming or progressive download, as opposed to progressive
parsing of documents: [still agree technically, but I now doubt the need for
streaming scenes: incremental scenes in response to interaction are needed, but
streamed scenes, i.e. time-driven regularly updated scenes are not.

2) use compression with quantization: I doubt that compression is realistic (politically,
commercially, etc) for scenes, when it only brings a factor of 2 over gzip, which is

18

free and already everywhere. Generic binarisation of XML, such as W3C EXI, may be
used.

3) use signalling of branches of the scene tree that will never be used (e.g. not accessed
by scripting) after initial rendering, keeping the composition graph will be enough:
very relevant.

4) use signalling of static vector graphics: these can be rendered once and then replaced
by their image, thus reducing the size of the scene tree and of the composition graph:
it exists in SVG as a hint, it should be stronger than a hint.

5) use a scene structure with 4 branches: dictionary, interaction, timing, display. Each
branch is processed only during part of the rendering, and the number of “walked”
nodes during rendering is greatly reduced: very relevant.

6) use styles rather than property inheritance, again, to reduce tree processing:
relevant.

7) use explicit geometric transforms mostly and automatic layout only when needed:
because of the growing importance of content adaptation, I feel automatic layout is
needed quite often.

8) use a single time base in the scene, and make time dependency explicit by using
listener elements rather than activation lists: the complexity of the so-called SMIL
timing is not so useful in practice, to say the least.

9) replace implicit propagation of properties and animations with explicit links (such as
ROUTESs) which do not need additional tree walking.

10)remove the capture and bubble phases of event propagation, again for simplicity and
because they are used very infrequently and are not interoperable.

11) reduce script by using Conditional whenever possible, for performance reasons.

3.2.6.1. Analysis

Formulating concrete recommendations was a very important conclusion to this review
and optimization work. The recommendation to use ROUTEs (9) and Conditionals (11)
is converging very much with the links in NCL [72], which integrate explicit propagation
of events with resulting actions. However, there is such a non-technical pressure for
HTMLS5 / CSS in the W3C sphere of influence, for Flash in more commercial spheres, and
for various other formats pushed by individual companies for various reasons (all very
good in their own context), that such proposed improvements have no chance at all to
ever find their way into a well-used standard.

3.2.7. Service-Enabling Extensions
Take LASeR in a mobile context: the standard was designed for use in a mobile world, so
designing a mobile service should be easy. Yet, if you want to add to your content
something typical of mobile usage, such as “click to call”, there is no standard solution.
There is a notion that is largely overlooked in academic work on rich media and
interactive graphics: service-enabling extensions.

3.2.7.1. State of the Art

Within industrial fora such as Joint Innovation Lab (JIL), Wholesale Applications
Community (WAC), Open Mobile Alliance (OMA), Open Mobile Terminal Platform
(OMTP), Consumer Electronics Association (CEA) or Open IPTV Forum (OIPF), there are
multiple standardization efforts on ECMA-Script APIs for domain specific services [36]
[37] [38] [39]. Each defines a way to access the contacts, the agenda, the camera and

19

other mobile-specific functions such as battery level and network reception, some with
an emphasis on widgets or the interactive TV domain (see later section on HbbTV).
Proprietary solutions also exist, such as mobile extensions to ActionScript in Adobe
FlashLite. More recently, the W3C started work in this area: access to system
information, to contacts, calendar, messaging, etc also as ECMA-Script APIs. This is a
work in progress.
All the above are instances of scripting APIs. Other possible solutions include:
- declarative: creating a set of XML elements describing the various actions, a la
LASeR PMSI|[76]; this means extending the host format, adding the new objects.
- protocol: using the existing interface of the scene with the outside world that is
the hyperlink, by designing a new protocol; this does not require a change in the
host language.

3.2.7.2. The cmd: Lightweight Solution

In the Streamezzo tool chain, the need for service-related extensions was fulfilled by a
set of commands not relying on ECMA-Script obviously, because the Streamezzo player
did not include an ECMA-Script interpreter. We used URLs with a private protocol cmd;,
initially inspired by the tel: protocol (described in IETF RFC 2806). Since server-side
actions were all implemented as triggering an HTTP GET on a server URL, it felt natural
to implement local actions by triggering special URLs which would be filtered and
interpreted by the player.
The following functions were thus implemented:

- device actions: volume up/down/mute/unmute, backlight lock/unlock, ...

- phone actions: click to call, send SMS/MMS...

- personal information manager (PIM) actions: contacts and agenda actions.

- EPG requests/actions for TV services

The typical structure of these commands is: cmd:<command> <parameters>

The <command> part is usually constant. The <parameters> are often dependent on
user data. The Streamezzo rich media format, which is an extension of the LASeR CD
format, contains instructions to concatenate strings with constant strings, with strings
found in texts in the scene, and with numbers found in some fields in the scene. These
instructions make the construction of the <parameters> of commands rather
straightforward. LASeR content would use the update command Add, with operandld
and operandAttributeName to retrieve a value in the scene, for the construction of
<parameters>.

All commands have a return value, if only an error code. When an error code can be
expected, the command includes the ID of a Conditional in the scene, which will display
an error. When data needs to be provided to the scene, the command parameters
include the IDs of the scene elements, which will receive the returning data.

3.2.7.3. Analysis

At Streamezzo, because of a large Java mobile base, and the constraint to allow the
downloading of the application, we could not adopt ECMA-Script. But everyone else
does. So our declarative solution was a singleton, efficient but difficult to reuse
elsewhere. Functionality available in 2005 from Streamezzo is only now made available
interoperably in higher-end phones.

In terms of authoring and compression, there are problems:

20

- most complex services have a large number of protocol-related strings, which are
not compressed because there is no entropy coding of strings in the LASeR binary
format;

- the IDs of the elements that are used in the commands, are only known after
binary encoding, or need to be forced to a constant.

However, these problems are small compared to the benefits in terms of development:

- the commands are developed, processed and tested separately from the scene,
and the scene description language does not need any modification.

- the constant evolution/addition of commands does not impact the scene engine.
Security implications are the same as that of using scripting. But static checking can be
done on the scene, by reading the plain text strings from the binary access units, to
detect if a particular scene uses a “dangerous” or “illicit” command in a context.

3.3. Compression

MPEG is very keen on compression. While the endless search for more compression is
obviously useful in audio and video, the need for scene compression is not so obvious.
The first argument is one of relative sizes: are scenes as big as audio or video? The
answer is quite different for 3D and 2D. 3D scenes are large and their compression is
fully justified. 2D scenes are mostly small, very small relative to any of the media that 2D
scenes compose: most 2D scenes are smaller than the images or the audio clips they use,
and almost always much smaller than even short videos. (2D) Maps are an exception,
which is closer to 3D content in terms of characteristics.

In the mobile domain, specially 5 years ago, compression was seen as a must to improve
service response times, hence the push for a LASeR encoding.

3.3.1. BIFS

The compression effort of BIFS was led by people interested in 3D [34]. Many of the BIFS
compression features are much too complex, or even useless in 2D. Even though I was
mostly interested in 2D, [became an early implementer and tester of BIFS with the
development of mp4tool, and later led the conformance work. I have organized
arguments on BIFS encoding in pros or cons below.

Few basic types Extensions are inefficient
Contextual node encoding is optimal for Contextual node encoding causes large
compression of initial BIFS version decoders and is not efficiently extendable.
Quantization Quantization configuration is inefficient
Good on large content Sensitivity to bit errors

Pros:

o There are very few basic data types, which are reused everywhere. This is very
good to reduce the complexity of decoders, and forces some order where other
formats like SVG have little logic.

o Contextual node encoding: everywhere a sub-element is expected, the minimal
number of bits is used. This is optimal in compression efficiency.

o There is a complex, potentially efficient quantization mechanism.

21

o The encoding is quite good on larger content (3D).
Cons:

o Extensions (adding new nodes) are difficult to design, counter-intuitive and
inefficient to use; no time was spent on globally optimizing the initial BIFS
version (despite my warnings) and later extensions, thus yielding an optimal
initial version which is never used.

o The contextual node encoding means large decoding tables, documenting which
code to use for which node in every possible context.

o The contextual node encoding requires large, error-prone documentation which
is impossible to write manually, and very difficult to check after automatic
generation.

o The contextual node encoding is not efficient to extend, thus the efficiency of the
version 1 encoding is lost when using many nodes defined in later extensions.

o Even though quantization is efficient on e.g. 3D scene, the configuration of
quantization is done through a node (QuantizationNode) whose encoding is very
inefficient, thus loosing much of the quantization improvement.

o Quantization is configured by inserting a special node in the flow of other nodes,
which is very error-sensitive and counter-intuitive;

o The optimality of the encoding makes it very sensitive to bit errors. Roughly, a
BIFS packet is composed of structure (20-30%) and attribute values (70-80%).
Any bit error in the values means the scene is wrong, but decoding can proceed.
Any bit error in the structure means the decoder will soon be forced to stop.
Error recovery is not possible without protection, i.e. adding more bits.

Last but not least, many of these problems would be relatively easy to solve or at least
reduce, by applying simpler techniques, which may not be local compression optima, but
are more globally efficient.

3.3.2. LASeR

LASeR was designed for mobiles and constrained devices. Its binary encoding had the
requirement of a small, simple decoder together with coding efficiency. BIFS, with the
contextual node encoding and the large decoding tables, did not fit the bill.

My initial ad-hoc encoding was very limited and minimal. It had little extensibility, the
various bit fields were sized for the mobile screens of 2004 (and would be completely
outdated by now). But every attribute was smartly encoded: as simple as possible, yet
efficient. For example, there were no divisions required in the decoder.

The BiM [48] encoding had the following properties:

- an encoding is derived automatically from a schema; this is very handy in
standard design when things get added or changed up to the last minute;

- it was optimized for many devices, including set-top-boxes, which have usually
even less power and resources than mobile phones; indeed, the complexity is on
encoders;

- it used the type vluimsbf5 for indices; vluimsbf5 stands for variable-length,
unsigned int, most significant bit first, with one bit to signal whether the next
nibble is the last or not; vluimsbf5 is both efficient and adaptable in every
situation;

- initially, its attribute encoding was quite poor, limited to the data types defined in
XML schema: strings, integers of various sizes, floats, enumerations.

22

In SVG (and thus in SVG-compatible LASeR), there are lots of attributes for each element:
up to 60 possible attributes, some being CSS properties that have nothing to do with the
element, but are important for its children. And there is no logic to the design of
attributes, no standard set of attribute types: each attribute has its own logic and
possibly, a specific grammar for the representation of the value, e.g. for the d attribute of
the path element. As a result, BiM, with its poor attribute encoding and not being
designed with so many possible attributes per element, had no chance against our ad-
hoc encoding.

In order to be able to compete, BiM had to be extended to include what was dubbed
“type codecs”, i.e. the ability to include in the XML schema certain attribute types which
detailed encoding will be dealt with by specific encoders. It is a sort of escape
mechanism to go into ad-hoc encoding wherever the generic BiM encoding is
insufficient. In a sense, this feature breaks the generality of BiM, since not every BiM
implementation will be able to decode any BiM schema: a BiM decoder will not be able
to decode a bitstream which uses a type codec that is not implemented in the decoder.
So the ad-hoc encoding was studied to define all the type codecs and port them into the
BiM encoding. This was not enough. The large number of attributes per element forced
another departure from BiM generality: the occurrence frequency of attributes (per
element) was studied, and attributes were split into two categories: frequent and rare.
Frequent attributes were left in the encoding schema and encoded with BiM. Rare
attributes were removed from the encoding schema and encoded with a pseudo-type
codec.

The final comparison results are that my ad-hoc encoding was still 6-8% smaller than
the improved BiM encoding, over the agreed test set of many hundreds of SVG and
LASeR scenes.

In the end, it was agreed to switch to a “BiM-compatible encoding for LASeR”. This
meant you can use a BiM decoder to decode a LASeR stream, but the encoding is also
fully defined without reference to BiM so that a specific LASeR decoder can be designed.
Note: there are XML-specific aspects that are ignored by this encoding, such as
processing instructions, entities and the difference between specified value, default
value and lacuna value. As the focus of LASeR was on the binary version, these aspects
were deemed secondary and the lack of their support acceptable.

3.3.2.1. Analysis

Looking back, BiM has another problem that was revealed with LASeR extensions. BiM
deals very gracefully and simply with evolving XML schemas, by resending a complete
new schema with extensions, not by sending skippable extensions within a backward
compatible bitstream. Skippable extensions to existing schemas are possible, but they
are a pain to design and manage. LASeR thus inherits that problem.

The LASeR encoding ended up a lot better than our initial proposal: the LASeR encoding
is extensible in every way, but for some of the choices embedded in the type codecs; a lot
of extensibility was added because of the competition with BiM, and [now regret that I
did not propagate this into all type codecs; for example, some numbers are still 24 bits
fixed point when it should be possible now to have 32 bits fixed point.

In terms of implementation, our first J2ME LASeR CD decoder was less than 10Kb in a
complete player of less than 60 Kb. The LASeR IS J2ME player is about the double, more
than 100Kb, and the decoder is less than 20Kb. It is difficult to tell what is the influence
of the increase of number of elements, and what is the influence of switching to BiM-
compatible encoding.

23

To finish on encoding, as was already mentioned, it is not obvious that a specific
encoding is necessary for scenes. The ubiquitous gzip could be enough, even though the
LASeR encoding is approximately twice better than gzip over the test set. It has to be
said that if there are large quantities of text (which happens, but less often than with
(x)HTML content), gzip will perform significantly better than the LASeR encoding,
because of the lack of entropy coding of character data in LASeR.
From the terminal implementer perspective, the decision is more complex:
- XML parsers are rather more complex, have a larger code and memory footprint
than binary decoders.
- the SVG syntax for attributes has many options, which are usually dealt with in
encoders, and binary decoders do not have that burden.
So the terminal implementers may prefer a LASeR-style binary format even if it is not so
much more compact than XML + gzip.
Since then, W3C worked on Efficient XML Interchange [61], a binary encoding for XML,
which may be an option.

3.4. Multimedia packaging

As soon as there are multiple media, each media being coded separately, there is a need
for grouping encoded media together:

- for storage;

- for transport/streaming;

- for synchronisation.
These goals are not all fulfilled by all solutions. I have worked on two solutions, the MP4
file format and the SAF aggregation format.

