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Abstract—In this paper we propose a simple and fast method
for chord recognition in music signals. We extract a chromagram
from the signal which transcribes the harmonic content of the
piece over time. We introduce a set of chord templates taking into
account one or more harmonics of the pitch notes of the chord
and calculate a scale parameter to fit the chromagram frames
to these chords templates. Several chord types (major, minor,
dominant seventh,...) are considered. The detected chord over a
frame is the one minimizing a measure of fit between the rescaled
chroma vector and the chord templates. Several popular distances
and divergences from the signal processing or probability fields
are considered for our task. Our system is improved by some
post-processing filtering that modifies the recognition criteria so
as to favor time-persistence.

The transcription tool is evaluated on 3 corpus: the Beatles
corpus used for MIREX 08, a 20 audio songs corpus and a
resynthesized MIDI corpus. Our system is also compared to
state-of-the-art chord recognition methods. Experimental results
show that our method compares favorably to the state-of-the-art
and is less computationally demanding than the other evaluated
systems. Our systems entered the MIREX 2009 competition and
performed very well.

Index Terms—chord recognition, music signal processing, mu-
sic signal representation, music information retrieval

I. INTRODUCTION

COMPLETE musical analysis of a pop song, that is to say

the transcription of every single note played by every

instrument is a very complex task. The musical content of a

pop song is thus more often translated into a more compact

form such as sequences of chords. A chord is a set of notes

played simultaneously. A chord can be defined by a root note

which is the note upon which the chord is perceived and a

type giving the harmonic structure of the chord. For example

a C major chord is defined by a root note C and a type major

which indicates that the chord will also contain the major third

and the perfect fifth, namely the notes E and G. The result

of chord transcription consists in sequences of chords played

successively with their respective lengths. This compact and

robust writing not only helps to play-back the song but also

gives information on the harmonic content and structure of the

song. Automatic chord transcription finds many applications

in the field of Musical Information Retrieval. The characteriza-

tion of a song by its chord transcription can be used in several

tasks among which song identification, query by similarity or

analysis of the structure of the piece.

Automatic chord transcription includes in most cases two

successive steps: a feature extraction which captures the musi-
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cal information and a recognition process which outputs chord

labels from the extracted features.

The first step consists in the extraction of relevant and

exploitable musical content from the audio. As such, pitch

perception of a note can be decomposed into two different

notions: height, corresponding to the octave to which the note

belongs and chroma or pitch class indicating the relation of

the note with the other notes among an octave. For example

the note A4 (440 Hz) is decomposed into an octave number 4

and a chroma A. The features used in chord transcription may

differ from a method to another but are in most cases variants

of the Pitch Class Profiles introduced by Fujishima [1] whose

calculation is based on this notion of chroma. These features,

also called chroma vectors, are 12-dimensional vectors. Every

component represents the spectral energy of a semi-tone on

the chromatic scale regardless of the octave. These features are

widely used both in chord recognition and tonality extraction.

The calculation is based either on the Constant Q Transform

(CQT) [2] or on the Short Time Fourier Transform (STFT)

and is performed either on fixed-length frames or variable-

length frames (depending for example on the tempo, etc.). The

succession of these chroma vectors over time is often called

chromagram and gives a good representation of the musical

content of a piece.

The structure of a chord being entirely defined by its root

note and type, it is easy to create 12-dimensional chord

templates which reflect this structure by giving a particular

amplitude to every chroma. The simplest model for chords,

widely used in chord recognition [1],[3], has a binary structure

giving an amplitude of 1 to the chromas constituting the chord

and 0 for the other chromas. Other models can be introduced

for example by taking into account the harmonics of the notes

played in the chord [4],[5].

The present paper focuses mainly on the second part of the

chord transcription process that is to say the chord labeling

of every chromagram frame. Our chord recognition system is

based on the intuitive idea that for a given 12-dimensional

chroma vector, the amplitudes of the chromas present in the

chord played should be larger than the ones of the non-played

chromas. By introducing chord templates for different chord

types and roots, the chord present on a frame should therefore

be the one whose template is the closest to the chroma vector

according to a specific measure of fit. A scale parameter is

introduced in order to account for amplitude variations and

finally the detected chord is the one minimizing the measure

of fit between the rescaled chroma vector and the chord

templates.

Section II provides a review of the state-of-the-art methods
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for the chord recognition. Section III gives a description of

our recognition system: the chord templates, the measures of

fit and some post-processing filtering methods exploiting time-

persistence. Section IV describes the evaluation protocol for

our method. Section V presents a qualitative and quantitative

analysis of the results on a data corpus formed by the 13

Beatles albums and a comparison with the state-of-the-art.

Section VI gives results on another corpus composed of audio

files synthesized from MIDI and investigates the influence

of the genre, percussive noise and beat-synchronous chord

detection.

II. STATE OF THE ART

The chord recognition task consists in outputting a chord

label from a specific music-related feature. Most chord recog-

nition systems use a chromagram (or assimilate) as an input

to the system and output a chord label for each chromagram

frame. Machine-learning methods such as Hidden Markov

Models (HMMs) have been widely used for this task especially

in the last years but templates-fitting techniques have also been

used for this labeling process.

A Hidden Markov Model is constituted by a number of

hidden states with an initial state distribution, a state transition

probability distribution which gives the probability of switch-

ing from a state to another and an observation probability

distribution which gives the likelihood of a particular state for

a particular observation data. In the typical HMM-based chord

recognition systems every chord is represented by a hidden

state and the observations are the chromagram frames. Given

the parameters of the model, the chord recognition consists in

finding the most likely sequence of hidden states (chords) that

could have generated a given output sequence (chromagram).

