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ABSTRACT

Approximating fixed-interval smoothing distributions using
particle-based methods is a well-known issue in statistical in-
ference when operating on general state-space hidden Markov
models (HMM). In this paper we focus on the computation
of path-space smoothed additive functionals. More precisely,
this contribution provides new results on the forward filtering
backward smoothing (FFBS) and the forward filtering back-
ward simulation (FFBSi) algorithms. We prove that the Lq-
mean error convergence rate of both algorithms depends on
the number of observations T and the number of particles N
only through the ratio T/N . We also derive non-asymptotic
exponential deviation inequalities for these algorithms. The
FFBS and FFBSi algorithms are compared when applied to
parameter estimation in HMM.

Index Terms— Sequential Monte Carlo methods, FFBS,
FFBSi, additive functionals, Expectation Maximization.

1. INTRODUCTION

Let {Xt, Yt}t≥1 be a hidden Markov model taking values in
X × Y where X and Y are general state-space endowed with
countably generated σ-fields. The initial distribution of the
Markov chain {Xt}t≥1 is denoted by χ and its transition den-
sity by m(x, x′), with respect to a probability distribution λ
on X. For any t ≥ 1, the conditional distribution of Yt given
Xt has a density denoted by g(Xt, ·) with respect to a given
measure on Y.

For any integers 1 ≤ s ≤ t and u ≥ 1 define the function
φs:t|u such that

E [H(Xs:t)|Y1:u] = φs:t|u(H,Y1:u) ,

where H is a bounded function on Xt−s+1. Note that such
a function exists by definition of the conditional expectation.
In many instances, such as solving inverse problems in non-
linear HMM, it is necessary to compute path-space smoothed
functionals i.e. quantities of the form φ1:T |T (H, y1:T ) where
y1:T is a fixed set of observations. In this paper we consider

particle methods to approximate φ1:T |T (H, y1:T ) when the
function H is of the form

T∑
t=1

ht(xt) , (1)

where {ht}Tt=1 is a family of bounded functions on X.
Particle filters are efficient solutions to compute approx-

imations of φs:t|u(H, y1:u). Many different implementations
of the particle filters have been proposed in the literature with
different computational costs; see [2, 6]. The FFBS algo-
rithm has a computational cost per time step of orderO

(
N2
)
,

where N is the number of particles, while it is shown in [4]
that the FFBSi algorithm can be implemented with a O (N)
complexity per time step. In the case of additive functionals,
[3] proposed a FFBS-based algorithm which can be imple-
mented forward in time (see [7] for an application). Lq-mean
error bounds have been derived for the FFBS algorithm: [3]
shows that it is of order T/

√
N for q > 2.

In this paper, we establish that the Lq-mean error conver-
gence rate of both the FFBS and the FFBSi algorithms de-
pends on T and N only through the ratio T/N . These results
are obtained for q ≥ 2 under weaker conditions than in [3].
We also derive exponential deviation inequalities. Section 2 is
devoted to our theoretical contribution: we first briefly recall
FFBS and FFBSi and then state our new results on the Lq-
mean errors and exponential deviation inequalities. In Sec-
tion 3, we compare these two procedures when applied to in-
ference in non-linear HMM based on an Expectation Maxi-
mization (EM) algorithm.

2. RESULTS

The approximation of φ1:T |T (H, y1:T ) whenH is of the form
(1) is equivalent to the approximation of the marginal smooth-
ing expectations φt:t|T (ht, y1:T ) for t ∈ {1, · · · , T}. For both
FFBS and FFBSi, the forward pass produces a particle ap-
proximation of the filtering distributions φt:t|t(·, y1:t) and the
backward pass computes an approximation of the smoothing
distributions φt:T |T (·, y1:T ). We then deduce an approxima-



tion of the marginals φt:t|T (·, y1:T ). We now detail these al-
gorithms.

2.1. Forward pass

The distribution φt:t|t(·, y1:t) is approximated using weighted
particles {(ξN,it , ωN,it )}Ni=1, 1 ≤ t ≤ T defined as follows.
Let {ξN,i1 }Ni=1 be i.i.d. (independent and identically dis-
tributed) random variables distributed according to the instru-
mental density ρ1; set the unnormalized importance weights
ωN,i1

def
= ω1(ξN,i1 ), where ω1(x)

def
= dχ/dρ1(x) g(x, y1).