3.4.1. MP4 file format

3.4.1.1. History and Contributions

At the end of 1997, in Fribourg, MPEG issued a call for proposal on an MPEG-4
Intermedia Format. At the next meeting in San Jose, there were two answers, one from
Microsoft with ASF, and one from Apple with the QuickTime File Format, supported by
IBM, Oracle, Sun and others. The second was chosen and work started [26]. | soon
started an implementation named mp4tool funded by the ESPRIT project MPEG-4PC
[34]. This implementation became the first freely available tool to generate MP4 files,
released to the MPEG community at the Vancouver meeting in July 1999. This tool was
also used for the generation of most of the BIFS test sequences, a work that ran in
parallel with the MP4 file format development.

The MP4 file format was later split into ISO base media file format [45] and MP4 file
format [46], in order to allow other standards, like 3GPP, to build on top of the generic
part.

As part of his PhD [1], Frédéric Bouilhaguet also made a study of MP4 file format for use
in download-and-play or quasi-streaming.

3.4.1.2. Analysis

The MP4 File Format has the following capabilities:
- store MPEG-4 streams with all data and metadata (synchronisation and other);

24

- store whole presentations;

- easy to edit one stream without changing the rest of the presentation;

- easy to extend, easy to skip extensions thanks to the atom/box model;

- relatively easy to play a presentation;

- has lots of options about how to arrange media, inside or outside the main file,
possibly interleaved;

- allows random access to any part of the presentation, including the signalling of
random access points;

- supports hinting formats, easing the conversion to streaming;

- supports XML-based scene formats.

It also has limitations:

- itis not streamable in itself, and a significant amount of work is needed to make it
streamable, as is proven by the large amount of effort invested in MPEG Dynamic
Adaptive Streaming over HTTP (DASH);

- it was never designed to transport images efficiently: the metadata for an empty
track is at least 500 bytes, which is not negligible for some mobile scenarios;
using “items” reduces the problem;

- it is not possible to add a stream after the presentation has been started, and in
general it is difficult to do live streams (without DASH extensions);

Possible improvements:

- there is a lot of unused functionality carried over from QuickTime and kept for
backward compatibility; as a consequence, the playback algorithm could be quite
a lot simpler;

Further analysis is provided in the next section as part of the comparison with SAF.

3.4.2. Multimedia Streaming with SAF

The Simple Aggregation Format (SAF) defines the binary representation of a compound
data stream composed of different data elementary streams (ES) such as LASeR scene
description, video, audio, image, font, and metadata streams. Data from these various
data elementary streams result in one SAF stream by multiplexing them for simple,
efficient and synchronous delivery [47].

SAF is a specific configuration of the MPEG-4 Sync Layer [43]. The main reason was the
ability to use the RTP payload for MPEG-4 ES defined in RFC3640. While initially
thought a good idea, it became apparent later that this was not such a good idea to mix
different streams inside what was defined, in MPEG-4 SL, as one elementary stream,
with all the assumptions this carries.

While promoting SAF, we had to compare it with 3GP/MP4 file format, which 3GPP
people wanted to use for streaming.

25

SL Packet Header Access Unit (SAF)

SAF AU

SAF Packet Header Header SAF AU Payload

EndOfSAFSession
(No Data)

S0X0

yBusTiunsssooe
adA | Unssecoe

0
L=

115 01 1 30 164 12 (accessUnitLength-2)* 8 SL Packet Header Extended Access Unit (SAF)
g
2lowl2]2 SAF Packet Header SAF Extended SAF AU Payload
s|2(8|8 2 CacheUnit AU Header Y
® E 3|3 3 8 (Cache Object)
i
§ g ‘é §] payload 15 1 1 30 164 12 16 payloadLength
4 3
25 S| o
ES 3 | »
Bl
B
&

dwejgsuwi | uonisodwoo

RemoteStreamHeader

L0X0

(url an
SimpleDecoderConfigDescriptor) payload

Jaqunpnesuanbes
S1Qi09ouesaid
| = S10j0e0ussaId
YiBueIUNSSe0R
adA unsssooe
Qlweens
yibuapeojfed

TransientStreamHeader
(SimpleDecoderConfigDescriptor)

Be|Jjuiodssaooywopues | =
0

dweygawi | uoyisodwod

LOx0

GroupDescriptor
(The list of streamID)

80%0

FirstFragmentUnit
(The first fragment of an AU)

60%0

NonTransi ad
(SimpleDecoderConfigDescriptor)

20x0

SAFConfiguration
(A safConfiguration object)

80x0

FragmentUnit

EndOfStream (A fragment of an AU)

(No Data)

VOX0

€0%X0

StopCache

00x0

Access Unit
(LASeR Unit or AU of other media)

¥0X0

SAF Packet Architecture

3.4.2.1. SAF compared to 3GP/MP4

Three use cases are considered to study the benefits of SAF vs. 3GP/MP4 [68], and all
results are based on byte-exact computations of relative sizes:

1. Simple download: the file of a multimedia presentation is downloaded with no need
to play the content during the download of the file.

=> SAF is better than 3GP in this use case but the gain in header overhead is small.

2. Progressive download: the content may be played during its download. Two delivery
scenarios are possible depending on the scene description:

a. Without dynamic aggregation: The multimedia presentation to download is
predictable and does not depend on interactions of the user. So downloading
it consists in downloading its file with a Progressive-download profile. The
structure of the file can use :

i. either a basic movie (i.e. ‘moov’ atom) with interleaved media data,
=> SAF is relevant for avoiding significant initial latency.
=> 3GP files using ‘moov’ boxes are not relevant because of the large initial latency.

ii. or aset of movie fragments (i.e. ‘moof’ atoms).

=> SAF is better than 3GP files using ‘moof boxes, but the difference is not
significant.

b. With dynamic aggregation: downloading the multimedia presentation by
aggregating dynamically the right set of elementary streams at the right time
is required because of interactive rich media browsing features. These
features make the downloaded presentation unpredictable.

= To avoid significant latency (i.e. %2 sec compared to the network round trip of ~3
secs) after unpredictable user requests, SAF is relevant for 64 kbps networks (e.g.

26

EDGE generation) and significantly relevant for 32 kps networks (e.g. GRPS
generation).

c. Of live streams: the processing of live streams when the size and number of
future frames is unknown is of similar difficulty as dynamic aggregation.

= 3GP files with ‘moov’ boxes cannot be used. Using 3GP files with ‘moof boxes will
be subject to a trade-off between latency and ‘moof’ overhead: the shorter the
‘moof’ box period, the shorter the latency, but the heavier the overhead. SAF is
definitely optimal in this case, and is better than any choice with 3GP files.

3. The limitations of the bytecode footprint: in the particular (but strategic in mobile
phones industry) case of Java-based client terminals, we study if SAF can help to
decrease the Java bytecode footprint of the client application.

= The footprint of Java SAF parser is ~5 kbytes when the footprint of a Java 3GP
File Format parser is ~35 kbytes (optimized implementations measured in
similar conditions: compressed, obfuscated and stripped of symbols).

3.4.2.2. Analysis

This study concluded that SAF is technically better than 3GP file format on a set of use
cases and for different measures. In particular, SAF allows the dynamic addition of a
stream at any time, which is not possible with 3GP files. Yet, SAF can still not be used in
3GPP context, as non-technical arguments prevailed.

Going back to initial requirements, MP4/3GP was designed for authoring and storage,
and SAF for streaming and transmission. So the result of the study is no surprise: both
formats were designed this way. What is a surprise is that MP4/3GP is used in a context
it was not designed for, and a push to use SAF, a format designed for that context was
not successful.

3.5. Authoring

Very early in the design of a standard, authoring becomes an issue: there is a need for
conformance sequences and for demo content. The availability of authoring tools helps a
lot with the dissemination of the standard, the ease of content production being a quality
criterion for any standard. We started with a rather straight-forward tool/framework
named MPRO for experts, then worked on a tool for the general public named Harmonia,
based on templates, within a commercial project. We later tried another form of
templates with B4 with much less resources. And to co-design service logic and content,
we designed a variant of JSPs with a twist, but again for experts.

3.5.1. GUI to content

This work was part of the PhDs of Frédéric Bouilhaguet [1] and Souhila Boughoufalah
[2], within a collaborative project called MPEGPro. The collaboration partners were
CSELT (now called TI Labs), CNET (now called Orange Labs) and ENST (now called
Telecom ParisTech) [28] [30] [32] [31].

Souhila started her thesis with a taxonomy of scene formats, then a taxonomy of
authoring tools, with different possible paradigms and/or views on content: WYSIWYG

27

spatial, timeline-based, frame-based, structure, script-based, contraint-based and
template-based. She then presented MPEG-4 Systems, the native format of the proposed
tool.

(<] =1olx|
File Options Edit Time Graphics Animation Advanced
(O X X0 Lo X 7o X 1T)
Scene Tree
oy
e al
4 T=L=COM Bitmap =)
) A Appearance 7|
R eF ey x| ImageTexture
Transform20 ID_15]
pareni Growp[o_1] | Shape ID_16]
Bitmap
addChildren| eventiN ST
ImageTexture
removeChildren| eventiN Swith [D_17]
C Group [ID_18)
children shape[ID_3] Group (D_1]
C Tronstom2D0_7] TouchSensor (ID_20]
e Make DEF Transform2D
R Transtorm20 (0_13] || /4 e Shape [ID_21]
Transform2D [ID_15] Delet Object e
Appearance
R center|0.0 V2 i:i::o ImageTexture =
S =
o R Ol
= oo oe ingeet pork Refresh H ExpandAll CollapseAll
00 Desslect Al
Max chunk duration File
scale|1.0 e Moveto Front
- ree G m
'scaleOrientation|0.0 G b B D L Impart
_ Separate streams =
translation|352.0
T les D media type - track ID-file p=

T — 10D | es1D=1 OD | Main OD: friday | friday.mp4 |
Jean-Claude D |_Cancel ||/ Apply || Close 99] 310D | esID=2 | BIFS | Main BIFS: friday | friday.my

7) odiD=3 | esID=0 | JPEG | enst.jpg | friday.mp4 |

7 lodiD=4 | esID=8 | JPEG | barre.jpg | friday.mp4 |

i i A | | | A O]
—
> <> D-I ; o g | i 850 riday

[

The tool itself is called MPRO and is a detailed-level authoring tool for BIFS experts. It
has a structure view, a spatial WYSIWYG view, a timeline as well as various helper views
(media, property sheets). She described the architecture and design of MPRO. She
finished with an analysis of the next most needed feature: changing the default
synchronization of media. MPRO was implemented in Java, using the Swing graphics
library.

Frédéric contributed the media management and the MP4 file management, including
the media interleaving.

3.5.1.1. Analysis

Like the tools of the time, MPRO is multi-view and includes a player. Compared to
Macromedia Director, one big difference is the lack of scripting support: on one hand,
this could have been added later, and on the other hand, we were encouraging the use of
Conditional to achieve more efficient scenes. Compared to constraint-based systems,
such as Madeus [78], the timing approach in MPRO is explicit, and relies on the MPEG
timing model, which was favoured in professional media environments (TV, movies).
Compared to systems editing a different language than the one produced, such as
Director or [79], we needed to be able to import content produced elsewhere and edit it
natively, and also had a mandate to be able to use all of the standard, which forced us to
adopt the BIFS model inside the tool.

As a first project on authoring GUISs, it also forced us to realize that its scope was too
large for the team, and we did not have the resources to keep it alive.

The project was very successful with respect to its initial goal: a 2D BIFS authoring tool
for experts including a WYSIWYG view. What may be questioned is the validity of the
initial goal: is it enough to just wrap a GUI around such a vast and low-level format as
BIFS?

The next project is the result of these two realizations:

28

- all of BIFS2D is too big, target a subset;
- simplify complex BIFS functionality to make it accessible to a wider audience.

3.5.2. GUI-assisted templates

This work was also part of the PhD of Souhila Boughoufalah [2], and funded by an
industrial project called Concerto with TDK.
The intent was to offer a set of templates to users. The templates needed to be extremely
simple to use. The templates should be compiled to MPEG-4 BIFS. The templates should
be editable by a professional. The templates library should start small and get richer and
richer.
The simple use mandated an authoring tool for the manipulation/customization of
templates. The context of the project imposed other technology choices:

- PCand Windows as a platform to reach the Japanese market;

- MPEG-4 as a multimedia technology, in particular for the use of non-rectangular

video (obsoleted since then);
- Java for the reuse of MPro assets, and Microsoft J++ to allow the cooperation with
other partners.

Harmonia was a simple graphical, “drag & drop” editor [29]. An author can choose a
predefined template and insert objects like movie, slideshow... and replace an object in
this template. Objects can be configured by modifying their attributes (size, color, ...).
Complex objects like slideshow need to be configured in separate editors to set all the
slides with the transitions related to each slide. The author can play his/her content at
any time with an integrated player or publish the MP4 file with the default scenario for
http context.

3.5.2.1. Elements Composing a Harmonia Scene

To understand the elements composing a Harmonia scene, we give a few definitions.

A BIFS object is an MPEG-4 scene element.

A Harmonia object is an object specific to our authoring environment including “java”
objects for customization purposes. These objects have a meaning only in the Harmonia
editing environment.

A Building Block (BB) is the association of BIFS object(s) and Harmonia object(s). The
building blocks can be of different types : (still) image, video, audio, text, slideshow,
button. BBs have generic properties which can be on or off depending on the template
context: movable, resizable, deletable and replaceable, which comes with a list of
allowable replacement types.

BBs have variants. When a user creates an object by drag and drop, a default BB for the
selected type is added. For example, the “default” image BB resizes the image to the BB'’s
size: there are variants of the image BB that do not resize the media, or clip it, or show
scrollbars... This is specially relevant for buttons. The tool comes with a small set of
variants, and new variants can be added in a plug-in fashion.

Harmonia provides the author with a notion of behavior which can be triggered by
interaction or time. An action is defined by four parameters: source object, target object,
type of event e.g. button click, time ... and requested behavior: e.g. start media, show
object...

A Template is an entity including several building blocks. Some templates are empty and
the user can insert any building block at any location and set the needed behavior. Other

29

ones are more specific because more complex. For example, the mosaic template is a
program grid comparable to what most satellite operators offer to their customers. In
this case, the author has only to customize the A/V content of the grid elements.

3.5.2.2. Structure of a Building Block

The persistent part of a BB is a set of a BIFS scene, a Harmonia script and a set of Java
classes. Table 1 shows a sample with a BIFS tree, the script and a short description of
what functionality each node helps creating. The Java code has two functions: (1)
parsing the script and establishing the link with the in-memory representation of the
BIFS ; (2) implement any BB-specific customization.

The BIFS structure is a generic canvas and depending on the Harmonia script, not all the
options are open to the user. For example, on the 4t line of the script, the “true” means
that the BB is movable.