The parameters of these HMMs (initial state distribution, state

transition probability distribution and observation probability

distributions) are either based on musical theory, learned on

real data or a combination of these two approaches.

The first HMM used in chord recognition [6] is composed of

147 hidden states each representing a chord and corresponding

to 7 types of chords (major, minor, dominant seventh, major

seventh, minor seventh, augmented and diminished) and 21

root notes (12 semi-tones with the distinction between ♭ and

♯). All the HMM parameters are learned by a semi-supervised

training with an EM algorithm. This model is then improved

in [7] by a complete re-building of the HMM. The number of

hidden states is reduced from 147 to 24 by only considering

major and minor chords ; this enables to have sufficient data

for the training process. The initializations for the HMMs

parameters are inspired by musical and cognitive theory which

naturally introduced musical knowledge into the model. The

state transition probability distribution and the initial state

distribution are still updated by an unsupervised training with

an EM algorithm but the observation probability distributions

are fixed, giving to each chord a clear and predetermined

structure. The introduction of tempo-based features also en-

hances the recognition performances. Some other methods

[5],[8] also use a 24 states HMM considering only major and

minor chords but try different sets of input features, HMM

parameters or training approaches. Symbolic data can be used

for the training process with a system based on 24 tonality-

dependent HMMs [9] in order to give a joint key extraction

and chord transcription.

Yet, the first chord recognition system based on chroma

representation proposed by Fujishima [1] is not using HMM

but chord dictionaries composed of 12-dimensional templates

constituted by 1 (for the chromas present in the chord) and

0 (for the other chromas). 27 types of chords are tested and

the transcription is done either by minimizing the Euclidean

distance between Pitch Class Profiles and chord templates or

by maximizing a weighted dot product. Fujishima’s system

is improved [3] by calculating a more elaborate chromagram

including notably a tuning algorithm and by reducing the num-

ber of chords types from 27 to 4 (major, minor, augmented,

diminished). Chord transcription is then realized by retaining

the chord with higher dot product between the chord templates

and the chromagram frames. Chord transcription can also be

done by maximizing the correlation between enhanced variants

of the Pitch Class Profiles and chord templates [10]. These

chord templates are also used on MIDI data for the joint tasks

of segmentation and chord recognition [11] by the calculation

of weights reflecting the similarity between the chord models

and the present notes in a segment.

III. OUR SYSTEM

A. General idea

Let C denote the chromagram, with dimensions M ×N (in

practice M = 12) composed of N successive chroma vectors

cn. Let pk be the 12-dimensional chord template defining

chord k. We want to find the chord k whose template pk is

the closest to the chromagram frame cn for a specific measure

of fit. We propose to measure the fit of chroma vector cn to

template pk up to a scale parameter hk,n. Given a measure

D ( . ; . ), a chroma vector cn and a chord template pk, the

scale parameter hk,n is calculated analytically to minimize the

measure between h cn and pk:

hk,n = argmin
h

D (h cn;pk) . (1)

In practice hk,n is calculated such that:

[

d D (h cn;pk)

dh

]

h=hk,n

= 0. (2)

We then define dk,n as:

dk,n = D (hk,n cn;pk) . (3)

The detected chord k̂n for frame n is then the one mini-

mizing the set {dk,n}k:

k̂n = argmin
k

dk,n. (4)
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CC#DD#E F F#GG#A A#B
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C major with 1 harmonic

CC#DD#E F F#GG#A A#B
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C major with 4 harmonics

CC#DD#E F F#GG#A A#B
0
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C major with 6 harmonics

CC#DD#E F F#GG#A A#B
0
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C minor with 1 harmonic

CC#DD#E F F#GG#A A#B
0
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0.4
C minor with 4 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 6 harmonics

Figure 1. Chord templates for C major / C minor with 1, 4 or 6 harmonics.

B. Chord models

The chord templates are 12-dimensional vectors where

each component represents the theoretical amplitude of each

chroma in the chord. These chord templates can either be

learned on audio data [6], [8], [9] or predetermined [1],

[3], [5], [7], [10],[11]. However, Bello & Pickens [7] and

Papadopoulos & Peeters [5] have shown that using fixed and

musically inspired chord structures can give better results

for the chord detection task. Besides, the use of fixed chord

models allows to skip the time-consuming learning phase and

the need of annotated training data.

In our system three chord models are defined: examples for

C major and C minor chords are displayed on Figure 1.

The first chord model is a simple binary mask: an ampli-

tude of 1 is given to the chromas defining the chord and an

amplitude of 0 is given to the other chromas.1 For example

for a C major chord an amplitude of 1 is given to the chromas

C, E and G while the other chromas have an amplitude of 0.

The second chord model is inspired from the work of

Gomez [4] and Papadopoulos [5]. The information contained

in a chromagram or any other spectral representation of a

musical signal captures not only the intensity of every note

but a blend of intensities for the harmonics of every note. It

is therefore interesting and relevant to take into account the

harmonics for each note of the played chord. An exponentially

decreasing spectral profile is assumed for the amplitudes of the

partials and an amplitude of si−1 is added for the ith harmonic

of every note in the chord. The parameter s is empirically set

to 0.6. Our second chord model only takes into account the 4

first harmonics.

The third chord model is based on the same principle but

takes into account the first 6 harmonics for the notes of the

chord.

1In practice a small value is used instead of 0, to avoid numerical
instabilities that may arise with some measures of fit, see section III-C.

From these three chord models we can build chord templates

for all types of chords (major, minor, dominant seventh, dimin-

ished, augmented,...). By convention in our system, the chord

templates are normalized so that the sum of the amplitudes is

1 but any other normalization could be employed.

