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ABSTRACT 
The issue of privacy in video surveillance has drawn a lot of interest lately. However, thorough performance analysis and 
validation is still lacking, especially regarding the fulfillment of privacy-related requirements. In this paper, we first 
review recent Privacy Enabling Technologies (PET). Next, we discuss pertinent evaluation criteria for effective privacy 
protection. We then put forward a framework to assess the capacity of PET solutions to hide distinguishing facial 
information and to conceal identity. We conduct comprehensive and rigorous experiments to evaluate the performance of 
face recognition algorithms applied to images altered by PET. Results show the ineffectiveness of naïve PET such as 
pixelization and blur. Conversely, they demonstrate the effectiveness of more sophisticated scrambling techniques to foil 
face recognition. 

 

Keywords: Video surveillance, privacy, scrambling, face recognition  

1. INTRODUCTION 
Privacy is a cornerstone of our civilization and is essential in many societal functions [1]. However, this fundamental 
principle is quickly eroding due to widespread intrusiveness enabled by some modern information technologies.  

In particular, privacy is quickly becoming a very central issue in video surveillance. While video surveillance can help 
repress crime and terrorism, hence benefiting society, the widespread use of security cameras has led to well documented 
forms of abuse, including: criminal abuse by law enforcement officers, institutional abuse by spying upon and harassing 
political activists, abuse for personal purpose such as stalking women or estranged girlfriends/spouses, discrimination 
including racial discrimination, voyeurism where bored male operators spy on women, and release of public camera 
footage in the public domain. Moreover, its big brother nature is hindering wider acceptance of video surveillance. The 
perspective of forthcoming powerful video analytics technologies, combined with pervasive networks of high resolution 
cameras is further raising the threat of privacy loss.  

Fortunately, recent research results have shown that new Privacy Enabling Technologies (PET) are emerging with the 
potential to effectively protect privacy, without hampering video surveillance tasks. These results challenge the common 
conjecture that increased security should incur a loss in privacy. Recent overviews of PET are given in [2][3]. 

However, although the issue of privacy protection has drawn a lot of interest, thorough performance analysis is still 
lacking. In particular, it is paramount to validate proposed PET against user and system requirements for privacy. 
Moreover, it is still unclear whether current approaches can be efficiently integrated into existing surveillance 
architecture and deployed in large scale systems. 



 

In this paper, we address the problem of assessing and validating PET. For this purpose, we identify five key evaluation 
criteria for effective PET: intelligibility of the video, cryptographic security, compression efficiency, computational 
complexity, and ease of integration in existing video surveillance systems.  

The first criterion represents a significant challenge and is the focus of this study. More specifically, PET should make 
regions containing privacy-sensitive information unintelligible. Simultaneously, the remaining of the scene should be 
intelligible in order not to hamper video surveillance tasks. However, assessing the intelligibility/unintelligibility of a 
video is a difficult problem. Existing objective visual quality measures, such as Peak-Signal-to-Noise-Ratio (PSNR) and 
Structural Similarity (SSIM) index [4], have been designed with the goal to assess distortions resulting from typical 
image and video processing techniques, but not to address intelligibility. 

In this paper, we tackle this problem by assessing the capability of PET to make facial information unintelligible and 
henceforth to foil face recognition techniques and conceal identity. Indeed, this is a major threat to privacy in video 
surveillance. A face de-identification algorithm is proposed in [5], which preserves many facial characteristics but makes 
the face unrecognizable. It is also shown that simple PET do not prevent successful face recognition. In our previous 
work [6], we defined a framework to evaluate the performance of face recognition algorithms applied to images altered 
by PET, based on the Face Identification Evaluation System (FIES) [7]. Experiments on the Facial Recognition 
Technology (FERET) database [8] showed the ineffectiveness of naïve PET such as pixelization and blur, and 
demonstrated the effectiveness of more sophisticated scrambling techniques to foil face recognition. In this paper, we 
extend this earlier work. We identify and discuss evaluation criteria for PET. We also conduct more extensive 
experiments, including with PSNR and SSIM objective quality measures. 