The last part of the Harmonia script, about Eventln and EventOut, defines the behavior
of the BB. The Eventln spec concerns the actions that this BB can execute, in this case
Show or Hide: the first line points to the Conditional implementing the Show, the second
line points to the Conditional implementing the Hide and the last line points to the
Switch node in order to set the initial visibility state. The EventOut spec concerns the
events that this BB can generate: boolean events isActive and isOver from the
TouchSensor.

BIFS Component of the BB Description Harmonia Script
Image "Image" {

Anchor [ID_55] Creates the hyperlink capability .| top,url "ID_55".
PlaneSensor2D [ID_56] Creates the draggable capability enabled "ID 56"
Transform2D [ID_1] Position of the BB (incl. dragging) | translation "ID 1" true

TouchSensar ID_57] Allows actions and internal links enabled "ID_57"
Switch [ID_2] Creates. the Show/Hide capability.
Transform2D
Shape
Rectangle [ID_3] Background of the BB size "ID 3" false
Appearance
Material2D [ID_4] Color and transparency of bg emissiveColor ,transparency "ID 4"
LineProperties (ID_%5] | Border of the bg lineColor, width, lineStyle "ID 5"
Shape
Bitmap
Appearance
ImageTexture [ID_B] Image url "ID 6"
Conditional ID_7] o] Implements the Show action ...
Conditional (ID_8] Implements the Hide action
whichChoice 225 "ID_2" }
EventOut {
isActive 226 "ID_57"
isOver 222"ID 57"} }

Thanks to the generic architecture of Harmonia, building blocks of existing types or of
new types can be easily added, allowing customization of Harmonia for specific
application areas and catering for particular user group needs. For the specific BBs
Slide-show and Movie, the customization is done in different helper tools that have their
own internal formats. Specific APIs enable the communication between the different
environments and Harmonia performs the translation from these formats into MPEG-4
format.

30

3.5.2.3. Harmonia Architecture

Harmonia is a layer on top of MPRO providing what was referred to as the Template
Manager in [31] [32].

The MPRO part is responsible for the management of an MPEG-4 scene from
encoding/decoding - composition - rendering - to MP4 management. Harmonia is
responsible for the management of a Harmonia scene and Harmonia objects with the
customization information and the conversion into BIFS of some Harmonia objects once
customized.

Harmonia uses MP4 files to store templates, building blocks and partially customized
scenes. These MP4 files contain a standard atom —’skip’, designed to encapsulate
opaque information— to store all non-standard information. Customization information
is stored in this atom, as well as building block information. In final scenes, all
customization information has been removed, so final scenes are not editable any more
within Harmonia.

The usage scenario for final scenes is “http pseudo-streaming”. This consists in
organizing the MP4 file in such a manner that the information needed to start playing is
at the beginning of the file, and the media samples are interleaved. Thus, the terminal
can start playing the scene before the end of the downloading. There is no guarantee
about quality of service.

3% Hamanio -[Ofx]
[Flo_Edt View Insen Fomsi Teols Help

oe@@on g awmnile |

T sssssasssaassaay

|-

z
:
%
a

:ﬂLrt
| Note colected: Bockground Hauseover N sos o Conce

with an 0b?ec_t property sheet

L-I01]

[
L]
a

(1 fa%%

1 W\ 1@l

Fie Edt View |nset Foust Heb
Belyd@aX .

Fie E& Yew lock Heb

MEXoo@BT
As2AL=-7"

Snow streuses | Stow Setings | Stde Transtion || Text Transtcn |

e SideShow!

L e —|

i 3 g . A
‘ S - -) el
- .
‘ Syrchorize sty > -l T b) \
Yoo seiected s pte Synchiorizs - - -
Nose ottt , " | 8
i Lol it JECeCCTTer FATFTFTTR FPPTFTTT e By —— 1 2 3 4 5

with Movie Edifof with Slide Show Editor

31

3.5.2.4. Analysis

Today, such a tool would be very useful, but support for some of the technologies does
not exist anymore, and in particular, MPEG-4 video with non-rectangular shape: the
corresponding profile was never successful, this feature is not implemented in any of the
available decoders, and later video standards do not have this feature.
The following adaptations would make Harmonia very useful today:
- simplification of the technology set, e.g. dropping the non-rectangular video.
- rewriting of the BB/template technology in a less fragile environment, e.g. not
having 2 scripts that need to be reconnected each time by running some code.
Using an XML-based format would make it possible to add template metadata in a
different namespace interspersed with the scene description.
- extension of the interactivity to scripting, using object-oriented design to define a
library of extensible behaviours, a la Flash.

3.5.3. Simple text to content

The initial problem is that most formats are created too low-level for the author, as a
compromise with the capacities of terminal rendering (specially mobile terminals). In
particular, in BIFS, there are many intermediate objects such as Shape, Geometry,
Appearance, Interpolators, Routes, which are much lower level than the usual objects
manipulated. The initial B4 project was developed within the ISIS European project, and
applied to BIFS/XMT-A: the target was to allow the easy creation of complex interactive
content.

The principle is to create a set of higher-level objects in a language close to the
presentation language. The presentation language is XML-based, and can be XMT, SVG or
LASeR. The author edits a scene with e.g. a complex menu system described with menus,
submenus and menu items decorated with the usual objects of the host language, and
connected with actions described in the host language. However, all the mechanics of
the higher level objects, here the menu, are hidden from the author.

A translation process transforms the authored scene tree into a much more complex,
and usually difficult to edit, scene tree constituted only from objects of the host
language.

[72] describes another approach to extend other languages, with an XSL translation, but
with quite a different context: instead of working incrementally, NCL2 is based on an
earlier framework, and intends to port NCM features to e.g. SMIL, such as the NCM links,
which are explicitly propagated triggers and associated actions.

B4 defines high-level objects called building blocks. Building blocks implement a set of
features in BIFS, hiding the complexity of BIFS from the author. Building blocks can be
nested, thus combining features from different building blocks.

For example, there is a building block for an image, a building block for bevel borders, a
building block for hyperlinks and a building block for an object you can show or hide.

Here are the objects and their combination:
<image stream="toto.jpg"/>
is the image alone.
<link url="myUrl.html">
<image stream="toto.jpg"/>
</link>
is the image with the hyperlink.

32

<bevel bevel="8 8" color="0 0 0" dark="1 0 0" light="0 1 0">
<link url="myUrl.html">
<image stream="toto.jpg"/>
</link>
</bevel>
is the image with a link and bevel and
<showhide name="beveledimage”>
<bevel bevel="8 8" color="0 0 0" dark="1 0 0" light="0 1 0">
<link url="myUrl.html">
<image stream="toto.jpg"/>
</link>
</bevel>
</showhide>
is the final object with show/hide capability.

The inner image automatically translates to the Shape / Geometry / Bitmap /
Appearance / ImageTexture hierarchy, and defines the Object Descriptor and ES
Descriptor needed to point to the image stream. The size of the expanded tree is often
10 to 20 times bigger than the initial tree edited by the author.

The link element is much simpler as it expands to a simple anchor element.

The bevel element adds decoration, here a set of polygons, which automatically adapt to
the size of the content.

The showhide element defines interaction capabilities, implemented as two Conditionals
and a Switch around the content: one Conditional contains code to turn off the rendering
of the Switch content, and the other contains code to turn on the rendering of the Switch
content.

The underlying technology in B4 is XSL Transformations [58]. Three passes of XSL are
applied to the initial scene tree. One pass defines the Object Descriptors. Another pass
defines the initial scene tree. The last pass defines scene updates, if needed.

There are groups of coherent building blocks, which interact: some building blocks
define actions and other building blocks call actions. For example, the showhide block
defines the capability of switching some elements off and on, and any of the buttons
building blocks may trigger an existing action. In BIFS/XMT-A, I have chosen to
implement the connection between the two by ID: showhide defines two Conditionals
called “show_nameOfBlock” and “hide_nameOfBlock”. A button may have action="show”
and target="nameOfBlock”.

This naming strategy will work in any scene description language with textual IDs, and
an object similar to Conditional, which can be triggered by its ID. In the absence of a
Conditional equivalent, script functions could be used.

Otherwise, building blocks are completely unrelated. Building block sets designed by
different people can be used concurrently, and even on the same elements: one block
provides an action, another provides a decoration, yet another provides layout, ...

The advantage of B4 lies in this flexibility. Whereas XMT-O constructs are fixed and add

a rather complex layer on top of BIFS, B4 blocks use plain BIFS, but simplify the work of
the designer.

33

The latest version of B4 includes:

- <video>, <image>, <background> create the element together with the object
descriptor,

- <pages> creates a set of overlaid pages (a la HyperCard, or Java CardLayout),

- <inline> invokes another scene as a sub-element of this scene,

- <bevel> creates a bevel-like decoration around a rectangular zone, typically to
help create Motif-like raised or sunk rectangular buttons,

- <group> is a general container, allowing the insertion of multiple objects where
one is expected,

- <link> is the equivalent of HTML href,

- <hotspot> creates a mouse-over-sensitive region,

- <button> creates a simple button and <mbutton> creates a button with multiple
actions,

- <showhide> is a wrapper which can show or hide its content,

- <activeButton> is a button which has multiple visual states (up-down or up-over-
down),

- <radio> creates a set of radio buttons,

- <hss> creates a slide show, with slides, animated slide sub-elements, looping,
navigation arrows.

- <hsummary> creates a slide navigator for an <hss>

- <slider> creates a scrollbar or slider

- <animate> maps slider output onto various possible fields

- <tooltip> creates a tooltip

- <grid> creates a grid-like replication of a single object; a similar construct could
be designed to generate a new object for each node of the grid;

- <maxim> creates a object with zoomin-zoomout behaviour, <maxim1> is the self-
zoom version

- <popper> manages the drawing order of its components

- <nervous> is a container that moves its content around in a “nervous” manner.

3.5.3.1. Reuse of B4 in other contexts

B4 served as a basis for a similar set of macros in LASeR. Of particular interest were the
more complex macros to:

- define a tree with expandable nodes, each node composed of an optional icon, a
text and an action upon clicking on the text.

- define a column of items which focused item always stays in the middle of the
screen, and item validation goes to an item-specific page.

The principle behind the design of these macros was:

- per item, there is a number of Conditionals, one per action: for the column of
items, actions were “next-up”, “next-down”, “go-to-item-page”, “return-to-item-
column”;

- the state information is “stored” in the actions connected to each used keystroke:
state-changing conditionals change the keystroke actions.

In BIFS, the connexion is done by a ROUTE, which can be deleted and recreated for a
different connexion.

In SVG, with no Conditional, the whole mechanism would be implemented with script
functions and event listeners.

In LASeR, the connexion can be done by setting all Conditionals with
“begin="accessKey(key)’”, only one of the Conditionals being enabled at a time.

34

3.5.3.2. Analysis

The pros of this technique are:
- this technique is applicable to many situations, and enriches the existing set of
objects proposed by the base language.
- this system is incremental, and new macros can be added at any time; ideally,
anyone should be able to add his own macros.
- it should be possible to wrap a GUI around these macros.
- it is very easy to provide this tool as a web service, or as a command line tool, to
insert it into an automated chain.
The cons of this technique are:
- designing new macros requires a high level of a rare competence (XSL).
- mixing macros with native objects of the language requires a relatively good
knowledge of the native language.
- atthis time, there is no GUI wrapper around these macros.
My template approach is one to increase the level of abstraction of objects proposed to
the author in the scene format he has to use; it solves quite a different problem from
other approaches such as LimSee3 [80] where the templates are used to propose a
simpler view on complex features of SMIL.

3.5.4. Program to content

In Streamezzo, we developed a technique derived from Java Server Pages, with a twist.
The name of the technique is RSP for Rich media Server Pages, but it applies to any XML-
based strongly typed description format.

3.5.4.1. Richmedia Server Pages

The whole system is based upon equivalence between declarative XML for a scene tree,
and a program whose execution would generate the same declarative XML. Any piece of
XML can be easily translated into a program which:
- creates a program object for every XML element found;
- adds a property to the program object for every XML attribute added to the XML
element;
- adds a text property to the program object for every text content in an XML
element;
- adds to the list of children of the parent program object any program object
created for an XML element which is a child of the parent XML element.
In order to be able to do this translation, we assume the availability of a library of
functions to manipulate a set of program objects implementing the set of XML elements
of the scene description. The host language needs to have strong typing, in order to
detect as many errors as possible upon compilation. The library should have one type of
object per XML element type, and implement as many methods as necessary to ensure
“correct by construction” content. The library typically implements methods to serialize
the content back to XML, to serialize the content into a compressed form if any, and any
sort of checking relevant to the description format.
The above process is very powerful, as it may use programming language type checking
in order to check that:
- aproperty exists for an certain type of object;
- the value of the property is of the right type and/or in the right range;

35

- the type of the child object is compatible with the type of the parent object.
For a program derived from a declarative XML, this is overkill. There are technologies,
such as XML schema, allowing the validation of a piece of declarative XML without
resorting to translating it to a program and then compiling it.
However, the above technique is extremely useful when designing complex interactive
content, some of which is designed as declarative XML, and the rest is designed as a set
of program pieces, usually interspersed with the XML, a la Java Server Pages.
JSPs compile to a program manipulating strings. There is no intelligent structure left in
the compiled program. In a RSP, the XML structure is conserved in the program. This
translates into differences at compile time and differences during execution.
At compile time in a JSP, the declarative parts compile to a string constant. Program
pieces are sets of string computations and then string concatenations. There is no
checking of the integrity of the generated text as XML.
At compile time in a RSP, each XML element is translated into a typed object of the
library. If there is an instruction to set a property that does not exist, an error with
precise documentation of the problem is raised.
During execution of a JSP, the program concatenates strings, which are sent to the
terminal, parsed there, and errors are raised in the browser on the client terminal, with
no trace of a context.
During execution of a RSP, typed objects are manipulated. If compilation did not catch an
error, e.g. because the type of a variable was too generic, a type error is raised during
execution if the object resolves to an incorrect type: the error is raised on the server,
and adequate documentation of the problem can be logged.

The program pieces interspersed with the declarative XML can also be very rich, much
richer than anything possible in JSPs:

- there can be a keyword for the current object, and any use of the current object
will be type-checked: any wrong assumption on the type of the current object will
be caught at compile time;

- the same is true with the enclosing objects (or “father” and ascendants);

- and many properties of the current spot where program code is being inserted:
current transformation, lists of existing actions or objects, etc...

There is one limitation to RSPs that JSPs do not have: because]JSPs are fully
unstructured, program pieces may construct anything, even invalid XML fragments,
provided that after concatenation with constant parts of the page, the result is valid.
RSPs program pieces can only yield attribute values, attributes, lists of attributes,
elements or element lists, i.e. valid XML atoms, not half a tag name (it is possible to
compute a complete tag name, though).