C. Measures of fit

1) Definitions: We consider for our recognition task several

measures of fit, popular in the field of signal processing. Table

I gives the expressions of these different measures, as well as

the scale parameter analytically calculated from (2) and the

final expression of the set of values dk,n.

The well-known Euclidean distance (EUC) defined by

DEUC (x|y) =

√

∑

m

(xm − ym)
2

(5)

has already been used by Fujishima [1] for the chord recog-

nition task.

The Itakura-Saito divergence [12] defined by

DIS (x|y) =
∑

m

xm

ym
− log

(

xm

ym

)

− 1 (6)

was presented as a measure of the goodness of fit between two

spectra and became popular in the speech community during

the seventies. This is not a distance, since it is in particular

not symmetrical.2 It can therefore be calculated in two ways:

D (hk,n cn|pk) will define IS1, while D (pk|hk,n cn) will

define IS2.

The Kullback-Leibler divergence [13] measures the dis-

similarity between two probability distributions. It has been

widely used in particular in information theory and has given

rise to many variants. In the present paper we use the gener-

alized Kullback-Leibler divergence defined by

DKL (x|y) =
∑

m

xm log

(

xm

ym

)

− xm + ym. (7)

Just like Itakura-Saito divergence [12], the generalized

Kullback-Leibler divergence is not symmetrical, so that we

can introduce two measures of fit: D (hk,n cn|pk) (KL1) and

D (pk|hk,n cn) (KL2).

While the Euclidean distance had already been used for the

chord recognition task, the use of Itakura-Saito and Kullback-

Leibler divergences is innovative. The non-symmetry of these

divergences allows to define two variants (IS1 & IS2 and KL1

& KL2). We shall now investigate the properties of these two

variants and interpret them in our chord recognition context.

Considering the variations of the functions of two variables

DIS(x|y) and DKL(x|y), we notice that the terms DIS(x|y)
and DKL(x|y) take high values when x is large and y is close

to 0. The IS1 and KL1 measures of fit being just sums of 12

of these terms, we can deduce that a high value of IS1 or KL1

would be obtained if, for at least one of the chromas, the first

term hk,n cm,n is larger that the pm,k term. That is to say if the

2Symmetrized versions of Itakura-Saito and Kullback-Leibler were first
considered but since they prevented any analytical calculation of hk,n, we
preferred to avoid the numerical optimization that would become necessary
and possibly lengthy.
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Table I
PRESENTATION OF THE MEASURES OF FIT (THE EXPRESSIONS ASSUME ‖pk‖1 = 1)

Expression of D
(

hk,n cn;pk

)

Scale parameter hk,n Minimization criteria dk,n

EUC

√

∑

m

(hk,n cm,n − pm,k)
2

∑

m

cm,n pm,k

∑

m

c2m,n

√

√

√

√

√

√

∑

m

p2
m,k

−

(

∑

m

cm,n pm,k

)

2

∑

m

c2m,n

IS1
∑

m

hk,n cm,n

pm,k
− log

(

hk,n cm,n

pm,k

)

− 1 M
∑

m

cm,n

pm,k

M log

(

1

M

∑

m

cm,n

pm,k

)

−

∑

m

log
(

cm,n

pm,k

)

IS2
∑

m

pm,k

hk,n cm,n
− log

(

pm,k

hk,n cm,n

)

− 1 1

M

∑

m

pm,k

cm,n
M log

(

1

M

∑

m

pm,k

cm,n

)

−

∑

m

log
(

pm,k

cm,n

)

KL1
∑

m

hk,n cm,n log
(

hk,n cm,n

pm,k

)

− hk,n cm,n + pm,k e

−
∑

m

c′m,n log

(

cm,n

pm,k

)

1− e

−
∑

m

c′m,n log

(

c′m,n

pm,k

)

with c′m,n =
cm,n

‖cn‖
1

with c′m,n =
cm,n

‖cn‖
1

KL2
∑

m

pm,k log
(

pm,k

hk,n cm,n

)

− pm,k + hk,n cm,n
1

∑

m

cm,n

∑

m

pm,k log
(

pm,k

c′m,n

)

− pm,k + c′m,n

with c′m,n =
cm,n

‖cn‖
1

chroma does not belong to the chord template but is present

in the chromagram frame. This means that the IS1 and KL1

measures of fit reject in priority chords whose null chromas

are nevertheless present in the chroma vector.

On the contrary, the terms DIS(y|x) and DKL(y|x) take

high values when x is close to 0 and y is large. Therefore, a

high value of IS2 or KL2 is obtained when, for at least one

of the chromas, hk,n cm,n is lower that pm,k. That is to say

if the chroma is present in the chord template but not in the

chromagram frame. This means that the IS2 and KL2 measures

of fit reject in priority chords whose notes are not all present

in the chroma vector.

2) Toy examples: Let us check these assumptions on a very

simple toy example. Let us suppose that we want to find a C

major chord in a chromagram frame x. The chord template

can be written y = [1, ǫ, ǫ, ǫ, 1, ǫ, ǫ, 1, ǫ, ǫ, ǫ, ǫ] with ǫ being a

very small value used to avoid numerical instabilities.

• Case 1 (extra note): The chromagram frame is a C major

chord, with an extra D

x = [1, ǫ, 1, ǫ, 1, ǫ, ǫ, 1, ǫ, ǫ, ǫ, ǫ]

• Case 2 (missing note): The chromagram frame is a C5

chord (only C and G)

x = [1, ǫ, ǫ, ǫ, ǫ, ǫ, ǫ, 1, ǫ, ǫ, ǫ, ǫ]

Table II shows the expressions of the measures of fit

calculated for each of these toy examples along with their

equivalent when ǫ → 0. We observe that in Case 1, for a very

small value of ǫ, the IS1 measure of fit tends to be very high,

IS2 and KL1 are finite3, and KL2 is close to 1. This indicates

that IS1 strongly reacts to the presence of parasite notes in

the chroma vector, while it does not make a big difference

for KL2. On the contrary, in Case 2, the IS2 measure of fit is

really sensitive to the fact that all the notes within the chord

3In practice we use ǫ = 10−16.

template can be found in the chroma vector, while KL1 is not

too affected.

