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ABSTRACT 

 
The development of a continuous visual speech recognizer 
for a silent speech interface has been investigated using a 
visual speech corpus of ultrasound and video images of the 
tongue and lips. By using high-speed visual data and tied-
state cross-word triphone HMMs, and including linguistic 
information via a domain-specific language model, word-
level recognition accuracy as high as 85% was achieved on 
visual speech. Using the Julius system, it was also found 
that the recognition should be possible in nearly real-time. 
 

Index Terms— Silent speech interface, visual speech 
recognition, vocal tract imaging, ultrasound imaging 
 

1. INTRODUCTION 
 
The silent speech interface (SSI) is an emerging technology 
intended to enable speech communication in the absence of 
an intelligible acoustic signal. A number of experimental 
SSI systems have been developed, using different 
approaches to acquire sensor data from the elements of the 
human speech production process [1]. The REVOIX project 
at the Sigma Laboratory aims to build an SSI to restore the 
original voices of speech-impaired individuals, ultimately in 
real-time. Based on previous research and development of 
an SSI prototype [2-6], the fundamental mechanism chosen 
in REVOIX is to restore the speech using a recognizer-
synthesizer system driven by ultrasound and video images 
of the tongue and lips. The REVOIX SSI consists of three 
functional modules operating sequentially: the image 
sequence is acquired by the (1) image acquisition module 
during speech production; and is then transcribed into word-
level text by the (2) visual speech recognizer; which in turn, 
is passed to the (3) speech synthesizer to generate a speech 
signal. The usability of such an SSI system depends on 
many factors, the most important of which, for the speech 

recognizer, are the recognition accuracy and execution 
speed. 

This research was focused on building a high-
performance continuous visual speech recognition system 
within the framework of the REVOIX SSI. The HTK toolkit 
[7] was used to develop our HMM-based speech recognizer. 
Word-level visual speech recognition was performed with a 
view to driving a text-to-speech system for the generation of 
synthesized continuous speech.  

To obtain a high accuracy, the HMMs were built in the 
form of cross-word tied-state triphone models. Language 
models have furthermore been introduced to investigate how 
a well defined language model can contribute to the 
recognition accuracy. To achieve good real-time 
performance, the two-pass large vocabulary continuous 
speech decoder Julius [8] was also tested to implement the 
visual speech recognizer. 

The visual speech acquisition system and the acquired 
corpus are described in Section 2. In Section 3 and 4, the 
methods for building the HMMs and language models are 
presented, respectively. The experimental results are given 
in Section 5. Conclusions are drawn in Section 6 with some 
discussions about visual speech recognition. 
 

2. SPEECH DATA ACQUISITION AND CORPUS 
 
The acquisition system for recording multimodal speech 
data is shown in Figure 1(a). The forehead of the subject 
rests upon an opthalmological stand, while the ultrasound 
transducer is placed beneath the chin via an articulated arm 
(a video camera is also placed ahead of the lips). The 
ultrasound system is the lightweight t3000™ developed by 
Terason, using an 8MC4 microconvex transducer (opening 
angle: 140°, frequency range: 4-8 MHz). Lip video is 
obtained with a 60 fps CCD industrial camera from The 
Imaging Source. The two imaging devices are controlled by 
a stand-alone, simple to operate, and dedicated graphical 
software interface called Ultraspeech [9] . Ultraspeech  uses 
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 (a) the acquisition system (b) ultrasound image of vocal tract  (c) video image of frontal view of lips 

Figure 1  Illustration of a dual video frame 

a multithread programming technique to allow synchronous 
acquisition of the two video streams at their respective 
maximum frame rates, along with the audio signal. More 
specifically, at an ultrasound focal distance of 7 cm, 
appropriate for tongue visualization, the system is used to 
record, simultaneously and synchronously, the ultrasound 
stream at 60 fps (image resolution of 320×240 pixels), the 
video stream at 60 fps (image resolution of 640×480 pixels), 
and the audio signal (16 KHz, 16 bits). A typical pair of 
synchronous ultrasound and video images of the tongue and 
lips is shown in Figures 1(b) and 1(c). 