We believe such use of JSPs is more of a hack than a good procedure, and should be
discouraged anyway.

3.5.4.2. Analysis

3.5.4.2.1. Advantages of RSPs

RSPs use a strongly typed language (Java) in order to catch as many errors as possible at
compile time. RSPs document execution errors with a full scene-related context to
enable intelligent debugging. The RSP environment is much richer than JSP
environment: it offers many predefined objects, contextual properties and methods

36

increasing the power of the code inserted in the RSPs. RSPs are executed on the server
and minimize the performance requirement on terminals. Terminals without scripting
engine can be used.

3.5.4.2.2. Comparison with AJAX

RSPs can be compared to the server-side code of AJAX services.
AJAX services typically require:

- ascript executing on the terminal, sending a complex request to the server;

- aserver, typically PHP code or servlet, computes an answer to the request in the
form of a piece of XML;

- the terminal script needs to parse and process the XML reply, possibly creating
dynamically on the terminal fragments of scenes.

RSP services typically require:

- acontent stub on the client, whose role is to send a request to the server from the
user context, thus providing the service with a full HTTP request context;

- a servlet engine with the RSP servlet installed; the servlet receives the request
and constructs the content appropriate to the user;

- the content is received and rendered as is by the terminal; there is no processing
on the terminal, thus making RSP the technology of choice on lower-end
terminals.

The current trend of using the “cloud” for processing is also very compatible with the
RSP technology.

3.6. Adaptation

Content reuse became a problem with the fragmentation of the market in many
dimensions: fragmentation of the mobile device market, separation into Internet and
mobile networks, multiplication of formats... We had two activities in the area of
adaptation: one within EU projects related to MPEG-21 and an industrial contract with
Orange Labs, and another of format translations for academic and commercial projects.

3.6.1. Adaptation of content to rendering context

This work was part of Mariam Kimiaei Asadi’s PhD [4]. The context was both MPEG-21
standardisation and two European projects called ISIS and DANAE [19]. The work is
organized around two poles: resource conversion and scene adaptation. Resource
conversion is a basic tool that is necessary for scene adaptation. It was also a tool that
was quite incomplete in MPEG-21 Digital Item Adaptation. Scene adaptation is a quite
wide field, but we chose semantic scene adaptation, in the sense of adaptation based on
semantic information provided by the author as part of the MPEG-21 description of the
scene.

3.6.1.1. Resource Conversion

After a state of the art in single media adaptation, Mariam introduced our main
contribution to DIA: modality conversion, or transmoding [16]. The context of the
project was to use on-demand, hinted conversion. In this type of adaptation, the media is
considered alone, i.e. as a mono media, without any multimedia structured presentation
or independently of its native multimedia composition. She defined description tools

37

extending the MPEG-21 DIA schema, for description of hints on different media
adaptations, also called resource conversions, and their corresponding parameters. She
also implemented a media adaptation engine that, based on these direct hints as well as
usage context constraints, applies the most appropriate form of media adaptation with
optimal values of adaptation parameters, in order to provide the end-user with the best
quality of experience. All this was done in parallels with contributions to MPEG-21 DIA.

In Audio Graphics
o o [a] [a]
S| Q| ®| @0 P ? =
© | o | o o 2 2 o
cls|s| E|>| 5 s | F
wn © ©
Out < < 5 5
Speech \ 2 | 2 ?
o peec %{\
3 Audio 2D ? \§ ?
<
Audio 3D ? ? """-""-:'«:
Image & v v v v
Video * v v v
W
» | Graphics 2D | * v v v
O
=
a o
S N
O | Graphics 3D | * ?
=
Text ? \
R

In the table above, hashed means no conversion, gray means the conversion is not
doable in general, a check mark means it is part of our study, “*” means there are
multiple ways/paths and “?” means the transmoding should be possible but was not
studied in detail.

3.6.1.2. Semantic Scene Adaptation

In semantic adaptation of structured multimedia documents, she addressed the question
of adaptation based on temporal, spatial and semantic relationships between media
objects. When adapting a multimedia presentation, in order to preserve the consistency
and meaningfulness of the adapted scene, the adaptation process needs to have access to
the semantic information of the presentation. She defined a set of descriptors for the
expression of semantic information within composed multimedia content. These
descriptors contain information provided by the author of the multimedia scene, or any
other entity of the multimedia delivery chain, that helps the adaptation engine decide on
the optimal type and nature of the adaptations that are to be applied to the multimedia
document. The information included in these descriptors cover the independent
semantic information of each media object of the scene, the semantic dependencies
between media objects of the scene, and the semantic preferences on scene
fragmentation. This information is then used in the heuristic described in Figure 8.

38

- fragmentation
Clom > — il

need for —
fragmentation /" adaptationis
impossible _/

« optimal form of

* optimal resource
positions and
dimensions

based on :
«SID

format and modality

need fi
check of resources S

elimination?

terminal capacities &

g resource
user preferences iminati

if incompatible No [, - _—
* Optimal resizing

on
calculation on | |_conversions : e
thelayou | apted * optimal positions and
e : e dimensions
adaptation of

resources based on :

Yes, layout final decisions
/ #| modality and
i : sdnmﬂln] ﬂ format check

on resource
adapted No conversions
layout = =

the layout?

*SID
« initial layout
* rearrangement models
->rearrangement of the
layout

« initial layout
* rearrangements
-> rearrangement of
the layout

A lrunsnmdingss.‘ Yes

transformations
e J’sdsplallnnlsl\
\._ impossible _

Figure 8 : Scene adaptation heuristic (left) and layout adaptation heuristic (right)

She then went on to implement a prototype using a subset of SMIL2 as a scene language,
for its simplicity and closeness to the semantic groupings of media objects. The
descriptors capture useful information and the heuristics are efficient on the types of
documents that were of interest [17]. The prototype addresses the following
adaptations:
- adaptation of media to the terminal capabilities, with selection of alternatives,
elimination, transcoding or transmoding as feasible;
- optional scene fragmentation, with and generation of navigation among the
fragments;
- layout adaptation.

3.6.1.3. Analysis

The functional annotations in [81] are a more formalized version of the above semantic
relations. We have used heuristics here, in the spirit of a rule-based expert system, but
others, including evolutions of [78], have used constraint-based systems for similar
purposes.

The main drawback of this proposal is the need for the author to capture the semantic
relationships and information. The proposed heuristics may be further developed or be
adapted to different situations or types of documents, and it seems obvious that
adaptation that does not respect the semantic information will simply not work as
related objects could be separated. When an integrated (GUI) authoring tool will be
used, then careful addition, within the workflow, of the capture of semantic information
should reduce the burden on the author substantially. In other situations (“manual”
design in text, programming/automatic generation), a format extension might reduce
that burden.

3.6.2. Format translation

3.6.2.1. SVGto BIFS

As part of the state of the art work before the BIFS extension named Advanced Text and
Graphics, Cyril Concolato started to work on SVG to BIFS translation. The goal was to
study the “compatibility” of SVG and BIFS, their relative power of expression, and allow
the reuse of SVG content, in particular icons.

39

Since SVG and XMT are both XML-based, the tool was first implemented as a number of
passes of XSLT:
- clean up of namespaces and removal of authoring tool metadata;
- removing CSS-like style compound attributes, replacing them with single
attributes;
- clean up of polyline/polygon coordinate lists;
- converting units into pixels;
- generating Object Descriptors/Elementary Stream Descriptors for media;
- translating as much of animation as possible;
- translating graphics and text primitives.
The result was actually a very limited SVGT1.1 to XMT translator, dealing only with
geometries and simple animations.
The first implementation was pure XSLT. Later versions were optimized with bits of
Java:
- to speed up the process, a Java tokenizer was used to accelerate path translation;
- as features were added, bits of Java were used to do some computations (square
root, degree to radian conversion, transform matrix manipulations...).
Some of the code of this project was consolidated and extended into the B4 tool.

3.6.2.2. Flash to BIFS/SVG/LASeR

After Cyril’'s work on SVG, and a study of the structure of Flash and its encoding, we had
the idea of trying to find out how much of Flash could actually be translated to other
formats. If Flash was mostly translatable, then it proved that it is “just another scene
description format”. The big hurdle was the translation of the planar maps.

Another goal was to be able to reuse some of the wealth of free Flash content floating
around the Internet. Yet another goal was to complement our suit of tools for resource
conversion.

Software

Frédéric Blanc was asked to write the software, with help from Cyril Concolato and
myself. The software was written in Java. We reused an open source package that parsed
SWF and created an XML “equivalent” of the SWF. We added a module translating from
planar maps to polygons and polylines, and then a series of different generators for our
formats of interest: XMT-A, SVG and LASeR (CD version). The architecture of original
software and translator software is shown in Figure 9 below.

Architecture of the original open source package

W
g oo | Polyines o CoreR SR

Architecture of our Translator

Figure 9 — Architecture of original software and Flash translator

40

Dealing with Planar Maps

The input of the “planar maps polygonizer” is a set of quadratic curves, specified by two
extremas and one control point, and for each of these a left color and a right color are
specified. It can be safely assumed that the curves are non-intersecting, and that
extremities match. The (non optimal) process is:
1. for each curve extremity, find all matches among other curve extremities and
create a graph whose nodes are the extremities and whose arcs are the curves;
2. then for each unaccounted curve, walk the graph to find its left shape and its right
shape; during this process of creating shapes, all curves building a shape are
marked as accounted for on the shape’s side;
3. the end is when all curves are accounted for on both sides.
Sorting extremities in X and then Y allows the optimisation of phase 1 in terms of
computing time. Looking for unaccounted curves sequentially in the list of curves,
skipping curves already accounted for on both sides, optimizes the second phase.
There are edge cases to take care of. And there are Flash quirks to detect and eliminate.
Shapes are then sequences of quadratic curves that may need to be translated:

- into straight polygons for LASeR CD or some BIFS profiles;

- into cubic curves for other BIFS profiles.
Finally, the shapes need to be generated in the appropriate format.

Dealing with Flash Updates

Flash uses a simple update mechanism, and is frame-based. The main rendering-related
commands are:

- add areference to an object at depth D;

- remove a reference to an object at depth D;

- change a property.
It is quite simple to maintain in BIFS, SVG, or LASeR, a ordered list of empty groups
represented the possible depths, and add/remove object references in these groups.
As a result, the mapping of these updates to BIFS/XMT-A and LASeR are relatively
straightforward. Generating SVG requires:

- either use SMIL animation to set the display property of elements on upon

“insertion”, and off upon “removal”;
- oruse scripting to add or remove elements from the scene tree.

Dealing with MovieClips

The MovieClip mechanism of Flash defines a rendering loop, a series of frames
containing insertions, deletions and property changes, which can be called as many
times as needed. In early video games, this was called a “sprite”. Translating MovieClips
is possible assuming that the loop is finite, so that it can be unrolled. The unrolling
penalty is usually small and acceptable:

- each MovieClip frame is translated into a Conditional adding and removing object

references and changing properties;

- anunrolled frame just consists in triggering the appropriate Conditional.
If scripting is available, infinite loops are easy to generate, and unrolling is not
necessary.

Dealing with Flash Scripts, Morphs, etc

This is the main limitation of the translator: there is no way we could think of to
translate Flash scripts. Morphing and filter effects are also allowed in SWF content, and

41

most of these cannot also be translated. Some filter effects could be translated to SVG 1.1
Full, but our target has always been SVG Tiny 1.2, which does not including filter effects.
However, morphs and filters are used less often than scripting. Scripts are used in most
Flash content, if only to deal with progressing loading. And there lies the most serious
obstacle against reusing Flash content massively.

3.6.2.3. PowerPoint to BIFS/SVG/LASeR

In Microsoft Office, there is a “interactive multimedia authoring tool” used by many:
Powerpoint (PPT). There is also a scripting language, Visual Basic, with a complete API
to manipulate PowerPoint documents.
Even though this format is rather restrictive, it represents a meaningful item in the
interactive multimedia constellation, even if only by the number of its users. As part of
our work on format translation, it felt important to at least try to create a translator
from PPT to BIFS and other more open formats.
As it soon appeared, it was relatively easy to export slides, text with properties, images
and other slide components, to BIFS. So we had a partial translation quite soon. What
stopped us were:

- the proliferation of different ways to do the same thing,

- the lack of APIs for some properties: part of the format was simply not accessible

in any way but through the PPT GUI,
- and a lack of overall logic, which made the lack of documentation a killer.

3.6.2.4. Analysis

This work was very useful in many ways:

- it was the basis of the BIFS extension “Advanced Text and Graphics”, an
amendment which brought BIFS at the same level of descriptive power than SVG
and Flash in 2D;

- content reuse: in Streamezzo, the ability to repurpose SVG icons or Flash short
sequences into our format was a great asset. In the team here, availability of
content translated from Flash made parts of other projects possible, e.g. the
cartoons study in the QoS section.

- italso gave us a thorough understanding of each format, its pros and cons, and its
quirks. It helped validate many of our assertions.

- many translation techniques were reused in other projects, such as B4.

The translators are also still usable for later studies.

3.7. Rendering
At first, rendering was just a tool, “development” and not research. As Gianluca and Jean
demonstrated, study of rendering is needed: to solve the problems of rendering new
types of content, such as streamed scenes (cartoons); to provide a framework for
studying all formats and to serve as a base for projects based on interactive graphics.

3.7.1. Rendering for QoS

This work was part of Gianluca DiCagno’s PhD [3]. It is our only work on quality of
service. It is often called quality of experience rather than quality of service, as it focuses
on the user experience [18].

42

During the implementation of an MPEG-4 BIFS player within a complete MPEG-4
Systems/Audio/Video terminal, Gianluca had to tackle multiple problems. As an
engineer, he tried to find existing solutions, found none, and started his research.

He found that there is too much variability in too many dimensions, despite the
widespread use of profiles in MPEG, which reduces the problem significantly by making
single stream rendering more predictable. The variability is even worse in decoding
time for scenes, specially with 3D. There is a need for predictors.

3.7.1.1. Quality Modelling

He started with setting up a quality model for multimedia rendering, and restricted his
work to best effort systems: indeed, as soon as you can reserve resources, most of the
problems disappear, and more and more devices today run on a best-effort, general-
purpose OS. He also restricted his model to multiple audio and video streams first and
aimed for a user-level QoS model. He designed descriptors for semantic importance of
streams (not unlike in the previous section), and dealt with sensitivity to degradation,
which is larger for audio. He implemented an extension of the MPEG-4 terminal
architecture to include measure and control, both global and local, with very impressive
improvements in QoS.