D. Filtering methods

So far, our chord detection is performed frame-by-frame

without taking into account the results on adjacent frames.

In practice, it is rather unlikely for a chord to last only

one frame. Furthermore, the information contained in the

adjacent frames can help decision [14]: it is one of the main

advantages of the methods using HMM, where the introduc-

tion of transition probabilities naturally leads to a smoothing

effect. Nevertheless, HMM-based methods inherently assume

an exponentially temporal distribution, which does not suit

well the rhythmic structure of pop songs [15]. We therefore

propose, as a third block for our method, to use an ad

hoc filtering process which implicitly informs the system of

the expected chord duration. The post-processing filtering is

applied upstream to the calculated measures. Note that the use

of this ad hoc filtering process is innovative, since it had been

previously applied to chromagrams [1], [16], [7] or detected

chord sequences [7], but never to the recognition criterion

itself.

We introduce new criteria d̃k,n based on L successive values

centered on frame n (L is then odd). These d̃k,n are calculated

from the dk,n previously calculated on the L adjacent frames,

as shown below. In our system two types of filtering are tested.

The low pass filtering defined by

d̃k,n =
1

L

n+
L−1

2
∑

n′=n−
L−1

2

dk,n′ (8)

tends to smooth the output chord sequence and to reflect the

long-term trend in the chord change.

The median filtering defined by

d̃k,n = med {dk,n′}
n−

L−1

2
≤n′≤n+

L−1

2

(9)
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Table II
EXPRESSIONS OF THE MEASURES OF FIT ON TOY EXAMPLES ALONG WITH THEIR EQUIVALENT WHEN ǫ → 0.

EUC IS1 IS2 KL1 KL2

Case 1 1− ǫ
1
ǫ
+ log(ǫ)− 1 ǫ− log(ǫ)− 1 ǫ− log(ǫ)− 1 ǫ log(ǫ)− ǫ+ 1

∼ 1 ∼ 1
ǫ

∼ − log ǫ ∼ − log ǫ ∼ 1

Case 2 1− ǫ ǫ− log(ǫ)− 1 1
ǫ
+ log(ǫ)− 1 ǫ log(ǫ)− ǫ+ 1 ǫ− log(ǫ)− 1

∼ 1 ∼ − log ǫ ∼ 1
ǫ

∼ 1 ∼ − log ǫ
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Figure 2. Statistics on the Beatles and the MIDI corpus: distribution of the
chord types as percentage of the total duration.

has been widely used in image processing and is particularly

efficient to correct random errors. Furthermore, this filtering

has the property of respecting transitions.

In every case, the detected chord k̂n on frame n is the one

that minimizes the set of values
{

d̃k,n

}

k
:

k̂n = argmin
k

d̃k,n (10)

IV. EVALUATION AND CORPUS

A. Beatles corpus

Our first evaluation database is made of the 13 Beatles

albums (180 songs, PCM 44100 Hz, 16 bits, mono). This

database is in particular the one used in MIREX 08 for the

Audio Chord Detection task [17]. The evaluation is realized

thanks to the chord annotations of the 13 Beatles albums

kindly provided by Harte and Sandler [18]. In these annotation

files, 17 types of chords are present (maj, dim, aug, maj7, 7,

dim7, hdim7, maj6, 9, maj9, sus4, sus2, min, min7, minmaj7,

min6, min9) and one ‘no chord’ label (N) corresponding to

silences or untuned material. The alignment between annota-

tions and wave files are done with the algorithm provided by

Christopher Harte.

Figure 2 represents the distribution of the durations of the

different chord types on the Beatles corpus. The most common

chord types in the corpus are major, minor, dominant seventh,

ground truth :

transcription :

overlap :

Overlap Score = 3+4

10
= 0.70

C major A minor

C major F major A minor

Figure 3. Example of calculation of an Overlap Score.

‘no chord’ states, minor seventh and ninth. Any other chord

type represents less than 1% of the total duration.

B. QUAERO corpus

The second corpus was provided to us within the QUAERO

project4. It consists of 20 real audio songs annotated by

IRCAM (PCM 22050 Hz, 16 bits, mono) from various artists

(Pink Floyd, Queen, Buenavista Social Club, Dusty Spring-

field, Aerosmith, Shack, UB40, Fall Out Boy, Nelly Furtado,

Justin Timberlake, Mariah Carey, Abba, Cher, Phil Collins,

Santa Esmeralda, Sweet, FR David and Enya) and various

genres (pop, rock, electro, salsa, disco,...). The corpus only

contains major (88%), minor (10.7%) and ‘no chord’ (1.3%)

labels.

C. MIDI corpus

Our third evaluation database is composed of 12 songs from

various artists in different genres (blues, country, pop and

rock). The audio files (PCM 44100 Hz, 16 bits, mono) are

synthesized from MIDI files5 using the free software Timidity

++.6 Timidity ++ is a software synthesizer which can generate

realistic audio data from MIDI files using a sample-based

synthesis method. We have manually annotated the songs: 5

types of chords are present (maj, min, 7, sus2, sus4) as well

as the ‘no chord’ label (N). The distribution of the durations

of the different chord types on the MIDI corpus is displayed

on Figure 2.