This paper is structured as follow. An overview of recent PET is presented in Sec. 2. Evaluation criteria to assess PET 
effectiveness are presented in Sec. 3. Next, a framework for face identification evaluation is presented in Sec. 4. An 
outline of four PET under consideration is given in Sec. 5. In order to validate PET, performance assessment using the 
proposed framework is analyzed in Sec. 6. Finally, conclusions are summarized in Sec. 7.  

2. PRIVACY ENABLING TECHNOLOGIES 
The raising awareness about privacy issues in surveillance systems has led to the development of new PET with the goal 
to effectively protect privacy [2][3]. 

The system introduced in [9] relies on computer vision to analyze the video content and to automatically extract its 
components.  Different users can selectively get access to these components, depending on their access-control rights. 
More specifically, the system renders a different version of the video where privacy-sensitive objects have been hidden. 
This is achieved while information required to fulfill the surveillance task is preserved. The paper also describes a 
PrivacyCam, with built-in privacy protection tools, which directly outputs video streams with privacy-sensitive 
information removed.  

The Networked Sensor Tapestry (NeST) architecture proposed in [10] supports secure capture, processing, sharing and 
archiving of surveillance data. It relies on privacy filters which operate on incoming video sensor data to remove 
privacy-sensitive information. These filters are specified using a privacy grammar.  

With Privacy through Invertible Cryptographic Obscuration (PICO) proposed in [11], data corresponding to faces is 
encrypted in order to conceal identity. The process is reversible for authorized users in possession of the secret 
encryption key. In other words, it does not undermine the objective of surveillance, as a subject can still be identified by 
decrypting the face, provided an appropriate warrant is issued. Similarly, a permutation-based encryption technique in 
the pixel domain is introduced in [12]. The solution remains independent of the compression algorithm and is robust to 
transcoding. The scheme presented in [13], Secure Shape and Texture SPIHT (SecST-SPIHT), permits secure coding of 
arbitrarily shaped visual objects. More specifically, a novel selective encryption  is introduced, applied in the compressed 
domain. Likewise, data hiding method based on chaos cryptography is introduced in [14]. The technique is applied to 
selected Regions of Interest (ROI) corresponding to privacy-sensitive information, and allows for several levels of 
concealment. 



 

The methods in [15][16] propose PET for JPEG 2000 video [17]. Conditional access control techniques are proposed in 
[15] to scramble ROIs, e.g. corresponding to people or faces. The scrambling is applied either in wavelet-domain or 
codestream-domain. In [16], code-blocks corresponding to ROI are trimmed down to the lowest quality layer of the 
codestream. Subsequently, the quality of the ROI can be decreased by limiting the video bit rate.   

Two efficient region-based transform-domain and codestream-domain scrambling techniques are proposed in [18] to 
hide privacy-sensitive information in MPEG-4 video [19]. In the first approach, the sign of selected transform 
coefficients is pseudo-randomly inverted during encoding. In the second approach, bits of the codestream are pseudo-
randomly flipped after encoding. In [20], the region-based transform-domain scrambling is extended to H.264/AVC [21]. 
In particular, to discriminate between scrambled and unscrambled regions, the technique exploits the Flexible 
Macroblock Ordering (FMO) mechanism of H.264/AVC to define two slice groups composed of MacroBlocks (MB) 
corresponding to the foreground and background respectively. 

The technique in [22] removes privacy-sensitive information from the video sequence. A perceptually-based 
compressed-domain watermarking technique is then used to securely embed this data in the video stream. Similarly, a 
secure reversible data hiding technique is introduced in [23] for privacy data embedding. A framework for privacy data 
management is also proposed to allow individual users to control access to their private data. 

Face recognition techniques pose the risk to automatically and quickly identify people captured by a video surveillance 
system. This issue is addressed in [5], where a de-identifying algorithm is introduced to effectively foil face recognition. 
A face anonymization framework for mobile phones is proposed in [24]. In this system, people who do not want to have 
their picture taken inform other mobile phone users in the vicinity using Bluetooth. Whenever a picture is taken, the 
corresponding faces are then anonymized. 

3. EVALUATION CRITERIA 
Despite the significant efforts to develop new PET in recent years, a methodical  validation of their effectiveness is still 
lacking. More specifically, it is important to carefully assess these solutions against user and system requirements for 
privacy. In this section, we discuss evaluation criteria for PET. 