User QoS

Control T T
e [Media— LAl Media 14 sooner | oS08

7¥ ——"Media Object —

QoS
Monitor
i
Resource Manager -§_ 8
<
System | | Quaity 5]
Monitor || Selector & e
[Sekar | o -5
A 8
n
QoS
Monitor
T » - Media Object N

Dat; : Filter :) hY
’ e -{Medla y L& » Media 4 | asoe
- Decoder

User QoS

Figure 10: QoS extensions of MPEG-4 terminal

3.7.1.2. Addition of Scene Streams

There is considerable experience in the decoding and rendering of audio and video
streams. It is not the case for scene streams, which are quite unpredictable, compared to
even to video streams including different types of frames.

Gianluca goes at length into variability causes in the processing of scene streams:
decoding and tree insertion, tree traversal, painting algorithms and their optimisations,
anti-aliasing, interfacing strategies with the graphic hardware... For example, it is faster
to write a video directly into video memory, but it is faster to draw graphics into main
memory and then transfer the drawing into video memory. He implemented scenes into
his previous model and proved the validity of the model on this new type of stream, but
still found problems, e.g. a degradation of video quality in the presence of a scene stream
of lesser frame rate.

43

3.7.1.3. Quasi-Continuous Scene Streams: Cartoons

Cartoons constitute an extreme example of variable scene stream. Investigation of
cartoons rendering showed extreme quality challenges on normal PCs of that period, let
alone slower devices. Gianluca designed and implemented predictors for decoding time
to improve the quality of rendering for content including cartoons and in particular to
react constructively to changes in CPU availability (when an application starts in parallel
on the device). The best predictor is based on the relative size of next access unit
compared to the size and decoding time of the previous four access units.

3.7.1.4. Analysis

This work just scratched the surface of multimedia QoS, even if he did propose a good
model, and raised and solved difficult questions around scene rendering. His
implementation work (MPEG-4 Systems and BIFS) is available as part of the MPEG-4
Systems reference software, but this standard is not used very much. Possible use of SVG
as part of HbbTV/widgets on connected TVs, which are very resource-limited devices
(even more than mobile phones), would make this study very useful. His detailed study
of scene rendering should be emulated on SVG or LASeR or other scene format
implementations, and results should be used to provide feedback for the design of the
scene format.

3.7.2. Multi-format rendering

GPAC [13] is an open source multimedia framework for research and academic purposes
in different aspects of multimedia, with a focus on presentation technologies (graphics,
animation and interactivity). GPAC is cross-platform. It is written in C, for portability to
embedded platforms and DSPs, and for low memory footprint. It is currently running
under Windows, Linux, WindowsCE, Embedded Linux, SymbianOS, Mac 0SX 10.4+ and
iPhone0S3.

The project started in 2003 with the initial goal of developing clean software compliant
to the MPEG-4 Systems standard, when Jean Lefeuvre joined the project. He
implemented the “Advanced Text and Graphics” BIFS amendment designed by Cyril
Concolato on the basis of his format comparison work [5]. Since then, the project has
evolved and features now three sets of tools: a multimedia player, a multimedia
packager and several servers.

The GPAC multimedia player differs from traditional audiovisual players because, in
addition to its capabilities to play any video or audio format and its support for most of
the existing delivery protocols, it focuses on graphics, animations and interactivity
technologies. GPAC offers a unique integrated player capable of playing back audiovisual
content mixed with 2D and/or 3D content in the following formats: MPEG-4 BIFS and
LASeR (partial), W3C SVG (Tiny 1.2), W3D VRML and X3D.

GPAC is now a key tool for the research in interactive graphics:

- itserved as a base in research on how to best render SVG [74];

- it still serves as a base for research on streaming multimedia, from hinting for
RTP, to usage in broadcast environments, to experiments with MPEG Dynamic
Adaptive Streaming over HTTP (DASH);

- itserves as a design/development platform for W3C Widgets and MPEG-U [6] [7]
[8] [9] [41] [42];

- itis used in rendering for new 3D screens requiring multi-views[75].

44

3.8. Widening the scope

Interactive services, on mobiles or Internet, usually include some text and some
graphics. For a long time, you had to choose: either you chose “text”, “document” and
mostly “HTML”, or you chose “graphics” and “scenes” and formats mentioned in this
thesis. Text-based services were usually not so good with graphics rendering and
manipulation. Graphics-based services were usually not so good with text rendering and
manipulation. I have participated in multiple actions to reconcile the two worlds: CDF as
an attempt to make the two work together, specifying the unspecified interstices;
widgets as a tool which applies to both; and HbbTV as an attempt to include graphics in
a text-based service world.

3.8.1. Compound Document Format

In the early days of Streamezzo, I participated in the creation of the W3C working group
called Compound Document Format (CDF) [62], until the completion of WICD Core 1.0
[63]. The scope was to make multi-format content work well. The initial goal was to
have HTML and SVG work well together as separate documents. Other formats were
obviously in the picture too: CSS, DOM, ECMA-Script, XFORMS, MathML etc. The work
was split in:

- multi-document content, with links between the various documents, with its first
instance named WICD;

- single-document, multi-format content: this means using XML namespaces to be
able to switch, within a document, from describing xHTML to describing SVG,
then possibly X3D, etc, and then back to xHTML to close the document.

The work consisted in identifying the cracks in-between formats:

- how to consistently negotiate rendering space between a host format and an
included format (e.g. an SVG drawing inside an xHTML page).

- how to pass events or the focus between engines managing different formats.

- how to handle fonts, synchronization, hyperlinking in a coherent manner across
formats.

- how to allow a script in a part of a document to access objects in another part
using another format.

3.8.1.1. Analysis

My participation in this working group was out of interest for the possible applications,
and to make sure that LASeR could be used in CDF/WICD in the place of SVG, if needed.
The group started with an ambition of having a first release in 6-8 months. Obviously, it
took much longer. When the usage time-frame of the technology slipped beyond one or
two years, my participation was not justified any more.
Still, this was my first contact with content as a mix between (x)HTML and SVG, between
text-based content and rich media. We had the problem at Streamezzo that many of the
applications we were designing would have been easier to design with some of the
features of text-based formats, which rich media missed:

- longer texts, laid out in paragraphs, with styling

- tables with automatic layout a la CSS

45

We felt that including a subset of xHTML in rich media was important to increase the
relevance of our rich media format and decrease the cost of service design. But it was a
development cost and disruption we could not afford.

Today, the work on HTMLS5 is a continuation of the CDF single-document work, with a
specification of how SVG can be rendered when specified inline in HTML5 content.

3.8.2. Widgets

Widgets are a more recent aspect of my work in the domain. Widgets are a mixture of
content fragments and behaviour, expressed in web standards. They represent a break
up of the HTML page limitation: users can assemble widgets in their browsers, and thus
recompose information. They do not need to depend on portals to aggregate content,
each person can be his/her own aggregator of fragments packaged as widgets.

The most frequent behaviour of a widget is to fetch data and to organize it for easy
viewing. But with the increase in the availability of many types of APIs, there are fewer
and fewer limits to what a widget can do.

Widgets are also not limited to computers, desktops, laptops or netbooks. Widgets are
available on many smaller devices and platforms. And that is one of their big advantage:
widgets are cross-platform and cross-device.

Our interest in widgets is focused on some concepts:

- widgets should be able to discover and communicate with other entities, services

or other widgets, in order to create a cooperation ecosystem;
o one variant is the creation of task-specific Uls for services;
o another variant is the splitting of a task into multiple widgets, each of
which may run on another device;

- widgets should not be tied to a device, e.g. to the particular device they first ran
on: it should be possible to start a widget on a device, then move it to another
without losing context.

We based our work on widgets on the W3C widgets initiative [41] [42], which defines:

- a packaging format, with an internationalization scheme and many default
mechanisms;

- amanifest, which declares the components of the widget;

- asetof scripting APIs and events.

Our work on widgets and MPEG-U [77] has been partly funded by a contract with
Samsung Electronics [6] [7] [8] [9].

Discovery

If a widget does not have discovery capabilities, it will need to be edited or configured
specifically for a particular situation. This would exclude flexible situations, such as a
home network when new devices can be added or old devices removed at any time.
There is no preferred solution for discovery. We just assume the presence of a discovery
mechanism, and we prefer those allowing the dynamic creation of service interfaces,
such as UPnP (and unlike Bonjour). We have implemented widgets that discover UPnP
services, widgets which announce themselves as UPnP services, etc...

The natural consequence of the discovery of a service that a widget knows about, is the
connexion of the widget with that service. Such connexions are dynamic, for the
duration when widget, service and network all keep working. If one of the three stops
working, the connexion is cut, until the three elements are up again.

Communication

46

The communication contract is part of the definition of a widget. We have chosen to
extend the W3C widget manifest with the exhaustive set of messages that a widget can
send or receive from services or other widgets.

We use a communication abstraction centred on messages grouped into interfaces.
Typically, an input message is composed of input parameters, followed by output
parameters if a reply may be sent. An output message is composed of output messages,
followed by input messages if a reply may be sent.

Messages can be sent and received (processed) by scripts. Messages can also be directly
connected (without scripts) to the widget scene: widget scene events may trigger the
sending of messages, and incoming messages may trigger modifications in the widget
scene tree.

Mobility

During a session, where a user views information from a widget running on a particular
device, there may appear another available device better suited for the viewing of
information: for example, you have started searching for books on a commercial web
site on your mobile phone, and you arrive home and want to switch to a larger screen
for the end of your buying session. We have created mechanisms for the running widget
to save an execution context and make the widget and its context available to another
device in order to be able to pick up the session on this new device.

Standardization and Implementation
This work was standardized as part of MPEG-U, or ISO/IEC 23007.
We have implemented the system within the GPAC framework, in the following fashion:

- Support for the widget management has been implemented in C/C++ within
GPAC, on top of the open source Platinum implementation of UPnP. Manifest
parsing and W3C widget support is included.

- Widget managers, or widget user agents, are implemented in a mix of a scene
description language and ECMA-Script:

o the widget manager included in standard reference/utility software is
based on BIFS and ECMA-Script, and has been tested with SVG and BIFS
widgets; it is quite complete in terms of functionality, but complex to use
and reserved for experts.

o a simpler widget manager, emulating an iPhone U], is based on SVG and
ECMA-Script; it has been tested with SVG and BIFS widgets.

o another SVG-based widget manager emulates a Yahoo TV connected
widgets system.

- Many widgets have been implemented for demonstrations, engineering tests and
conformance tests, in SVG and BIFS.

On-going work includes the implementation of all of the above on top of Webkit, to
validate MPEG-U usage in the context of (x)HTML widgets, and later integration with
HbbTV.

3.8.2.1. Analysis

With hindsight, as hinted in [6], this work has a wider potential scope than just widgets.
Of course, widgets offer an easy application, e.g. because the interface declarations can
be added to the widget manifest. But it should be possible to have discovery,
communication and migration of content beyond widgets.

47

Scene/document formats are under constant pressure of extension to deal with e.g. new
user interaction mechanisms. The newest is the multi-touch paradigm. The first
implementers of multi-touch interfaces have extended the scene formats they use by
adding a new set of events, which a non-interoperable extension: their scenes will not
work elsewhere, and scenes designed for a mouse will not work on these devices either.
To be able to deal in an interoperable manner with such extensions, it is better to use
our way to declaring communication interfaces for the scene/document. In a sense,
events are an ad-hoc interface to the scene/document. By creating a generic
communication interface layer above/separate from the scene/document layer, we
remove the need to constantly extend scene/document formats to deal with new
interactions needs. This seems to us a major contribution/potential of MPEG-U.

We took a risk in mixing (again) W3C royalty-free standards with MPEG RAND
standards, where such mixes do not have a good success record.

Another risk is the overwhelming trend to implement most things as ECMA-Script APIs:
it would be relatively easy to redesign all the above as ES APIs [10] [71]; our advantage
is that declarative interfaces are very easy to statically check, which is not the case of ES
code.

3.8.3. HbbTV

HbbTV is a standard for interactive TV, resulting from the merge of a French project to
add interactivity to TNT (French acronym for digital terrestrial TV, thus broadcast
oriented), and a similar German project (more IPTV oriented). HbbTV is based on the
W3C technologies xHTML and CSS, with somewhat hacked profiles, as well as the
ubiquitous ECMA-Script. The xHTML set is very close to W3C profile: xHTML 1.1
transitional, there is just one extra element, which is a clean extension. The CSS set is
much less clear, and contains some CSS3 that is not “standard” yet.

The largest specific part of the standard is a set of ECMA-Script APIs: some from CE-
HTML [38], many from OIPF (Open IPTV Forum) [39], and a few specific to HbbTV
around broadcast [40].

At first glance, HbbTV and W3C Widgets [41] [42] are very close, in the sense that
HbbTV has all the basic elements of Widgets: xHTML, CSS and ECMA-Script. Even
looking in detail, the additional load of implementing W3C widgets specific functionality
is very small, almost negligible compared to the size of an HbbTV implementation. Many
think there is a very good possible synergy between HbbTV and W3C Widgets: widgets
develop fast on the general Internet as well as on the mobile Internet; as described in
the previous section, widgets are very useful in the home network to deal with multiple
small devices; a merge of all three worlds into the TV set has great potential, specially
with a possible sharing of content and widgets across PCs, handsets and TVs.

We are working within a French multi-regional project called openHbb (initially,
OpenWidget). Our most important task is to push for widgets and SVG in HbbTV version
2. Our technical tasks are:

- implement HbbTV in open source on PC on a WebKit base, adding widget and
SVG support; this basically means to port our GPAC implementation of widgets to
WebKit, and extend it to xHTML-based widgets.

- create open source authoring tools for HbbTV: a validator is in progress; next are
bandwidth management and generators, i.e. from skinnable applications to full
application generators.

48

3.9. Conclusion

[have tried to report the breadth and depth of my work in the domain of interactive
content over the years, including the more academic work, the standards work as well
as the commercial developments.

[have tried, in the analysis at the end of each project description, to describe my current
view on the results. Let me try now to make a global analysis. If [were to work on a
format now, | would:

- mix text-based and graphics features (xHTML and SVG),

- include an update mechanism, Conditional, etc... but also an efficient scripting

interface, with XmlHttpRequest and many device APIs,

- notinclude specific compression, and rely on gzip, possibly EXI.

- work jointly on the format, rendering engines, authoring tools and a few key

applications,

- try to stay with royalty-free standards and open source software, to ease the

promotion,

- work at the interface between Internet, mobile and TV in the home environment.
For authoring, I would try to reuse the concepts, from Harmonia, of simple template-
based authoring with more modern technologies, including a simple GUI and lots of
ways for developers to incrementally improve the tool.