D. Evaluation method

The evaluation method used in this paper corresponds to the

one used in MIREX 08 for the Audio Chord Detection task.

This evaluation protocol only takes into account major and

minor chord types. The 17 types of chords present in the

4QUAERO project : http://www.quaero.org
5The MIDI files were obtained on http://www.mididb.com
6The software is freely downloadable on http://timidity.sourceforge.net
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Chromagram of ’Eight days a week’

time (s)
0 20 40 60 80 100 120 140 160

C

C#/Db

D

D#/Eb

E

F

F#/Gb

G

G#/Ab

A

A#/Bb

B

Chord transcription of ’Eight days a week’

time (s)
0 20 40 60 80 100 120 140 160

C
C#/Db

D
D#/Eb

E
F

F#/Gb
G

G#/Ab
A

A#/Bb
B

Cm
C#/Dbm

Dm
D#/Ebm

Em
Fm

F#/Gbm
Gm

G#/Abm
Am

A#/Bbm
Bm
N/A

Figure 4. Chromagram and chord transcription for the song Eight days a week by The Beatles. At the bottom the estimated chord labels are in black while
the ground-truth chord annotation is in gray.

annotation files are therefore first mapped into major and

minor types following these rules:

• major: maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9,

maj9, sus4, sus2

• minor: min, min7, minmaj7, min6, min9

For the systems detecting more chord types (dominant

seventh, diminished, etc.), once the chords have been detected

with their appropriate models, they are then mapped to the ma-

jor and minor following the same rules than for the annotation

files.

An Overlap Score (OS) is calculated for each song as the

ratio between the lengths of the correctly analyzed chords and

the total length of the song. We define for the Beatles corpus an

Average Overlap Score (AOS) which is obtained by averaging

the Overlap Scores of all the 180 songs of the corpus. An

example of calculation of an Overlap Score is presented on

Figure 3.

E. Input features

Based on preliminary experiments we chose among three

types of chromagram [7], [16], [19], the one proposed by Bello

& Pickens [7], which appeared to give the best results for our

chord transcription task. The Constant-Q Transform [2] allow-

ing a frequency analysis on bins centered on logarithmically

spaced frequencies is used. The center frequency fk of the kth

bin is indeed defined as:

fk = 2
k
b fmin, (11)

where b represents the number of bins per octave and fmin

the frequency where the analysis starts.

The signal is first downsampled to 5512.5 Hz and the CQ-

Transform is calculated with b = 36 (3 bins per semi-tone),

between frequencies 73.42 Hz (D2) and 587.36 Hz (D5).

These parameters lead to a window length of 4096 samples

and the hop size is set to 512 samples.

Thanks to the 36 bins per octave resolution, a tuning

algorithm [3] can be used. After a pick detection in the

chromagram, a correction factor is calculated so as to take into

account the detuning. A median filtering is finally applied in

order to eliminate too sharp transitions (8 frames).

Some details about the calculation of the chromagram can

be found in [7]. We used the code kindly provided by the

authors. The silence (‘no chord’) detection is done by an

empirically set threshold on the energy of the chroma vectors.

An example of chromagram and chord transcription is

displayed on Figure 4.

V. RESULTS ON THE AUDIO CORPUS

The previously described five measures of fit (EUC, IS1,

IS2, KL1 and KL2), three chord models (1, 4 or 6 harmon-

ics) and two filtering methods (low-pass and median) with

neighborhood sizes from L = 1 to L = 25 are tested. These

375 parameter sets can be seen as so many chord recognition

systems. We now investigate the systems giving the best results

on the Beatles corpus.
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Table III
AVERAGE OVERLAP SCORES ON THE 13 BEATLES ALBUMS

no filtering low-pass filtering median filtering

1 harm. 4 harm. 6 harm. 1 harm. 4 harm. 6 harm. 1 harm. 4 harm. 6 harm.

EUC 0.665 0.636 0.588 0.710 0.684 0.646 0.705 0.679 0.636

IS1 0.665 0.441 0.399 0.706 0.460 0.415 0.706 0.465 0.422

IS2 0.657 0.667 0.170 0.704 0.713 0.178 0.703 0.714 0.178

KL1 0.665 0.487 0.140 0.700 0.532 0.151 0.692 0.498 0.143

KL2 0.667 0.672 0.612 0.709 0.712 0.648 0.714 0.718 0.656

A. Results with major/minor chord types

Average Overlap Scores on the 13 Beatles albums are

presented on Table III with the major/minor templates. For

sake of conciseness, we only displayed the results for the

optimal choice of L. The best average result is obtained with

the KL2, the 4 harmonics chord model and the median filtering

with L = 15 giving a recognition rate of 71.8%.

Interestingly, we notice that for the EUC, IS1 and KL1

measures of fit, the results worsen when we increase the

number of harmonics. We propose here two explanations

for these results. In the particular cases of IS1 and KL1,

this can be explained by the fact that they both contain a

logarithm component which is sensitive to the zeros within

chord templates. We have seen in Section III-C that these

measures of fit categorize chords by comparing every null

chroma within the chord template to its value in the chroma

vector. Since chord models with high number of harmonics

contain less null chromas (see Figure 1), the discrimination

between chords is harder, which results in worse scores. A

more general explanation for this phenomenon can be found by

relating back to the notion of chord template itself. As such, a

chromagram frame is very hard to characterize: it is supposed

to only contain the notes played by the instruments, but in

reality it also captures noise or drums. Furthermore, it also

depends on instrument timbres and on the relative amplitudes

of the played notes. The question is: what kind of templates

should we use in order to only capture useful information

from these chroma vectors? The exponential model introduced

in harmonic-dependent templates is supposed to better suit

the reality of music, but it also degrades the chord templates,

by making less clear what they are supposed to capture. By

introducing notes which are not explicitly present in the chord,

the templates may detect notes which are actually due to noise,

drums, or even melody. Indeed, our results show that the only

cases where the harmonic chord templates perform well are the

IS2 and KL2 with 4 harmonics and still the differences between

these scores and those obtained with only one harmonic are

very small.