The first 1110 of the 1132 sentences contained in the 
CMU ARCTIC corpus [10], were each uttered once by a 
female native English speaker in the non-verbalized 
punctuation (NVP) manner. To prevent speaker fatigue, the 
acquisition was split into 10 sessions spaced at an interval of 
at least 24 hours. An interactive inter-session re-calibration 
mechanism [9] was employed to maintain the positioning 
accuracy of the video sensors across all sessions. 

Although the CMU ARCTIC text is in some sense 
phonetically balanced, the visual speech corpus itself is 
quite small. Testing the recognition system only once on a 
small part of the corpus would thus not be appropriate to 
evaluate the visual speech recognition performance in a 
statistical sense. To do so, a jackknife resampling [11] was 
performed by dividing the visual speech corpus into 37 
subsets of 30 sentences. Each subset was used once for test 
while the others formed the corresponding training set, 
resulting in 37 jackknife tests. 
 
3. VISUAL SPEECH FEATURE REPRESENTATION 

 
The “EigenTongues” approach [12] was used to extract 
visual speech features from the ultrasound images.  In this 
technique, each ultrasound image is projected onto the 
feature space of “EigenTongues”, which can be seen as the 
space of standard vocal tract configurations obtained after a 
Principal Components Analysis (PCA) of a subset of typical 
frames. In order to guarantee a good exploration of the 
possible vocal tract configurations, this subset is constructed 
so as to be phonetically balanced. A similar “EigenLips” 
decomposition was used to encode video images of the lips. 
Before performing these decompositions, ultrasound and 

video regions of interest were resized to 64×64 pixel size. 
For both visual modalities, the number of projections onto 
the set of EigenTongues/EigenLips used for coding was set 
to 30, by empirically evaluating the quality of the image 
reconstructed from its first few components. Using a 
“feature fusion strategy”, tongue and lip features were 
concatenated into a single visual feature vector, along with 
their first and second derivatives, resulting in vectors of 180 
components. 
 
4. DESIGN OF THE VISUAL SPEECH RECOGNIZER 
 
4.1. HMM Modeling 
 
The HTK 3.4 toolkit [7] was used to train the visual speech 
HMM models. Based on the CMU Pronouncing Dictionary, 
in which 39 phonemes are used, all sentences in the CMU 
ARCTIC corpus were encoded into phoneme sequences. In 
each jackknife test (see Section 5.1), the visual speech 
features and the phoneme transcripts of the training set were 
first used, via the HTK tools, to train 1-Gaussian HMM 
models of 40 monophones (including “silence”). Context-
dependent phoneme transcripts were then created for the 
training sentences in order to train the triphone models. 

In this work, the context-dependent HMMs had 3-state, 
left-to-right topology. These HMMs were built in the form 
of cross-word triphones in order to capture the 
coarticulatory effects both within words and across words in 
the continuous visual speech. Since the number of model 
parameters increases dramatically using cross-word 
triphones, phonetic trees were used to perform parameter-
sharing between the triphones, in order to handle the 
trainability issue. Thus, for each jackknife test, a set of tied-
state cross-word triphone HMMs could be built. For our 
visual speech HMMs, the typical number of tied-states was 
760, while the number of physical triphones was 3,771.    
 
4.2. Language Modeling 
 
Because it is not a priori feasible to disambiguate all 
phonetic configurations from tongue and lip observations 
alone (with no information on larynx activity or velum 
position), linguistic constraints must be introduced to 
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facilitate the visual speech decoding. In our previous work, 
these constraints were introduced via an allowed 
vocabulary. Here, we add more linguistic information via a 
statistical language model, built up at word-level.  