[would also separately work on a tool for authoring adaptable content, where the user
can work on an unlimited number of alternate layouts, where the computer would
create automatically the adaptation program by trying to interpolate linearly between
alternate layouts, and when interpolation is impossible, it would ask the user to resolve
the discontinuity. This tool would deal with spatial layout, temporal layout, content
fragmentation, media alternates, etc. It would generate fully flexible layouts for powerful
machines, as well as static versions for specific low-resource devices.

And for the application domain with highest potential, it seems clear that it is the fusion
of applications on/in the constellation of devices to be found in a home: TV, PC, media
center, mobile phones, tablets, game consoles, picture frames, etc... all
cooperating/working together, communicating, sharing applications as well as content.

3.10. References

[1] Frédéric Bouilhaguet, “Architecture de systtmes MPEG-4", These ENST, 2001
[2] Souhila Boughoufalah, “Outils Auteurs pour MPEG-4", These ENST, 2003

[3] Gianluca Di Cagno, “ Systemes multimedia et qualité d’expérience”, These ENST,
2004

[4] Mariam Kimiaei Asadi, “Adaptation de contenu multimedia avec MPEG-21:
conversion de resources et adaptation sémantique de scenes”, These ENST, 2005

[5] Cyril Concolato, “Descriptions de scenes multimedia: representations et
optimizations”, These ENST, 2007

[6] C. Concolato, J.C. Dufourd, J. Le Feuvre, K.M. Park, J.Y. Song, “Communicating and
Migratable Interactive Multimedia Documents », submitted to IEEE MTAP

[7] J.C. Dufourd, C. Concolato et J. Le Feuvre, “SVG Communicating Widgets”, 7th
International Conference on Scalable Vector Graphics, October 2 to 4, 2009,
Mountain View, California, USA

49

[8] C. Concolato, J. Le Feuvre et J.C. Dufourd, “Declarative Interfaces for Dynamic
Widgets Communications”, 9th ACM Symposium on Document Engineering, Sept
15-18, 2009, Munich, Allemagne.

[9] J. Le Feuvre, C. Concolato et J.C. Dufourd, “Widget Mobility”, International
Conference on Mobile Technology, Applications and Systems, Mobility 2009, 2 - 4
september 2009, Nice, France

[10] Sire, S., Paquier, M., Vagner, A., and Bogaerts, J. 2009. A messaging API for inter-
widgets communication. In Proceedings of the 18th international Conference on
World Wide Web (Madrid, Spain, April 20 - 24, 2009). WWW '09. ACM, New York,
NY, 1115-1116. DOI= http://doi.acm.org/10.1145/1526709.1526884

[11] Jean-Claude Dufourd, « LASeR : The Lightweight Rich Media Representation
Standard », Signal Processing Magazine, IEEE Volume 25, 2008, Pages 164-168,
Issue : 6, DOI : http://dx.doi.org/10.1109/MSP.2008.929813.

[12] J.C.Dufourd, “La TMP n’est pas la TV sur mobile: le role de I’interactivité”,
Revue Telecom, numéro TV Mobile, juin 08

[13] Le Feuvre, J., Concolato, C., and Moissinac, J. 2007. GPAC: open source
multimedia framework. In Proceedings of the 15th international Conference on
Multimedia (Augsburg, Germany, September 25 - 29, 2007). MULTIMEDIA '07.
ACM, New York, NY, 1009-1012. DOI=
http://doi.acm.org/10.1145/1291233.1291452

[14] J.C.Dufourd, “Services « Rich Media » mobiles”, Revue Telecom, septembre 06

[15] J.C.Dufourd, O. Avaro, et C. Concolato, “An MPEG standard for rich media
services”, IEEE Multimedia, 12(4):60-68, Decembre 2005.

[16] M. Kimiaei-Asadi et J. C. Dufourd, “Support de transmodage de contenus
multimédia dans MPEG-21, étude et validation d’un outil de description”, Revue des
sciences et technologies de 1’information, 24(7):815-835, July 2005.

[17] J. C.Dufourd et M. Kimiaei-Asadi, “Context-aware semantic adaptation of
multimedia presentations”, In IEEE International Conference on Multimedia and
Expo, pages 362-365, Amsterdam, The Netherlands, July 2005.

[18] Gianluca Di Cagno, Cyril Concolato, J. C. Dufourd, “Multimedia adaptation in
end-user terminals”, Signal Processing: Image Communication vol. 21, n° 3, pp. 200-
216,2004.

[19] P. Gioia, K. Kamyab, I. Wolf, G. Panis, A. Difino, M. Kimiaei, T. Digiacomo, A.
Cotarmanac'H, P. Goulev, A. Graffunder, A. Hutter, B. Negro, C. Concolato, C.
Joslin, E. Mamdani, J. C. Dufourd et N. Thalmann, “ISIS: intelligent scalability for
interoperable services”, (2004), 1st european Conference on Visual Media Production,
Londres, Angleterre, pp. 295-304.

[20] C. Concolato et J. C. Dufourd, (2004), « Adaptation de contenu MPEG-4 BIFS
suivant la norme MPEG-21 », Conférence nationale Mcube MultiMédia Mobile,
Montbéliard, France.

[21] Cyril Concolato, J. C. Dufourd, J. C. Moissinac, "Creating and Encoding of
Cartoons Using MPEG-4 BIFS: Methods and Results", IEEE Transactions on Circuits
and Systems for Video Technology, (T-CSVT), special issue on Image-based
Modeling, Rendering and Animation, Volume: 13 Issue: 11 Nov 2003 pp. 1129-1135.

[22] J.C.Dufourd, <MPEG-4 XMT versus SMIL/SVG», article invité, The
Synchronised Multimedia Integration Language European Conference, Paris, February
12,13, 14,2003

50

[23] Cyril Concolato, J. C. Dufourd, J. C. Moissinac, « Representing 2D cartoons using
SVG », The Synchronised Multimedia Integration Language European Conference,
Paris, February 12, 13, 14,2003

[24] C. Concolato, J.-C. Dufourd, “Comparison Of MPEG-4 BIFS And Some Other
Multimedia Description Languages”, Workshop and Exhibitions on MPEG-4, San
Jose, California, June 2002

[25] J. C. Dufourd, « BIFS: Scene Description », Chapitre 4 de “The MPEG-4 Book™,
édité par Fernando Pereira et Touradj Ebrahimi, pp 103-148, Prentice Hall, 2002

[26] David Singer, « The MPEG-4 file format », Chapitre 7.3 de “The MPEG-4 Book™,
édité par Fernando Pereira et Touradj Ebrahimi, pp 103-148, Prentice Hall, 2002

[27] J.C.Moissinac, C. Concolato, J.C. Dufourd, "Codage MPEG-4 de dessins animés",
Journées Coresa, 12-13 novembre 2001.

[28] F. Bouilhaguet, C. Concolato, S. Boughoufalah, J. C. Dufourd, "Adding Delivery
Support to MPEG-PRO, an Authoring System for MPEG-4", Workshop and
Exhibitions on MPEG-4, 2001, June 18-20 San Jose.

[29] S. Boughoufalah, M. Brelot, F. Bouilhaguet, J.C. Dufourd, “A Template-Guided
Authoring Environment To Produce Mpeg-4 Content For The Web”, International
Conference on Media Futures, Firenze, May 2001.

[30] F. Bouilhaguet, C. Concolato, S. Boughoufalah, J.C. Dufourd, “Adding Delivery
support to MPEG-Pro, an Authoring System for MPEG-4”, Proceedings PacketVideo
'01, Kyongju, Corée, ler mai 2001.

[31] S. Boughoufalah, J.C. Dufourd & F. Bouilhaguet - "MPEG- Pro, an Authoring
System for MPEG- 4 with Temporal Constraints and Template Guided Editing",
ICME 2000, New York, July 30 - August, 2000

[32] S. Boughoufalah, J.C. Dufourd & F. Bouilhaguet - "MPEG-PRO an MPEG-4
Authoring System", ISCAS 2000, Geneva, May 28 - 31, 2000

[33] F. Bouilhaguet, S. Boughoufalah, J.C. Dufourd & C. Havet, "Interactive Broadcast
Digital Television The OpenTV Platform versus the MPEG-4 Standard Framework",
ISCAS 2000, Geneva, May 28-31, 2000

[34] J. Signes, Y. Fisher, A. Eleftheriadis, “MPEG-4’s Binary Format for Scene
Description”, Tutorial Issue On The MPEG-4 Standard,Image Communication
Journal, Elsevier, August 1999

[35] P.Gerken, S. Schultz, G. Knabe, F. Casalino, G. Di Cagno, M. Quaglia, J.C.
Dufourd, S. Boughoufalah, F. Bouilhaguet, M. Stepping, T. Bonse, U. Mayer, J.
Deicke & M. Glesner - "MPEG-4 PC : Authoring and Playing of MPEG-4 Content",
EMMESEC 99, Stockholm, June 21-26, 1999. Proceeding : Business and Work in the
Information Society : New Technologies and Applications, Edited by Jean-Yves
Roger, Brian Stanford-Smith & Paul T. Kidd

[36] Joint Innovation Lab (JIL), JIL Widget System API Specification-Handset API
1.2.2, http://www jil.org/c/document library/get file?uuid=03eb4771-e9a2-42fc-
9874-0bb402e0244c& groupld=10158

[37] OMTP BONDI, http://bondi.omtp.org

[38] CEA-2014-A, http://www.ce.org/Standards/browseByCommittee 2757.asp

[39] Open IPTV Forum, http://www_.openiptvforum.org/specifications.html

[40] Hybrid Broadband Broadcast Tele-Vision, ETSI TS 102 796 v1.1.1,
http://pda.etsi.org/pda/home.asp?wki id=hsZ9g8-p%27v475895z41 HX

51

[41] W3C, Editor: Marcos Caceres, “Widgets Packaging and Configuration”, available
at http://www.w3.org/TR/widgets/

[42] W3C, Editor: Marcos Caceres, “The Widget Interface”, available at
http://www.w3.org/TR/widgets-apis/

[43] Information technology — Coding of audio-visual objects — Part 1: Systems,
ISO/IEC 14496-1:2004

[44] Information technology — Coding of audio-visual objects — Part 11: Scene
description (BIFS) and application engine (MPEG-J), ISO/IEC 14496-11:2005

[45] Information technology — Coding of audio-visual objects — Part 12: ISO base media
file format, ISO/IEC 14496-12:2005

[46] Information technology — Coding of audio-visual objects — Part 14: MPEG-4 File
Format (MP4), ISO/IEC 14496-14:2003

[47] Information technology — Coding of audio-visual objects — Part 20: Lightweight
Application Scene Representation (LASeR) and Simple Aggregation Format (SAF),
ISO/IEC 14496-20:2005

[48] Information technology — MPEG systems technologies — Part 1: Binary MPEG
format for XML (BiM), ISO/IEC 23001-1:2006

[49] XHTML 1.0, The Extensible HyperText Markup Language (Second Edition), W3C
Recommendation, 26 January 2000, revised 1 August 2002,
http://www.w3.org/TR/html/

[50] Synchronized Multimedia Integration Language Specification (SMIL 2.1), W3C
Recommendation, 13 December 2005, http://www.w3.org/TR/SMIL/

[51] Scalable Vector Graphics (SVG) Tiny 1.2 Specification, W3C Recommendation,
22 December 2008, http://www.w3.org/TR/SVGMobile12/

[52] Cascading Style Sheets, level 2 (CSS2) Specification, W3C Recommendation, 12
May 1998, http://www.w3.org/TR/REC-CSS2/

[53] Document Object Model (DOM) Level 3 Core Specification, W3C
Recommendation, 07 April 2004, http://www.w3.org/TR/DOM-Level-3-Core/

[54] Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommendation,
16 August 2006, http://www.w3.org/TR/xml/

[55] Remote Events for XML (REX) 1.0, Working Draft 02 February 2006,
http://www.w3.org/TR/rex/

[56] Efficient XML Interchange (EXI) Format 1.0, W3C Candidate Recommendation 08
December 2009, http://www.w3.org/XML/exi/

[57] XML Schema Part O: Primer Second Edition, W3C Recommendation, 28 October
2004, http://www.w3.org/TR/xmlschema-0/

[58] XSL Transformations (XSLT), Version 1.0, W3C Recommendation, 16 November
1999, http://www.w3.org/TR/xslt

[59] XML Events, An Events Syntax for XML, W3C Recommendation, 14 October
2003, http://www.w3.org/TR/xml-events/

[60] The XMLHttpRequest Object, W3C Candidate Recommendation, 3 august 2010,
http://www.w3.org/TR/XMLHttpRequest/

[61] Efficient XML Interchange (EXI) Format 1.0, W3C Candidate Recommendation 08
December 2009, http://www.w3.org/TR/exi/

52

[62] Compound Document Format, W3C working group,
http://www.w3.0rg/2004/CDF/

[63] WICD Core 1.0, W3C Candidate Recommendation 18 July 2007,
http://www.w3.org/TR/WICD/

[64] ECMAScript Language Specification, 3rd edition (December 1999), www.ecma-
international.org/publications/standards/Ecma-262 .htm

[65] The Virtual Reality Modeling Language (VRML) specification,
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/

[66] The Extensible 3D (X3D) specification,
http://www.web3d.ore/x3d/specifications/ISO-IEC-19775-X3D AbstractSpecification/

[67] 3GPP TS 26 142, Dynamic Interactive Multimedia Scenes (DIMS),
http://pda.etsi.org/pda/home.asp?wkr=RTS/TSGS-0426142v730

[68] 3GPP TS 26 244, Transparent end-to-end packet switched streaming service (PSS);
3GPP file format(3GP), http://www .3gpp.org/ftp/Specs/html-info/26244 htm

[69] OMA Rich Media Environment (RME) v1.0,
http://www.openmobilealliance.org/technical/release program/rme v1 0.aspx

[70] Douglas Crockford, “JavaScript: The World's Most Misunderstood Programming
Language”, http://javascript.crockford.com/javascript.html

[71] Sire, S., Paquier, M., Vagner, A., and Bogaerts, J. “A messaging API for inter-
widgets communication”. In Proceedings of the 18th international Conference on
World Wide Web (Madrid, Spain, April 20 - 24, 2009). WWW '09. ACM, New York,
NY, 1115-1116. DOI= http://doi.acm.org/10.1145/1526709.1526884

[72] H.V.O.Silva,R. F.Rodrigues, L. F. G. Soares, and D. C. M. Saade. “Ncl 2.0:
integrating new concepts to xml modular languages”. In ACM DOCENG’04, pages
188-197,2004.

[73] Apple Computer, Inc. (1988). “HyperCard Script Language Guide: The HyperTalk
Language”. Addison-Wesley Publishing Company. ISBN 0-201-17632-7.