A pathological situation appears when using the Itakura-

Saito divergences IS1 and IS2 with the 6 harmonics chord

model. Indeed, we observe that the use of IS2 with the 6

harmonics chord model leads to a systematic detection of

minor chords, while the IS1 measure with 6 harmonics chord

model only detects major chords. In the case of the IS1 the

loss in scores is less noticeable, because of the high number

of major chords in the Beatles corpus. We believe that the

explanation of this phenomena lies in the structure of the 6

harmonics chord model. Indeed, the 6 harmonics chord model

gives a different number of null components for the major and

minor chords: we can see on Figure 1 that the major chord

model has 6 null components while the minor chord has 5

null components. The recognition criterion associated to the

IS2 has the property that given a chroma vector, the more zeros

in the chord template pk, the larger the value of the criterion.

This measure of fit will therefore always give larger values

for the chord models having more null components, that is to

say the major chords, which leads to a systematic detection

of only minor chords. The same phenomenon can be observed

for the IS1 measure of fit, this time with a systematic detection

of major chords.

Both low-pass filtering and median filtering give good re-

sults: the low-pass filtering tends to smooth the chord sequence

while the median filtering reduces the random errors. In most

cases the optimal value of L lies between 13 and 19 which

corresponds, with our window parameters, to a length of

approximately 2 seconds. Nevertheless, while post-processing

methods inform our systems about the expected chord length,

we still notice that our transcriptions are sometimes frag-

mented (see Figure 4). While these fragmented chords, thanks

to their short duration, do not penalize much the recognition

scores, they degrade the transcription by making it less clear

and readable.

Some songs give disappointing results (<0.100) with all

parameter sets: it is often due either to a strong detuning

which is too large to be corrected by the tuning algorithm

present in the chromagram computation (eg. Wild Honey Pie,

Lovely Rita), or to untuned material such as spoken voice,

non-harmonic instruments or experimental noises (applause,

screams, car noise, etc.) (e.g. Revolution 9).

B. Results with other chord types

The simplicity of our method allows to easily introduce

chord templates for chord types other than major and minor:

we study here the influence of the chord types considered over

the performances of our system.

The choice of the introduced chord types is guided by the

statistics on the corpus previously presented. We introduce

in priority the most present chords of the corpus: dominant

seventh (7), minor seventh (min7) and ninth (9). The best

results are obtained by detecting major, minor and dominant

seventh chords, with the KL2, the one harmonic chord model
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and the median filtering with L = 17 giving a recognition

rate of 72.4%. The introduction of dominant seventh chords,

which are very present in the Beatles corpus, clearly enhances

the results. Yet, these results should be tempered: indeed, when

our Maj-Min-7 method detects a chord as dominant seventh,

it is right in only 9.2% of the cases. Most of the time (53.8%)

the ground-truth chord is in reality the associated major chord.

The dominant seventh template therefore helps the detection

of major chords. It means that often, when our Maj-Min-7

gives better results that our Maj-Min method, it is due to the

detection of major chords which would not have been detected

with the Maj-Min method.

The introduction of more chord types which are less present

(minor seventh, ninth) degrades the results (70.6% for Maj-

Min-7-Min7 and 70.6% for Maj-Min-7-Min7-9). Indeed, the

introduction of a model for a new chord type gives a better

detection for chords of this type but also leads to new errors

such as false detections. Therefore only frequent chord types

should be introduced, ensuring that the enhancement caused

by the better recognition of these chord types is larger than

the degradation of the results caused by the false detections.

C. Comparison with the state-of-the-art

Our method is now compared to the following methods that

entered MIREX 08.

Bello & Pickens (BP) [7] use 24-states HMM with musi-

cally inspired initializations, Gaussian observation probability

distributions and EM-training for the initial state distribution

and the state transition matrix.

Ryynänen & Klapuri (RK) [8] use 24-states HMM with

observation probability distributions computed by comparing

low and high-register profiles with some trained chord profiles.

EM-training is used for the initial state distribution and the

state transition matrix.

Khadkevich & Omologo (KO) [20] use 24 HMMs: one

for every chord. The observation probability distributions are

Gaussian mixtures and all the parameters are trained through

EM.

Pauwels, Verewyck & Martens (PVM) [21] use a proba-

bilistic framework derived from Lerdahl’s tonal distance metric

for the joint tasks of chords and key recognition.

These methods have been tested with their original imple-

mentations and evaluated with the same protocol (AOS). We

tested the methods on the Beatles and Quaero corpus. Results

of this comparison with the state-of-the-art are presented on

Table IV.

First of all, it is noticeable that all the methods give rather

close results on the Beatles corpus: there is only a 8% differ-

ence between the methods giving the best and worse results.

This is likely to be partially due to the fact that this database is

the largest annotated database available and is commonly used

by all researchers working on chord recognition, either to tune

some parameters, train their methods or simply to test if their

method works. In particular, the RK & KO methods are both

pre-trained on the Beatles corpus. We can observe that our

two methods give the best AOS on this corpus. Yet, since all

the scores are close, we propose to perform a Friedman and

Figure 5. Tukey-Kramer’s test performed on Overlap Scores calculated on the
Beatles corpus. On this figure, the x-axis shows the average rank of each chord
recognition method along with its confidence interval. Ranks are presented
in ascending order and two mean ranks are significantly different if their
confidence intervals are disjoint.

a Tukey-Krammer test (see [22], [23] for details), in order

to figure out whether there are significant differences between

the tested chord recognition methods. Results are presented on

Figure 5: it appears that our Maj-Min method is significantly

better from two other tested methods (KO & PVM), while our

Maj-Min-7 method is significantly better than three methods

(RK, KO & PVM).