As the CMU ARCTIC sentences were extracted from 
out-of-copyright texts which are over 70 years old, 
contemporary English language models such as the CSR 
LM-1 and Gigaword LM [13] are inappropriate for 
recognizing the CMU ARCTIC utterances. Therefore, a 
domain-specific language model must be constructed.  

For each jackknife test, a stochastic bigram model, 
hereafter called the “ARCTIC” bigrams, was built in the 
NVP manner using the original source texts used to create 
the CMU ARCTIC database. These texts consist of 37 
documents, most of which are stories of the early 20th 
century writer Jack London. The 37 texts [14] were 
preprocessed to segment them into sentences by treating 
periods, semicolons, and exclamation and question marks as 
separators between sentences. The lexicon of the CMU 
ARCTIC corpus contains 2,271 words. Using the 37 original 
texts, all sentences which contain only words found within 
the CMU ARCTIC vocabulary were extracted, excluding 
the sentences for test. This produced, for each jackknife test, 
a corpus of 29,827 sentences which was used to build the 
ARCTIC bigrams. These bigram models are  closed-
vocabulary, domain-specific language models, and are 
suitable for jackknife tests on the recorded visual corpus, 
although the vocabulary remains quite small.  

To enlarge the scope of the vocabulary, a second NVP 
bigram model was also built for each test. The vocabulary of 
this bigram model consists of the union of the 2,271 words 
in the CMU ARCTIC lexicon and the 5,000 most-frequent 
words in the CMU ARCTIC source texts. All 76,501 
sentences composed of only the words within this 
vocabulary were then extracted from the 37 source texts. By 
excluding the test sentences, these were then used to train 
our “ARCTIC-5k” bigram model. The ARCTIC-5k bigrams 
thus contain many words and word sequences not found in 
the CMU ARCTIC lexicon. Compared to the ARCTIC 
bigrams, the ARCTIC-5k bigrams impose a less restricted 
word-level constraint on the Viterbi search. 

Since a simple word-loop bigram model was adopted in 
our previous SSI work [6], it was again included in this 
research in order to make a comparison of different bigram 
models, as well as to see the impact of the use of a well-
defined LM on our recognition performance. In this word-
loop model, any word pair in the CMU ARCTIC vocabulary 
is allowed with equal likelihood. This bigram model we call 
hereafter “ARCTIC word-loop”. 
 
4.3. Using Julius to Improve Real-time Performance 
 
In order to assess the feasibility of real-time recognition 
performance, the two-pass large vocabulary continuous 
speech decoder Julius [8] was tested to implement the visual 
speech recognizer. Sophisticated search techniques are 

incorporated in the Julius system, with the result that it can 
perform almost real-time acoustic speech decoding on a 
contemporary PC on a 60k-word vocabulary dictation. In 
our task, the CMU ARCTIC vocabulary contains only 2,771 
words; therefore we might expect that a Julius-based visual 
speech recognizer could work in nearly real-time for our SSI 
tests.  
 

5. EXPERIMENTAL RESULTS 
 
5.1. Assessment of Recognition Accuracy by Jackknife 
Tests with Different Bigrams 
 
The jackknife tests have been carried out to evaluate the 
recognition accuracy of the visual speech recognizer.  For 
the ith (1 ≤ i ≤ 37) jackknife test, the ith subset of the corpus 
was used as the test set, while the other 36 subsets forming 
the training set for building the triphone models. An 
empirical study was conducted to vary the number of 
Gaussians in each GMM from 2 to 16. An 8-Gaussian 
GMM for each HMM state was found accurate enough to 
model our triphones. 

Recognition was performed using the three bigram 
models described in Section 4.2 in each of the jackknife 
tests. The Viterbi word recognizer HVite of HTK was used 
to perform the word-level recognition. After recognition, the 
word transcription output was labeled into phoneme 
sequences using the HTK tool HLEd, based on the 
pronunciation dictionary. Both word-level and phone-level 
recognition accuracy were evaluated for each jackknife. The 
overall results are shown in Tables 1 and 2. 
 