[74] C. Concolato, J. Le Feuvre, J. C. Moissinac, “Design of an Efficient Scalable
Vector Graphics Player for Constrained Devices”, IEEE Transactions on Consumer
Electronics, Mai 2008, vol. 54, n° 2, pp. 895-903, DOI: 10.1109/TCE.2008.4560176

[75] J.Le Feuvre, “SVG Extensions for 3D displays”, 8th International Conference on
Scalable Vector Graphics, August 30 to September 1, 2010, Paris, France

[76] ISO/IEC 14496-20:2008/Amd.3:2010, Part 20: Lightweight Application Scene
Representation (LASeR) and Simple Aggregation Format (SAF) AMENDMENT 3:
Presentation and Modification of Structured Information (PMSI)

[77] Information technology — MPEG systems technologies — Part 1: Widgets, ISO/IEC
23007-1:2011 (also known as MPEG-U)

[78] Nabil Layaida, “Madeus: systeme d’édition et de présentation de documents
structurés multimedia”, These, Université Joseph Fourier Grenoblel, 1997

[79] Marc Brelot, “Représentation orientées objet de scenes visuelles pour la
composition flexible”, These, INP Grenoble, 1999

[80] Romain Deltour, Cécile Roisin, “The LimSee3 Multimedia Authoring Model”,
DocEng’06, October 10—13, 2006, Amsterdam, The Netherlands

[81] SébastienLaborie, Jérome Euzenat, Nabil Layaida, "Semantic Multimedia

Document Adaptation with Functional Annotations" In Proceedings of the 4th

53

International Workshop on Semantic Media Adaptation and Personalization,
SMAP’09, IEEE, December 2009

54

4. Curriculum Vitae

de Jean-Claude Dufourd

Adresse : 1 bis, Impasse Courteix, 94270 Le Kremlin Bicétre, France
Mobile : +33 677 843 843

Email: jc@dufourd.org ou jean-claude.dufourd @telecom-paristech.fr
Né le 8 novembre 1960, a Metz (Moselle)

Nationalité francaise

4.1.

Postes occupés

avril 2009-présent Télécom ParisTech, Directeur d’Etudes

OpenWidget : préparation et rédaction du projet FUI8 OpenWidget, avec une
dizaine de partenaires, projet accepté en cours de négociation, sur la TV

interactive.

HBBTV: nouveau standard ETSI qui servira de support a OpenWidget,
contribution au standard / implémentation / authoring / interopérabilité.

Widget: travail sur une extension du standard W3C Widget pour la
communication entre widgets, la mobilité des widgets, et leur usage dans un

contexte iTV et réseau domestique, en plus de mobile et Internet.

nov 2004-dec 2008 Co-fondateur et Directeur Scientifique, Streamezzo, Paris

Gestion du processus brevets dans Streamezzo: incubation des idées,
rédaction des demandes, dépot et gestion de la vie des brevets, insertion des
brevets dans des standards, dépot de 29 brevets dont 23 en tant qu’inventeur
ou co-inventeur.

Gestion des aspects techniques de la standardisation autour du Rich Media,
MPEG LASeR (éditeur et principal contributeur), 3GPP DIMS (contributeur
majeur) and OMA RME (contributeur majeur), plus récemment avec l'accent
sur le broadcast ; participation active dans le passé a W3C SVG autour de
SVGT1.2 et a CDF autour de CDR / WICD 1.0

Validation scientifique des propositions de projets collaboratifs et
contribution a leur développement (projets techniques a financement

européen, national ou régional).

1990-oct 2004 Directeur d’Etudes : Ecole Nationale Supérieure des Télécommunications, Paris

Pour 2004, construction du projet d’essaimage Streamezzo.
Gestion de I'équipe MPEG-4, une des équipes les plus performantes de 'ENST
(sur la période '98 - ‘04) en termes de nombre de contrats et de chiffre

d’affaire.

55

1987-1990

Directeur de these de 8 docteurs :

o

Said Boumaraf, «S-intervalles : un nouveau modele pour la gestion des
contraintes - Application a la migration de VLSI sous Préforme», 1995
Aissam Mezhoud, «Application de la programmation par contraintes
aux problemes de CAO des circuits intégrés : allocations
d'interconnexions et floor planning orienté communications», 1996
Mahieddine Bouzidi, «Estimation de la consommation au niveau
architectural», 09/1999

Frédéric Bouilhaguet, «Architecture de systémes MPEG-4», 10/2001
Souhila Boughoufalah, «Outils auteur pour MPEG-4», 06/2002
Gianluca DiCagno, «Systemes multimédia et qualité d'expérience»,
10/2004

Mariam Kimiaei Azadi, «Adaptation de Contenu Multimédia avec
MPEG-21: Conversion de Ressources et Adaptation Sémantique de
Scenes», 06/2005

Cyril Concolato, «Descriptions de scénes multimédia : représentations
et optimisations», 07/2007

Participation a des jurys de thése :

@)
@)
@)
@)
@)
@)
@)

o

o

G. Chevallier (rapporteur) 05/1993, LIP6

F. Pétrot (rapporteur) 07/1994, LIP6

F.E. Moraes (rapporteur) 11/1994, LIRMM

C. Dabrin (rapporteur) 04/1995, LIRMM

N. Dictus (rapporteur) 06/1996, LIP6

J-M. Trivi (rapporteur) 07/2002, Inrialpes

Tien Tran Thuong (rapporteur) 02/2003, Inrialpes
D. Deuff (invité), 07/2003, Irisa

T. Lemlouma (examinateur) 06/2004, Inrialpes

Participation active a MPEG.

Contrats européens: management technique et contribution a un projet ACTS,
un projet ESPRIT, 3 projets IST FP5 et 2 projets IST FP6.

Contrats industriels: 6 sur des sujets liés a MPEG.

Contrats nationaux: 3

Activités de recherche : MPEG-4 et technologies Internet/mobiles : standards
multimédia nouveaux (MPEG-4, Java, VRML/X3D, SVGT, SMIL, XML, XSLT,
MPEG-7), authoring MPEG-4, conception d’applications nouvelles, qualité de

service multimédia, représentation de scénes multimédia, MPEG-4 sur

mobiles.

Chercheur : France Telecom R&D, Grenoble

56

4.2. Standards

MPEG Systems :

o Responsable du groupe Integration de MPEG de 2002 a 2006.

e Editeur et principal contributeur a ISO/IEC 14496-20 Lightweight Application
Scene Representation and Simple Aggregation Format (LASeR and SAF) .

¢ Auteur et coauteur de plus de 300 contributions MPEG.

e Editeur de ISO/IEC 14496-4:2000 Conformance Testing, ainsi que de
nombreuses éditions ultérieurs et documents d’amendements.

o Editeur de ISO/IEC 14496-5:2000 Reference software, ainsi que de nombreuses
éditions ultérieurs et documents d’amendements.

o Coauteur de ISO/IEC 14496-1:2001 AMD?2, eXtensible MPEG-4 Textual Format.

e Editeur de ISO/IEC 14496-11:2005, Scene description and application engine

3GPP

o Participant au groupe SA4, contributeur technique majeur au standard DIMS
(Dynamic Interactive Multimedia Scenes).

OMA:

¢ Participant au groupe BAC MAE (renommé BT MAE, renommé MCE),
contributeur technique majeur au standard RME (Rich Media Environment).

o Participant au groupe BCAST.

W3C

o Participant au groupe SVG, contributions a SVG Tiny 1.2 (Scalable Vector
Graphics)

o Participant au groupe CDF (Compound Document Format), contributions a CDR
(Compound Document by Reference) / WICD 1.0 (Web Interactive Compound
Document)

DVB:

o Participant au groupe DVB TM-CBMS (groupe auteur du standard IPDC - IP

DataCast) and TM-MIS.

4.3. Education

1985-87 Ecole Nationale Supérieure des Télécommunications, Paris (Ingénieur du
Corps)
1983 PhD Informatique, Ecole Normale Supérieure/Université Paris VI

1980-85 Ecole Normale Supérieure de Paris (rue d’Ulm)

Langues étrangeres

Anglais

Bilingue

Allemand Courant

57

4.4. Publications

4.4.1.1. Livres

1. J.C. Dufourd, « BIFS: Scene Description », Chapitre 4 de “The MPEG-4 Book”, édité
par Fernando Pereira et Touradj Ebrahimi, pp 103-148, Prentice Hall, 2002

4.4.1.2. Revues avec comité de lecture

1. Jean-Claude Dufourd, «LASeR: The Lightweight Rich Media Representation
Standard », Signal Processing Magazine, IEEE Volume 25, 2008, Pages 164-168,
Issue : 6, DOI : http://dx.doi.org/10.1109/MSP.2008.929813.

2. Gianluca Di Cagno, Cyril Concolato, J. C. Dufourd, “Multimedia adaptation in end-
user terminals”, Signal Processing: Image Communication vol. 21, n° 3, pp. 200-216,
2006.

3. M. Kimiaei-Asadi et J. C. Dufourd, “Support de transmodage de contenus multimédia
dans MPEG-21, étude et validation d’un outil de description”, Revue des sciences et
technologies de 1’information, 24(7):815-835, July 2005.

4. J. C. Dufourd, O. Avaro, et C. Concolato, “An MPEG standard for rich media
services”, IEEE Multimedia, 12(4):60-68, Decembre 2005.

5. Cyril Concolato, J. C. Dufourd, J. C. Moissinac, "Creating and Encoding of Cartoons
Using MPEG-4 BIFS: Methods and Results", IEEE Transactions on Circuits and
Systems for Video Technology, (T-CSVT), special issue on Image-based Modeling,
Rendering and Animation, Volume: 13 Issue: 11 Nov 2003 pp. 1129-1135.

4.4.1.3. Revues

1. J.C. Dufourd, “La TMP n’est pas la TV sur mobile: le role de ’interactivité”, Revue
Telecom, numéro TV Mobile, juin 08

2. J.C. Dufourd, “Services « Rich Media » mobiles”, Revue Telecom, septembre 06

4.4.1.4. Conférences avec comité de lecture

1. J.C. Dufourd, C. Concolato et J. Le Feuvre, “SVG Communicating Widgets”, 7th
International Conference on Scalable Vector Graphics, October 2 to 4, 2009,
Mountain View, California, USA

2. C. Concolato, J. Le Feuvre et J.C. Dufourd,“Declarative Interfaces for Dynamic
Widgets Communications”, 9th ACM Symposium on Document Engineering, Sept
15-18, 2009, Munich, Allemagne.

3. J. Le Feuvre, C. Concolato et J.C. Dufourd, “Widget Mobility”, International
Conference on Mobile Technology, Applications and Systems, Mobility 2009, 2 - 4
september 2009, Nice, France

4. J. C. Dufourd et M. Kimiaei-Asadi, “Context-aware semantic adaptation of
multimedia presentations”, In IEEE International Conference on Multimedia and
Expo, pages 362-365, Amsterdam, The Netherlands, July 2005.

5. P. Gioia, K. Kamyab, 1. Wolf, G. Panis, A. Difino, M. Kimiaei, T. Digiacomo, A.
Cotarmanac'H, P. Goulev, A. Graffunder, A. Hutter, B. Negro, C. Concolato, C.

58

10.

11.

12.

13.

14.

15.

16.

17.

18.

Joslin, E. Mamdani, J. C. Dufourd et N. Thalmann, “ISIS: intelligent scalability for
interoperable services”, (2004), 1st european Conference on Visual Media Production,
Londres, Angleterre, pp. 295-304.

C. Concolato et J. C. Dufourd, (2004), « Adaptation de contenu MPEG-4 BIFS suivant
la norme MPEG-21 », Conférence nationale Mcube MultiMédia Mobile, Montbéliard,
France.

. J. C. Dufourd, <MPEG-4 XMT versus SMIL/SVG», article invité, The Synchronised

Multimedia Integration Language European Conference, Paris, February 12, 13, 14,
2003

. Cyril Concolato, J. C. Dufourd, J. C. Moissinac, « Representing 2D cartoons using

SVG », The Synchronised Multimedia Integration Language European Conference,
Paris, February 12, 13, 14,2003

C. Concolato, J.-C. Dufourd, “Comparison Of MPEG-4 BIFS And Some Other
Multimedia Description Languages”, Workshop and Exhibitions on MPEG-4, San
Jose, California, June 2002

J.C. Moissinac, C. Concolato, J.C. Dufourd, "Codage MPEG-4 de dessins animés",
Journées Coresa, 12-13 novembre 2001.

F.Bouilhaguet, C.Concolato, S.Boughoufalah, J. C. Dufourd, "Adding Delivery
Support to MPEG-PRO, an Authoring System for MPEG-4", Workshop and
Exhibitions on MPEG-4, 2001, June 18-20 San Jose.

S. Boughoufalah, M. Brelot, F. Bouilhaguet, J.C. Dufourd, “A Template-Guided
Authoring Environment To Produce Mpeg-4 Content For The Web”, International
Conference on Media Futures, Firenze, May 2001.

F. Bouilhaguet, C. Concolato, S. Boughoufalah, J.C. Dufourd, “Adding Delivery
support to MPEG-Pro, an Authoring System for MPEG-4", Proceedings PacketVideo
'01, Kyongju, Corée, ler mai 2001.

S. Boughoufalah, J.C. Dufourd & F. Bouilhaguet - "MPEG- Pro, an Authoring System
for MPEG- 4 with Temporal Constraints and Template Guided Editing", ICME 2000,
New York, July 30 - August, 2000

S. Boughoufalah, J.C. Dufourd & F. Bouilhaguet - "MPEG-PRO an MPEG-4
Authoring System", ISCAS 2000, Geneva, May 28 - 31, 2000

S. Boughoufalah, J.C. Dufourd & F. Bouilhaguet - "Interactive Broadcast Digital
Television The OpenTV Platform versus the MPEG-4 Standard Framework", ISCAS
2000, Geneva, May 28-31, 2000

P. Gerken, S. Schultz, G. Knabe, F. Casalino, G. Di Cagno, M. Quaglia, J.C. Dufourd,
S. Boughoufalah, F. Bouilhaguet, M. Stepping, T. Bonse, U. Mayer, J. Deicke & M.
Glesner - "MPEG-4 PC : Authoring and Playing of MPEG-4 Content", EMMESEC
99, Stockholm, June 21-26, 1999. Proceeding : Business and Work in the Information
Society : New Technologies and Applications, Edited by Jean-Yves Roger, Brian
Stanford-Smith & Paul T. Kidd

M. Bouzidi, J.C. Dufourd, «Estimation de consommation a un haut niveau
d'abstraction: Etat de l'art et proposition d'une méthodologie standard », Workshop
Faible Tension et Faible Consommation, 21 Novembre 1997, ISEP, Paris.