Interestingly, results on the Quaero corpus are more con-

trasted: in particular KO gives lower scores while RK obtain

here the best results. This result is actually surprising, since

both these methods use models which are trained on Beatles

data and yet they respond differently to the new corpus (+0.025

for RK and -0.160 for KO). It is interesting to see that

our methods, while not giving the best scores anymore, still

performs well on this corpus: our Maj-Min method indeed

gives the second best result on this corpus. The larger gap for

Maj-Min-7 can be explained by the fact that the introduction

of dominant seventh chords tend to overestimate the number

of major chords (see Section V-A) and that the Quaero corpus

contain less major chord that the Beatles corpus (see Section

IV-B).

Concerning the choice of parameters, experimental results

show that for the Maj-Min method, the AOS obtained with the

optimal parameters is 0.709 (against 0.706 with the default

Maj-Min parameters) and for the Maj-Min-7 method, the

optimal score is 0.695 (while it is 0.682 with the default pa-

rameters). These good performances show that our parameters

choice, while undeniably being optimal for the Beatles corpus,

also fits well other genres or styles of music.

Our methods are also characterized by a very low compu-

tational time. They are indeed twice as fast as the best state-

of-the-art method (Bello and Pickens).

Besides this evaluation on these two corpus, our methods

have also taken part in the MIREX 2009 evaluation on the
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Table IV
COMPARISON WITH THE STATE-OF-THE-ART

Beatles corpus Quaero corpus

AOS Time AOS Time

Our method (Maj-Min) 0.718 790s 0.706 95s

Our method (Maj-Min-7) 0.724 796s 0.682 97s

Bello & Pickens (BP) 0.707 1619s 0.699 261s

Ryynänen & Klapuri (RK) 0.705 2241s 0.730 350s

Khadkevich & Omologo (KO) 0.663 1668s 0.503 255s

Pauwels, Varewyck & Martens (PVM) 0.647 12402s 0.664 2684s

Audio Chord Detection task for the pre-trained systems [24].

The evaluation corpus was not only composed by the Beatles

songs but also 36 songs from Queen and Zweieck. While once

again the scores are very close, our Maj-Min-7 and Maj-Min

methods gave respectively the second and fourth best Average

Overlap Scores for the major-minor chord recognition task and

reached the first and second places for the root detection task.

The trained systems gave better scores that pre-trained systems

but also our Maj-Min-7 method gives the same score for the

root detection than the best trained system [25] (using SVM

classifiers): this shows that it is really hard to draw conclusions

on the influence of training.

D. Analysis of the errors

In most chord transcription systems, the errors are often

caused by the harmonic proximity or the structural similarity

(common notes) between the real chord and the wrongly

detected chord.

Harmonic proximity

Errors can be caused by the harmonic proximity between

the original and the detected chord, that is to say chords

which have a particular relationship involving harmony, key,

etc. Figure 6 pictures the doubly nested circle of fifths which

represents the major chords (capital letters), the minor chords

(lower-case letters) and their harmonic relationships. The

distance linking two chords on this doubly nested circle of

fifths is an indication of their harmonic proximity. Given a

major or minor chord, the 4 closest chords on this circle are

the relative (submediant), mediant, subdominant and dominant.

Structural similarity

Two chords are also likely to be mistaken one for another

when they look alike, that is to say, when they share notes

(especially in template-based systems). Given a major or minor

chord, there are 3 chords which have 2 notes in common with

this chord: the parallel minor/major, the relative minor/major

(or submediant) and the mediant chord. Note that these 2

last chords are also harmonically close to the original chord.

These types of errors are very likely to occur in template-

based methods, which does not extract harmonic structure

information from the music piece.

We have therefore brought out 5 potential sources of errors

among the 23 possible ones (i.e., the 23 other wrong can-

didates for one reference chord). Some of these errors seem

specific to the template-based systems, while the others seem

to apply to every chord recognition system. Examples of these

Figure 6. Doubly nested circle of fifths [7].

Table V
PARTICULAR RELATIONSHIPS BETWEEN CHORDS AND POTENTIAL

SOURCES OF ERRORS: EXAMPLES FOR C MAJOR AND C MINOR CHORDS

Reference chord C Cm

parallel Cm C

relative (submediant) Am A♭

mediant Em E♭

subdominant F Fm

dominant G Gm

potential sources of errors for C major and C minor chords

are displayed on Table V.

Figure 7 displays the distribution of these error types as a

percentage of the total number of errors for every evaluated

method. Errors due to the bad detection of the ‘no chord’ states

are represented with the ‘no chord’ label.

The main sources of errors correspond to the situations

previously described and to the errors caused by silences (‘no

chord’). Actually, in most methods, the 5 types of errors

previously considered (over the 23 possible ones) represent

more than half of the errors.

As expected, our methods have the largest parallel errors

percentage (with the exception of the RK method), which is

probably due to the fact that we work with chord templates

and therefore do not detect any harmonic features such as

key, harmony, chord vocabulary, etc. Furthermore, for our

methods (and the RK method), the percentages of errors due

to structural similarity and harmonic proximity are the same,

while for all other tested methods, the proportion of harmonic

proximity errors is larger. This is actually very surprising that

the method proposed by Ryynänen & Klapuri has a error

distribution very close to our Maj-Min method, while being

based on training.
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Figure 7. Distribution of the errors as a percentage of the total number of errors.