Table 1  Word Recognition Accuracy of the 37 Jackknife Tests 
Recognition Accuracy (%) Bigram Mean Std. 

ARCTIC bigrams 72.93 5.99 
ARCTIC-5k bigrams 72.20 5.63 
ARCTIC word-loop 56.90 7.18 

 
Table 2  Phone Recognition Accuracy of the 37 Jackknife Tests 

Recognition Accuracy (%) Bigram Mean Std. 
ARCTIC bigrams 83.39 3.68 
ARCTIC-5k bigrams 84.09 3.17 
ARCTIC word-loop 81.67 3.54 

 
It is observed that by using the ARCTIC bigrams, 

which imposes a strong domain-specific constraint on the 
search space, the average word-level recognition accuracy 
was 72.93%. With the ARCTIC word-loop bigram model, 
the accuracy was lower. The explanation for this is that the 
probability distributions of words and word strings in the 
ARCTIC word-loop bigram model are quite different from 
those of the CMU ARCTIC text. The ARCTIC word-loop  
contains many word strings which do not occur either in the 
CMU ARCTIC text or in normal everyday speech. As an 
example, the 19th sentence in subset 31 is shown in Table 3, 
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where the word-level transcription outputs relevant to 
different bigram models are listed. Some non-grammatical 
word strings such as “allow is in” and “you’re owe tell” 
have occurred in the recognition results from the ARCTIC 
word-loop. 
 

Table 3  Word Recognition Output of a Visual Speech Utterance  

Original Text our mr howison will call upon 
you at your hotel 

ARCTIC 
bigrams 

i our mr howison will call upon 
you in your hotel 

ARCTIC-
5k bigrams 

i our mr howison will call upon 
you an’ you’re hotel 

Recognized 
Text 

ARCTIC 
word-loop 

i our mr allow is in when call 
upon you in you’re owe tell 

 
At the phone-level, the accuracy derived using even the 

ARCTIC word-loop, however, is above 80%, which is also 
consistent with what was obtained in [6]. It is clear that the 
recognition outputs are quite similar to the original text at 
the phone-level; this demonstrates that using tied-state 
cross-word triphone HMMs and a bigram model does allow 
visual speech to be decoded well at the phone-level.   
 
5.2. Visual Speech Recognition Using Julius 
 
During the jackknife tests, the HVite recognizer required 
more than 10 times real-time to decode visual speech. To 
evaluate the “real-time” performance of our recognizer, the 
Julius system was also tested to perform the recognition in 
the jackknife tests. The triphone HMM models and the 
ARCTIC bigrams were employed directly in the recognition 
experiments using Julius. An average recognition accuracy 
of 83% was obtained, and a visual speech utterance of t 
seconds required only about 0.90t seconds on average to 
complete the word-level recognition, on a 2.00 GHz Intel 
Core2 Duo Processor E4400 PC with 2GB of RAM. 
 

6. CONCLUSIONS AND PERSPECTIVES 
 
Our results show that, at least for the speaker tested here, 
ultrasound and video streams of the tongue and lips 
recorded during speech production can be used to drive a 
continuous visual speech recognizer effectively. A set of 
tied-state cross-word triphone HMMs can be trained on the 
visual speech corpus, and by using the HMMs and a well-
defined domain-specific bigram model, good recognition 
accuracy can be achieved, both at phone-level and word-
level.  

These results imply that the recognized text could be 
used as input to a subsequent speech synthesizer in an SSI to 
generate intelligible speech. By implementing the visual 
speech recognizer in the Julius system, word-level 
recognition can be performed in nearly real-time, with only 
a small loss in recognition accuracy. Since the real-time 
performance of the Julius system would not be significantly 
deteriorated by using a trigram model, it may be possible to 

use a domain-specific trigram LM in Julius to further 
improve the recognition accuracy. 
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