59

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Bouzidi, J.C. Dufourd, « High-level Power Estimation Methodology », Workshop
on Low-Power and Low-Voltage during ESSIRC'97, 19 Septembre 1997,
Southampton.

A. Mezhoud, J.C. Dufourd, N. Darbel, "Performance-driven Interconnection
Optimization based on Constraint Programming", Proceedings PACT 96, Londres,
Avril 96.

A. Demeure, A. Lafage, J.C. Dufourd, E. Boutillon, JL. Marro, D. Rozzonelli, “Array-
OL : Proposition pour un formalisme Tableau pour le traitement de signal
MultiDimensionnel”, Actes du 5¢me Colloque GRETSI, Juan-LesPins, Septembre
1995

A. Mezhoud, J.C. Dufourd, N. Darbel, "Min-Cut Linear Arrangement based on
Constraint Programming", CP 95 Workshop on Studying and Solving Really Hard
Problems, Marseille, Septembre 1995.

S. Boumaraf, N. Darbel, J.C. Dufourd, "Technological Migration based on Physical
Layout Skeletonization and Symbolic Layout Compaction", X SBMICRO /
IBERMICRO, Canela, Brésil, Aot 1995

S. Boumaraf, G. Chevallier, J.C. Dufourd, "Conception Symbolique et Algorithmes de
Compactage : un regard sur l'état de l'art", Revue Internationale des Technologies
Avancées, Décembre 1994.

J.C. Dufourd, JF. Naviner, "An optimizable model for process independent symbolic
design", Proceedings. The European Design and Test Conference. EDAC, The
European Conference on Design Automation. ETC European Test Conference.
EUROASIC, The European Event in ASIC Design (Cat. No.94TH0634-6), p. 660, 28
Feb.-3 March 1994, Paris, France

A. Mezhoud, J.C. Dufourd, "Components Placement in VLSI DAtapath Based on
Constraint Programming", International Logic Programming Symposium 1994,
Workshop on Constraint Programming Languages, Systems and their Use in Problem
Modelling, Ithaca, New York (USA) 18 novembre 1994.

J.C Dufourd, J.F. Naviner, Y. Mathieu, "aGAPE : A graphical Assembly Prototype
Editor", IFIP WG 10.5, Grenoble, Mars 1992.

J.F Naviner, J.C. Dufourd, "Preforme/aGAPE : a synergy between symbolic cell
design and assembly", Proc. of EUROMICRO conference, Paris, 1992.

J.C. Dufourd,"Preforme benchmarking", présentation a International Workshop on
symbolic layout (OMCNC 92), 1992.

J.C. Dufourd, J.F. Naviner, F. Jutand, "PREFORM: A Process independent symbolic
Layout System", International Conference on Computer Assisted Design 90, Santa
Clara, USA, Novembre 1990.

J.C. Dufourd, "The STICKIZER : a layout to symbolic converter”’, International
Conference on Computer Assisted Design 89, Santa Clara, USA, Novembre 1989.

4.4.1.5. Brevets

Inventeur de 24 brevets ou demandes de brevets, en tant qu'ENST ou que Streamezzo

60

1. W002056595, Method and equipment for managing interactions in the MPEG-4

standard, Dufourd JC et al.

2. Demandes de Brevets Streamezzo: toutes ces demandes sauf la 62me sont des

demandes internationales.

. Date de | N° Dépot
Titre dépét INPI Inventeurs
Procédé de construction de scénes multimédia
comprenant au moins un objet pointeur, procédé
de restitution de scénes, terminal, programmes 29/03/2005 | 0503048 Jean-Claude DUFOURD
d'ordinateur, serveur et objet pointeur
correspondants
Procédé de contrdle d'interface d'une pluralité de
types de terminaux de radiocommunication par la Jean-Claude DUFOURD,
définition d'événements abstraits, programme 14/09/2005 | 0509411 Julien PERRON
d'ordinateur, signal, et terminal correspondants
Procédé de transmission d'un contenu multimédia
vers un terminal de radicommunication, programme Jean-Claude DUFOURD,
d'ordinateur, signal, terminal de 14/09/2005 | 0509409 Cécric GEGOUT, Elouan
radiocommunication et serveur de diffusion LECOQ
correspondants.
Procédé d'optimisation de rendu d'une scéne
T . Jean-Claude DUFOURD
multimédia, programme, signal, support de : ’
données, terminal et procédsé de réception 02/11/2005 | 0511177 | Christophe MICHEL, Arnaud
CAIGNIET
correspondants.
Procédés de création et de restitution optimisés du
rendu d’une scene multimédia comprenant au Jean-Claude DUFOURD,
moins un objet actif sans modification préalable de | 21/06/2006 | 0605563 Julien PERRON, Nicolas
la sémantique et/ou du format de description de PIERRE
scene
Procédé de modification d'un contenu, serveur, Jean-Claude DUFOURD,
signal et produit programme d'ordinateur 13/10/2006 | 0609014 Olivier AVARO, Gaelle
correspondants. (demande frangaise seulement) MARTIN-COCHER
Procédé de gestion de mémoire dans un terminal Julien PERRON, Elouan
client, signal, programme d'ordinateur et terminal | 18/10/2006 | 0609144 LECOQ
correspondants. Jean-Claude DUFOURD
Procédé de description de scéne multimédia Jean-Claude DUFOURD,
comprenant au moins une zone de rognage 20/10/2006 | 0609240 Olivier AVARO, Gaelle
rectangulaire alignée sur des frontiéres de pixels MARTIN-COCHER
Procédé de gestion de canaux de transmission Jean-Claude DUFOURD,
. ; * 1 27/11/2006 | 0610362 Elouan LECOQ, Nicolas
signal et terminal correspondants.
PIERRE
Procédé de gestion de polices de caractéres dans
un terminal de radiocommunication, pour restituer Cédric GEGOUT, Jen-Claude
des contenus multimédia sur un écran, et terminal 25/01/2007 | 0700526 DUFOURD
correspondant
e e s on Ronan KEREBEL, Eouan L
un terminal, dispositif et produit programme 02/02/2007 | 0700765 COQCE%%ZCD%EF%%%B Jen-
d'ordinateur correspondants.
Bertrand AUDINET, Benoit
Procédé de création d'un contenu, procédé de CANTIN, Jean-Claude
suivi des actions d'utilisation d'un contenu, terminal | 14/05/2007 0703460 DUFOURD, Vincent DUPAIN,

et sighaux correspondants

Philippe LAFOUCRIERE,
Laétitia ORSINI

61

Procédé de gestion de la navigation, terminal et Benoit LAGREE, Mathieu
programme d'ordinateur correspondants, procédé CORITON Arnaud CAIGNIET,
de construction d'un graphe de scéne et signal de 12/06/2007 | 0755706 Christophe MICHEL, Jean-

description de scéne Claude DUFOURD
Procédé de diffusion d'un élément
complémentaire, serveur et terminal 13/06/2007 | 0755745 | Jean Zlaude DUFOURD.
correspondants. ecric
Procédé de création d'au moins un contenu,
procédé d'optimisation du fonctionnement d’'un 31/08/2007 | 0757291 Jean-Claude DUFOURD,
terminal de radiocommunication, terminal, Naresh SONI
programme d'ordinateur et signal correspondants.
Procédé de synchronisation d'une action
RichMédia avec un changeme:nt gudiovisuel, Pierre-Erwann GOUESBET
dispositif et programme dordinateur 21/12/2007 | 0760320 | Stéphane BELLANGER, Jean-
correspondants, procédé de création d'une Claude DUFOURD
présentation RichMédia et programme d'ordinateur
correspondant.
Procédé de décodage, terminal et programme
dordinateur correspondants, procede de 24/12/07 | 0760349 | Jean-Claude DUFOURD
traduction, serveur et programme d'ordinateur
correspondants.
Procédé d’alimentation d’'un mandataire de contenu V'n(ée/_{llzl.lt_)lldp';‘:\ijli anon
multimédia, mandataire, et produit programme 24/01/2008 | 0850451 LAFOUCRIERE Je:r?-Claude
d’ordinateur correspondant. DUFO[JRD

Procédé de redimensionnement d’'un contenu Yannick LE COLLEN, Pierre-

vidéo, terminal et produit programme d’ordinateur | 25/01/2008 | 0850476 Erwann GOUESBET, Jean-
correspondant. Claude DUFOURD
Procédé de restitution d'au moins un contenu Jean-Claude DUFOURD,
multimédia personnalisé, terminal et programme 14/3/08 08 51691 Elouan LECOQ, Sébastien
d'ordinateur correspondants BARIOU

Procédé de création d’'un service, dispositif et Christophe MICHEL, Julien

programme d'ordinateur correspondants, procédé 11/4/08 0852462 PERRON Jean-CI,aude
de génération de mise a jour d’'un contenu, serveur, DUI,:OURD
terminal et programme d'ordinateur correspondants

Procédé de sécurisation d’'une scéne évolutive, Elouan LE COQ. Laurent

dispositif, signal et programme d'ordinateur MASSON Er,wann
correspondants, procédé de mise a jour d’'une 23/4/08 0852742 GOUESBET 1Jean-CIaude
scéne évolutive, dispositif et programme DUFbURD
d'ordinateur correspondants.
Procédé de création d’'une présentation, dispositif Erwann GOUESBET
et programme d'ordinateur correspondants, 05/06/2008 | 0853719 | Guillaume FORET, Jean-
procédé de restitution d’une présentation, dispositif Claude DUFOLJRD
et programme d’ordinateur correspondant

4.5.

4.5.1.1. Contrats européens

Contrats de recherche (ENST)

EMPHASIS : ACTS 105, contrat en commun avec le département INF, 17 partenaires dont
STM, Philips LEP, Matra: "Architecture Software and Hardware for MPEG-4
Systems", 1995-98, contribution ENST : 90hm.

MPEG-4 PC : ESPRIT 23191, 5 partenaires (Q-Team Allemagne, TAO UK, ITK Allemagne,
CSELT Italie) : "MPEG-4 System Implementation and Tools for Personal Computers"

62

1997-2000. Contribution ENST : 70hm. Le logiciel mp4tool a commencé a étre
développé dans le cadre de ce projet.

SoNG : IST FP5, géré par le département Images et Sons de I'ENST Bretagne, sur un lecteur
MPEG-4 3D, notre contribution étant centrée sur les nouveaux senseurs MPEG-4 et le
format XMT, intermédiaire entre MPEG-4 et SMIL. Contribution ENST : 24hm. 1999-
2002. Le logiciel mp4tool a étendu a la 3D et a couvert I’ensemble de BIFS dans le
cadre de ce projet.

ISIS : IST FP5, adaptation et scalabilité (statiques) des contenus avec application au domaine
mobile, contribution a MPEG-4 et MPEG-21, contribution ENST: 32hm. 2002-2003. Le
logiciel B4, développé en background, a été utilisé et complété dans le cadre de ce
projet.

MELISA : IST FP5, pari sportif en temps réel avec MPEG-4 sur des terminaux grand public
et des terminaux mobiles, contribution ENST : 17hm. 2003-2004. Le logiciel B4 a été
utilisé dans le cadre de ce projet et des fonctionalités temps réel sont ajoutées.

TIRAMISU: IST FP6, gestion des droits sur les contenus MPEG-4 avec MPEG-21,
contribution ENST : 38hm, nov. 2003-2005.

DANAE : IST FP6, adaptation et scalabilit¢ dynamiques des contenus, MPEG-21, poursuite
du contrat ISIS, contribution ENST : 63 hm, 2004-2006

4.5.1.2. Contrats nationaux

OpenWidget, renommé openHbb : labellis¢ CapDigital et Images&Réseaux, projet FUIS,
implémentation et démonstration de HbbTV, une nouvelle norme de TV interactive,
pressentie pour la TNTi, en collaboration avec le HD Forum (surtout France TV), Le
télégramme, WizTiVi, mediatvcom, TDF, Streamezzo, V4X, 72hm financés, 2009-
2011.

Contrat Priamm financé par le Centre National du Cinéma en collaboration avec la société
MediaPEGS et le département INFRES : "L’utilisation de MPEG-4 dans le domaine du
dessin animé", 2001. Ce contrat a étudié la traduction de dessins animés en MPEG-4 a
partir d’un format propriétaire nommé ECS.

SAMP4 (Contrat RIAM) : extension de nos outils auteurs MPEG-4 pour prendre en compte la
gestion des droits d’acces sur les contenus musicaux, en collaboration avec la jeune
pousse de F. Bouilhaguet. (11hm financés), 2002-2003. Le logiciel mp4tool a fait
I’objet d’extensions au cours de ce contrat.

MP4TYV (Contrat RIAM) : MPEG-4 pour la TV interactive, contribution ENST : 22hm, 2004-
2005

4.5.1.3. Contrats industriels
Les contrats avec CNET et VLSI Technologies, concernant la CAO de VLSI, sont omis.

MPEG-Pro : Mise en commun de ressources avec le CSELT et le CNET : "Programme
commun de recherche sur un outil auteur MPEG-4 2D et 3D", 1998-1999. Une premiere
version de la gestion du format de fichier MP4 utilisée dans mp4tool a été développée
dans ce projet.

Contrat TDK de développement d’un outil auteur MPEG-4 grand public : notre partie est le
coeur MPEG-4 de D'outil auteur. Les partenaires sont 1’Ecole des Mines pour un
composant « segmentation d’images », le CSELT pour la partie « lecteur MPEG-4 »,

63

Optibase (Israel) pour les «codecs», et TDK (Japon) pour le marketing.
(900KF+royalties). 1999-2003. Une partie des développements de MPEG-Pro a été
utilisée comme bibliothéque dans ce projet, mais aucun des développements du projet
TDK n’a été réutilisé ultérieurement.

Transfert de technologie vers e-Vue (Boston, USA): "Collaboration pour le transfert de
compétences sur le format de fichier MP4", 2000

DAM4 (Contrat de recherche FT R&D): production de contenus MPEG-4 pour des
applications Internet ou mobiles : étude de faisabilité de dessins animés en MPEG-4 sur
GPRS. Ce contrat n’a pas fait I’objet de développement. 2002-2003

MULTAD (Contrat de recherche FT R&D) : contrat de financement de la thése de Mariam
Kimiaei Asadi. Le sujet est aligné sur ceux des contrats ISIS et DANAE. 2002-2004

4.5.1.4. Contrats d'étude

GEMINI : Projet sur crédits incitatifs GET en collaboration avec 1’équipe Artémis de 'INT :
"Interfaces génériques pour MPEG-4", 2000.

64