3.1.  Intelligibility / Unintelligibility  
The foremost criterion for PET is to successfully conceal private information in the video stream. It typically implies to 
render some regions, with privacy-sensitive data, unintelligible. At the same time, PET should leave the remaining of the 
video scene comprehensible in order not to hamper surveillance tasks.  

In most data security applications, the objective is to guarantee full confidentiality of the message. It is usually achieved 
by applying encryption techniques. In contrast, in many multimedia security applications, it is sufficient to partially 
protect the data so that versions of the content with a quality above a commercially valuable threshold are protected, but 
low quality/resolution previews remain clear. In this case, selective encryption techniques are most appropriate [25]. 

In the context of PET for video surveillance, the situation is to a certain extent similar. More specifically, PET should 
hide or deteriorate the visual quality of the scene regions corresponding to privacy-sensitive data. To be effective, the 
alteration introduced should be such that it prevents identification. Simultaneously, the distortion should not prevent an 
operator to correctly interpret the scene during surveillance operations. The key challenge is to assess whether this dual 
requirement is fulfilled.  

Existing objective visual quality measures, such as SSIM [4], have been essentially developed to evaluate common 
image/video coding and processing techniques. Furthermore, they assess subjective quality instead of intelligibility 
which is the primary concern with PET. Finally, they have been tuned in a high quality range, rather than the highly 
altered range typical with PET.  

In [26], two visual similarity measures are proposed in order to measure security for multimedia encryption. The first one 
is based on luminance similarity, whereas the second one considers edge similarity. However, none of these measures 
address the intelligibility of the content and hence the ability to conceal private data. 



 

A model to assess privacy loss is introduced in [27], based on an analogy with statistical databases. It is shown that 
privacy issues encompass both explicit and implicit inference channels. The latter considers the situation when the 
identity of an individual can be indirectly deduced from the examination of the video content, e.g. based on location, 
time or behavior.  

One of the major privacy threats in video surveillance is to automatically identify people in the scene using face 
recognition techniques. Hence, the effectiveness of face recognition techniques on images altered by PET can be used as 
a validation criterion to assess the unintelligibility of private information and hence the usefulness of PET. In [5], it is 
shown that simple ad-hoc de-identification methods do not prevent successful face recognition. To successfully tackle 
this issue, a more sophisticated algorithm to de-identify faces is required, such that many facial characteristics are 
preserved but the face cannot be reliably recognized. In [6], a framework is proposed to validate PET. More specifically, 
this framework, based on the FIES [7], assesses the capability to effectively conceal identity by evaluating the 
performance of face recognition algorithms on images altered by PET. 

3.2. Cryptographic Security 
Many PET rely on cryptographic techniques in order to obscure regions containing privacy-sensitive data, for instance 
[11][12][13][14][15][18][20]. Cryptanalysis of a system is often evaluated under the assumption that the objective is to 
recover the whole encrypted message. In this context, the strength of the protection technique corresponds to the 
difficulty of finding the secret encryption key.  

However, the above scenario has a few shortcoming, as shown in [28]. Firstly, information leakage occurs. Namely, part 
of the data which is not encrypted can be used in order to guess/interpolate the encrypted part. Secondly, video content 
typically presents well known statistical and structural properties which can be exploited by an attacker. Finally, even 
though an attacker cannot totally recover the protected data, the security is still considered as compromised if he is 
capable of recovering an image with sufficiently improved subjective quality. For PET, the threshold is whether the 
visual quality is sufficient to identify private information.  

3.3. Compression Efficiency 
Bandwidth is a precious resources in video surveillance systems. On the one hand, a class of PET approaches relies on 
encryption or scrambling [11][12][13][14][15][18][20]. In this way, the statistics of the data is drastically altered. 
Depending on how it is integrated within a compression scheme, it may significantly increase bit rate requirements. On 
the other hand, another class of techniques such as [22][23] embed privacy-sensitive information using data hiding. 
Straightforwardly, it may result in sizeable data overhead.  

To be effective, PET should have a minimal impact on compression efficiency. 

3.4. Computational Complexity 
Computational complexity is also an important issue in video surveillance application. Indeed, extra complexity, either 
embedded directly in the camera or performed on a server, has a direct impact on the hardware cost. In particular, 
cryptographic functions tend to entail significant computations. For instance, one of the major interests of selective 
encryption techniques is to reduce complexity requirements by processing a subset of the data only. 