Among interesting results, one can notice that the intro-

duction of the dominant seventh chords clearly reduces the

proportion of the errors due to relative (submediant) and

mediant (-11%).

Finally, Pauwels, Varewyck & Martens’ system is clearly

mostly penalized by the wrong detection of the ‘no chord’

states, when Khadkevich & Omologo’s method produces a

uniformly distributed range of errors.

VI. RESULTS ON THE MIDI CORPUS

We now use the two sets of parameters described in the

previous section for the Maj-Min (KL2, 4 harmonics, median

filtering with L = 15) and the Maj-Min-7 (KL2, 1 harmonic,

median filtering with L = 17) chord detection systems on the

MIDI corpus.

A. Influence of the music genre

Table VI shows the Overlap Scores for the 12 songs of

the MIDI corpus for the Maj-Min and the Maj-Min-7 chord

recognition methods. Besides the results obtained with the

default parameters, we also displayed the results with the

optimal parameters in order to evaluate the fitness of our

default parameters.

The first thing we can observe is that the scores obtained

with the default parameters are rather close to the best ones.

This shows that the parameters we deduced from the Beatles

corpus can be used in a more general context.

We can also see that the scores are all creditable. This

can surely be explained by the fact that we work here with

resynthesized wave files and not real audio. These audio

files are indeed generated with instrument patterns which

contain less noise and untuned material than real instrument

recordings.

Genre does not seem to have an influence on the scores.

Nevertheless, the scores obtained on country songs are partic-

ularly large, but it is probably due to the very simple chord

structures of these songs (mainly alternation of 3 chords).

B. Influence of the percussive noise

Our method strongly relies on the chromagram, that is to

say a harmonic representation of the music. It can therefore be

thought that inharmonic components of the music, for example

drums, tend to add noise to the chromagram, which can lead

to errors in the chord detection.

Working with audio data computed from MIDI files gives

us the chance to synthesize them without the percussive parts.

Indeed, the software Timidity ++ allows to mute one channel

(instrument) for the wave-synthesis of the MIDI file.

The same simulations have been performed with these

drum-free audio files. The removal of the percussions does not

improve significantly the Overlap Scores. Indeed, the average

score improvement is only 0.8% as well with the Maj-Min

system than with the Maj-Min-7. We believe that the noise

contained in the chromagram, which lead to errors, is not only

due to drums but also, for example, to the melody itself, since

it does not only play notes contained in the chord pattern.

C. Beat synchronous chord detection

The filtering process we have been using so far has a

fixed length predetermined by the system parameters. It seems

interesting to introduce beat information either in the chroma-

gram computation or in the recognition criteria. For our tests

we used the beat-detection algorithm provided by Davies &

Plumbley [26].

The first way to take into account the beat information

is to compute a beat-synchronous chromagram, that is to



11

Table VI
OVERLAP SCORE FOR THE 12 SONGS OF THE MIDI CORPUS

Maj-Min Maj-Min-7

Song title Default Optimal Default Optimal

Country

Ring of fire (Johnny Cash) 0.844 0.918 0.848 0.924

Tennessee waltz (Roy Acuff) 0.941 0.955 0.949 0.955

Stand by your man (Tammy Wynette) 0.895 0.909 0.902 0.911

Pop

Dancing queen (ABBA) 0.786 0.804 0.728 0.782

I drove all night (Cyndi Lauper) 0.870 0.891 0.856 0.889

Born to make you happy (Britney Spears) 0.867 0.892 0.861 0.892

Blues

Blues stay away from me (The Delmore Brothers) 0.630 0.791 0.854 0.912

Boom, boom, boom (John Lee Hooker) 0.839 0.903 0.876 0.913

Keep it to yourself (Sonny Boy Williamson) 0.771 0.909 0.907 0.928

Rock

Twist and shout (The Beatles) 0.827 0.892 0.850 0.901

Let it be (The Beatles) 0.835 0.876 0.876 0.880

Help ! (The Beatles) 0.918 0.920 0.899 0.918

say averaging the chromagram over the number of frames

representing a beat time. This process has already been used

by Bello & Pickens [7]. Yet this does not improve the results:

comparing the best results obtained with the usual chromagram

and those obtained with the beat-synchronous one, it appears

that the average degradation is -6% for the Maj-Min and -7%

for the Maj-Min-7 system.

The second way to integrate this information is to filter the

recognition criteria (either with the low-pass or the median

filtering method) with a neighborhood size equal to the beat

time. Even if the degradation is lower than with the beat-

synchronous chromagram, the results are also penalized: the

average degradation is -2% for the Maj-Min and the -4% for

the Maj-Min-7 system.

We believe that these disappointing results are probably

due to the fact that the beat detection does not take into

account the distinction between on-beats and off-beats. Indeed,

the chord change tend to occur mainly on the on-beats and

not on every beat. Averaging either the chromagram or the

recognition criteria on every beat does not really capture the

rhythmic information.

VII. CONCLUSION

In this paper we have presented a fast and efficient chord

recognition method. The main innovative idea is the joint use

of popular measures which had never been considered for this

task and filtering methods taking advantage of time persis-

tence. The decoupling of various stages of the chord template

matching process enables to achieve high effectiveness in less

time. Our system also offers a novel perspective about chord

detection, which distinguishes from the predominant HMM-

based approaches.

Since our method is only based on the chromagram no

information about style, rhythm or instruments is needed so

that our recognition system would work with any type of

music. Furthermore we do not require any training on any

database, which enables the computation time to be kept really

low.
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