3.5. Integration in Existing Surveillance Architecture / Utility for Surveillance 
Easy integration of PET in existing video surveillance infrastructure is another important criterion in order to foster rapid 
adoption of the technology. Compatibility with legacy systems ensure broader and cost-effective applicability of PET. 
Accordingly, approaches which rely on widely used video coding standards (e.g. H.264/AVC, MPEG-4, Motion JPEG), 
instead of proprietary representations, should be preferred. In addition, PET which preserve syntax format compliance 
offer a considerable advantage. In this case, standard decoders can correctly decode and display the video stream, 
although some regions may be concealed. Moreover, preserving the stream syntax and its features enables content 
adaptation  based on scalability or transcoding during network transmission. 

Another valuable feature is to transmit the same protected video stream to all end-users, regardless of their credentials. 



 

Finally, video surveillance is most often used in postmortem forensic analysis by law enforcement authorities. For this 
purpose, it is paramount that PET are fully reversible. Namely, it should be possible, for authorized users, to recover the 
unaltered privacy-sensitive information. Obviously, some trivial PET approaches merely applying blur, noise, or black 
box obscuration to hide private data do not fulfill this important requirement. 

4. FRAMEWORK FOR FACE IDENTIFICATION EVALUATION 
The objective of this paper is to validate the anonymity functionality of PET. For this purpose, we use FIES [7], which 
provides standard face recognition algorithms and standard statistical methods for assessing performances. A brief 
description of  the framework is given hereafter. 

4.1. Face Recognition 
We consider two face recognition algorithms, namely, Principal Components Analysis (PCA) [29] and Linear 
Discriminant Analysis (LDA) [30].  

In PCA, eigenfaces corresponding to the eigenvectors of the covariance matrix of training face examples are computed. 
Face images are then projected onto the eigenfaces basis. In other words, a linear transformation is applied to rotate 
feature vectors from the initially large and highly correlated subspace to a smaller and uncorrelated subspace. Distance 
between pair of images can then be computed in the eigenfaces subspace. Hereafter, the distance between the feature 
vectors, u and v, is given by the Euclidian measure 
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PCA has shown to be effective for face recognition. Firstly, it can be used to reduce the dimensionality of the feature 
space. Secondly, it eliminates statistical covariance in the transformed feature space. In other words, the covariance 
matrix for the transformed feature vectors is always diagonal.  

LDA aims at finding a linear transformation which stresses differences between classes while lessening differences 
within classes, where a class corresponds to all images of a given individual. The resulting transformed subspace is 
linearly separable between classes. In [30], PCA is first performed to reduce the feature space dimensionality. LDA is 
then applied to further decrease the dimensionality while safeguarding the distinctive characteristics of the classes. The 
final subspace is obtained by multiplying the PCA and LDA basis vectors. Feature vectors, i.e. face images are then 
projected onto these basis vectors. Finally, the soft distance proposed in [30] is used, namely 
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where is λi is the corresponding eigenvalue. 

4.2. Face Identification and Evaluation System 
FIES is composed of four main components: image pre-processing, training, testing and performance analysis [7]. The 
framework is illustrated in Figure 1.  

The preprocessing step aims at reducing detrimental variations between images. Faces are firstly geometrically 
normalized by aligning the eye coordinates. Then, an elliptical mask is used to crop the images. More specifically, the 
face region between the forehead and chin as well as left cheek and right cheek is retained, while the remaining is 
discarded. Finally, histogram equalization is performed, and contrast and brightness are normalized. 

The next step is training. Its purpose is to create the subspace into which test images are subsequently projected and 
matched. In this paper, we consider PCA and LDA techniques as previously described. Training is performed using a 
training set of images.  

In the testing step, a distance matrix is computed in the transformed subspace for all test images. In our experiments, we 
use a Euclidian distance for PCA and the soft distance for LDA, as defined in Eq. (6) and (7). At this stage, two image 
sets are defined: the gallery set is made of known faces, whereas the probe set corresponds to faces to be recognized. 



 

 

 

Figure 1 – Framework for face identification and evaluation. 

 
Finally, face recognition performance is analyzed. More specifically, a cumulative match curve is generated. For this 
purpose, for each probe image, the recognition rank is computed. Namely, a rank 0 means that the best match is of the 
same subject, a rank 1 means that the best match is from another person but the second best match is of the same subject, 
etc. Then, the cumulative match curve is obtained by summing the number of correct matches for each rank.  

4.3. Attacks under Consideration 
We study two types of attack. We consider a simple attack, referred to as Attack A, where training and gallery sets are 
made of unaltered images. Conversely, probe set corresponds to images with privacy protection. In other words, altered 
images are merely processed by the face recognition algorithms without taking into account the fact that PET have been 
applied. 

We then consider a more sophisticated second attack, referred to as Attack B. Namely, PET are now applied to all 
images in the training, gallery and probe sets. This corresponds to an attacker which gets access to protected data. 
Alternatively, an attacker may attempt replicating the alteration due to PET on his own training and gallery sets. 

Table 1 summarizes the characteristics of both attacks. 

set Attack A Attack B 

training unaltered privacy protection 
gallery unaltered privacy protection 
probe privacy protection privacy protection 

Table 1 – Attacks under consideration. 

5. PET UNDER CONSIDERATION 
In this section, we briefly describe four PET that we will subsequently evaluate for their capability to hide facial 
information and to provide anonymity. 

As reference, we first consider two naïve methods, applying simple pixelization or Gaussian blur. We also consider two 
more sophisticated ROI-based transform-domain scrambling methods [20]. Both methods are applied jointly with 
H.264/AVC encoding [21], which is becoming the prevalent format in video surveillance systems. The first method 
pseudo-randomly inverts the sign of transform coefficients of blocks belonging to ROI. The second one applies a 
pseudo-random permutation of the transform coefficients in blocks corresponding to ROI.  



 

These four approaches to provide anonymity are detailed in the following subsections. 

5.1. Pixelization 
We first consider pixelization as a naïve approach for privacy protection. Pixelization consists in noticeably reducing 
resolution in ROI. In practice, it can be achieved by substituting a square block of pixels with its average. Explicitly, 
pixelization of the image I(x,y) is given by 
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where x and y are the image pixel coordinates, b is the block size and  ⋅  denotes the floored division. 

Pixelization has the advantage to be very simple and easy to integrate in existing systems. Consequently, it is commonly 
used in television news and documentaries in order to obscure the faces of suspects, witnesses or bystanders to preserve 
their anonymity. The same technique is also used to censor nudity or to avoid unintentional product placement on 
television. 

Straightforwardly, using pixelization, privacy-sensitive information is lost and the process is irreversible. Another 
drawback of this approach is that integrating pixels along trajectories over time may allow to partly recovering the 
concealed information. 

5.2. Gaussian Blur 
The second naïve approach for privacy protection removes details in ROI by applying a Gaussian low pass filter. More 
precisely, Gaussian blur is obtained by the convolution of  the image I(x,y) with a 2D Gaussian function G(x,y) 
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where σ is the standard deviation. Again, the process is very simple and easy to implement. However, it is irreversible 
and privacy-sensitive information is irremediably lost. Blurring is sometimes preferred to pixelization in order to obscure 
privacy-sensitive information. 

5.3. Scrambling by Random Sign Inversion 
Next, we consider a ROI-based transform-domain scrambling method for H.264/AVC. First, the method scrambles the 
quantized transform coefficients of each 4x4 block of the ROI, corresponding to privacy-sensitive information, by 
pseudo-randomly flipping their sign [20]. More specifically, defining the vector of quantized transform coefficients 
qcoeff[i] with i=0..15, the scrambling consists in performing the following operation for each i 
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The scrambling process is driven by a Pseudo Random Number Generator (PRNG) which is initialized by a seed value. 
The seed is encrypted, e.g. using public key encryption, and embedded in the compressed stream as private date.  

The process is illustrated in Figure 2. 



 

 

Figure 2 – Region-based transform-domain scrambling by random sign inversion or random permutation. 

The method is fully reversible. Namely, authorized users, in possession of the secret encryption key, can reverse the 
scrambling process and recover the truthful scene. Conversely, other users obtain a video sequence where ROI have 
severe noise, concealing privacy-sensitive information. 

Two slice groups are defined using FMO to distinguish between the scrambled ROI and the unscrambled background. In 
this way, background data will not use scrambled ROI data for spatial intra prediction. An added benefit of FMO is that 
the shape of the scrambled ROI is conveyed to the decoder which needs this information for unscrambling. 

This method offers a number of advantages. The same scrambled stream is transmitted to all users independently from 
their access rights. Furthermore, the syntax of the compressed stream remains standard compliant. Hence, it can be used 
in existing video surveillance infrastructures. The scrambling is confined to ROI, whereas the background remains 
unaltered. Finally, it has a small impact in terms of coding efficiency, and requires a low computational complexity. 

5.4. Scrambling by Random Permutation 
 Finally, we consider an alternative ROI-based transform-domain scrambling method for H.264/AVC. In this method, a 
random permutation is applied to rearrange the order of transform coefficients in 4x4 blocks corresponding to ROI [20]. 
The method is depicted in Figure 2. The random permutation is expressed as follow 
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The Knuth shuffle is used to generate a permutation of n items with uniform random distribution [31]. More explicitly, it 
starts from the identity permutation and scans through each position i from 0 to 14, swapping the element currently at 
position i with the element at an arbitrarily chosen positions from i through 15. 

The remaining of the algorithm is similar to the scrambling by random sign inversion as described in Sec. 5.3. Hence, 
this method provides the same characteristics and advantages. 

5.5. Sample Images with Privacy Protection 
The results of the four PET considered in this paper, namely pixelization (b={8, 16}), Gaussian blur (σ={8, 12}), 
scrambling by random sign inversion and scrambling by random permutation are illustrated in Figure 3 for a sample 
image of the FERET database. 
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Figure 3 – Examples of privacy protection approaches: a) original image, b) pixelization with b=8, c) pixelization 
with b=16, d) Gaussian blur with σ=8, e) Gaussian blur with σ=12, f) scrambling by random sign inversion, g) 

scrambling by random permutation. 



 

6. PRIVACY ENABLING TECHNOLOGIES PERFORMANCE ASSESSMEN T RESULTS 
We now describe experiments carried out in order to assess PET. Results are then reported and analyzed.  

6.1. Test Data 
In this paper, we use the grayscale FERET database [8] to carry out experiments. Indeed, this database is widely used for 
face recognition research, although it is not representative of typical video surveillance footage. From this database, we 
consider a subset of 3368 images of frontal faces for which eye coordinates are available. The images have 256 by 384 
pixels with eight-bit per pixel. We further consider two series of images denoted by ‘fa’ and ‘fb’. The ‘fa’ indicates a 
regular frontal image, and the ‘fb’ indicates an alternative frontal image, taken within seconds of the corresponding ‘fa’ 
image, where a different facial expression was requested from the subject.  

In our experiments, we use standard training, gallery and probe sets from the FERET test. More specifically, the training 
set includes 501 images from the ‘fa’ series. In turn, the gallery set is composed of 1196 from the ‘fa’ series, whereas the 
probe set is made of 1195 images from the ‘fb’ series. 

6.2. Objective Image Quality Measures 
Next, we assess the quality of images altered by the four PET under consideration using objective image quality 
measures. To measure the similarity between the altered and unaltered images, we use PSNR 
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where I and K are the processed and reference images respectively, with a size of m x n. However, PSNR is often weakly 
correlated with human perception.  

Therefore, we use a second measure, the perceptually-based SSIM index [4], which assesses the degradation of structural 
information. SSIM, computed on windows of an image, is given by 
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where Iw and Kw are two windows in the altered and unaltered images respectively, µI and µK are the average of Iw and 
Kw, σI

2 and σK
2 are the variances of Iw and Kw, and C1 and C2 are two constants to avoid instability. SSIM takes value in 

the interval [-1, 1], where SSIM=1 indicates that both processed and reference images are identical. 

Table 2 shows the PSNR and SSIM values obtained using the four PET: pixelization, Gaussian blur, scrambling by sign 
inversion and scrambling by permutation. The reported values correspond to the average over all 3386 images in the 
considered FERET subset. 

PET PSNR SSIM 

Pixelization b=8 24.14 0.71 
Pixelization b=16 21.11 0.64 
Gaussian blur σ=8 22.56 0.71 
Gaussian blur σ=12 20.78 0.68 
Scrambling sign inversion 8.47 0.42 
Scrambling permutation 9.09 0.47 

Table 2 – Objective quality measures. 
 
These figures are very instructive. They clearly show that all the PET under consideration lead to low subjective quality. 



 

Straightforwardly, the image quality decreases when the block size increases in pixelization, or when σ increases in 
Gaussian blur. Nevertheless, for these two naïve  PET, PSNR remains above 20 dB, whereas SSIM stays above 0.6. 
Conversely, both scrambling approaches result in significantly higher distortions when compared to pixelization or 
Gaussian blur, with PSNR below 10 dB and SSIM below 0.5. However, these results do not allow to assess the 
intelligibility of the concealed data, and therefore are not sufficient to validate the effectiveness of PET. 

6.3. Face Recognition Performance Analysis 
We now evaluate the capacity of PET to hide distinguishing facial information in order to foil face recognition 
techniques and hence to conceal the identity of a person. 

In the first round of experiments, we consider the simple Attack A (see Sec. 4.3). Figure 4 and Figure 5 show cumulative 
match curves for PCA and LDA respectively, comparing the recognition rate as a function of the rank for original image 
data as well as for the four considered PET. 

 

 

Figure 4 –  Cumulative match curve for PCA with Euclidian distance: performance comparison for Attack A. 

 

 

Figure 5 –  Cumulative match curve for LDA with soft distance: performance comparison for Attack A. 

 



 

It can be observed that for both PCA and LDA schemes applied on original images, recognition rate is superior to 70% at 
rank 0 (i.e. the best match is of the same subject as the probe), and superior to 90% at rank 50.  

When applying a Gaussian blur, the performance drops radically for LDA. However, recognition rate remains high for 
PCA with 56% (σ=8) and 26% (σ=12) success at rank 0. Pixelization fares worse at hiding identity. With b=8, the 
performance only drops marginally compared to the recognition rate on original images. It is not as bad with b=16, but 
the recognition rate remains high with 56% and 13% at rank 0 for PCA and LDA respectively. 

However, results clearly show that both region-based transform-domain scrambling approaches are successful at hiding 
identity. The recognition rate is nearly 0% at rank 0, and remains below 10% at rank 50, for both PCA and LDA 
algorithms. In addition, it can be observed that both random sign inversion and random permutation schemes achieve 
nearly the same performance. 

In the second round of experiments, we consider the more sophisticated Attack B (see Sec. 4.3). Figure 6 and Figure 7 
show corresponding cumulative match curves for PCA and LDA respectively. 

 

 
Figure 6 – Cumulative match curve for PCA with Euclidian distance: performance comparison for Attack B. 

 

 
Figure 7 –  Cumulative match curve for LDA with soft distance: performance comparison for Attack B. 



 

With Gaussian blur, the performance remains nearly identical to the recognition rate on original data. It even improves 
slightly for LDA. Pixelization is not much better at hiding facial information. With b=16, the recognition rate is still 45% 
and 17% at rank 0 for PCA and LDA respectively. 

Finally, both region-based transform-domain scrambling approaches are again successful at hiding identity. The 
recognition rate is nearly 0% at rank 0 for both PCA and LDA algorithms. 

7. CONCLUSIONS 
In this paper, we have considered the problem of validating PET for video surveillance applications. We have first 
reviewed some existing PET solutions. We have then identified relevant evaluation criteria as well as challenges for 
performance assessment. We have also described a framework to verify the effectiveness of PET at hiding distinguishing 
facial information and hence concealing identity.  

We have conducted rigorous and comprehensive experiments on the FERET database using objective image quality 
metrics on the one hand, and PCA and LDA face recognition algorithms on the other hand. Results have shown that 
naïve  PET approaches such as Gaussian blur or pixelization are ineffective at providing anonymity. In both cases, the 
recognition rate remains significant. Finally, we have shown that region-based transform-domain scrambling approaches 
are successful at hiding identity, with the recognition rate dropping to nearly 0%. 

Future work will concentrate in further analyzing the performance of PET, verifying that they can successfully address 
privacy issues. In particular, it is important to carry out experiments on larger data sets and using more realistic video 
surveillance footage. It is also imperative to better understand user and system requirements regarding privacy issues. 
Finally, performance analysis should also include the impact on compression efficiency, complexity, and security against 
attacks. 
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