Given {(ξN,it−1, ω
N,i
t−1)}Ni=1, the sample {(ξN,it , ωN,it )}Ni=1 is ob-

tained by considering the auxiliary particle filter (see [13, 1]):
pairs {(IN,it , ξN,it )}Ni=1 of indices and particles are simulated
from the instrumental distribution defined by:

πt|t(i,dx) ∝ ωN,it−1 pt(ξ
N,i
t−1, x) λ(dx) , (2)

on the product space {1, . . . , N} × X, where pt is an (unnor-
malized) transition kernel. For any i = 1, . . . , N we asso-
ciate to the particle ξN,it its unnormalized importance weight

defined by ωN,it
def
= ωt(ξ

N,IN,i
t

t−1 , ξN,it ), where

ωt(x, x
′)

def
=

m(x, x′)g(x′, yt)

pt(x, x′)
.

Keeping the particles genealogy obtained in this forward
pass provides an approximation of the smoothing distribu-
tions φ1:T |T . This procedure is called the geneaogical tree
algorithm.

2.2. Backward pass of the FFBS algorithm

From the weighted samples {(ξN,it , ωN,it )}Ni=1, 1 ≤ t ≤ T ,
an approximation φFFBS,N

t:T |T of the smoothing distribution
φt:T |T (·, y1:T ) is constructed recursively backward using

φFFBS,N
t:T |T (H)

=

∫
BφN

t
(xt+1,dxt)φ

FFBS,N
t+1:T |T (dxt+1:T )H(xt:T ) ,

where, for all x ∈ X and all function h ≥ 0 on X

BφN
t

(x, h)
def
=

N∑
i=1

ωN,it m(ξN,it , x)∑N
`=1 ω

N,`
t m(ξN,`t , x)

h
(
ξN,it

)
,

is a particle approximation of the backward smoothing kernel.
From these two equations, we deduce a particle approxima-
tion of φt:t|T (·, y1:T ), see [5],

N∑
i=1

ωN,it|T δξN,i
t

,

where the importance weights ωN,it|T are updated recursively as
follows: for all i ∈ {1, . . . , N},

ωN,iT |T
def
=

ωN,iT

ΩT
, ΩT

def
=

N∑
i=1

ωN,iT ,

ωN,it|T
def
=

N∑
j=1

ωN,jt+1|T
ωN,it m(ξN,it , ξN,jt+1)∑N
`=1 ω

N,`
t m(ξN,`t , ξN,jt+1)

, 1 ≤ t < T .

2.3. Backward pass of the FFBSi algorithm

Consider, for t ∈ {1, . . . , T−1}, the Markov transition matrix
{ΛNt (i, j)}Ni,j=1 over the state-space {1, . . . , N} given, for all
(i, j) ∈ {1, . . . , N}2, by

ΛNt (i, j)
def
=

ωN,jt m(ξN,jt , ξN,it+1)∑N
`=1 ω

N,`
t m(ξN,`t , ξN,it+1)

. (3)

The transition probabilities defined in (3) induce an inhomo-
geneous Markov chain {Ju}Tu=1 evolving backward in time
with a joint distribution given, for j1:T ∈ {1, . . . , N}T , by

P
[
J1:T = j1:T

∣∣FNT ] =
ωN,jTT

ΩT

T−1∏
t=1

ΛNt (jt+1, jt) , (4)

where FNT
def
= σ

{
(ξN,is , ωN,is )Ni=1; 1 ≤ s ≤ T

}
. FFBSi ap-

proximates the smoothing distribution φ1:T |T by

φFFBSi,N
1:T |T (H)

def
= N−1

N∑
`=1

H
(
ξ
N,J`

1
1 , . . . , ξ

N,J`
T

T

)
, (5)

where {J`1:T }N`=1 are N paths drawn independently (given
FNT ) according to (4). The approximation (5) was introduced
in [10, Algorithm 1, p.158]. [4] proposes an implementation
that reduces the computational complexity from O(N2T )
to O(NT ) using a specific form of acceptance-rejection
method. This version of the FFBSi algorithm is used in
Section 3 to illustrate the new results provided in this contri-
bution.

2.4. Bounds on the smoothing errors

Consider the following assumptions

(A1) a) 0 < g(·, yt) ≤ sup1≤t≤T supx g(x, yt) < +∞ .

b) sup1≤t≤T,x∈X
∫
pt(x, x

′)λ(dx′) < +∞ .

c) sup2≤t≤T supx,x′ ωt(x, x
′) + supx ω1(x) < +∞ .

(A2) a) There exist 0 < σ− < σ+ < +∞ such that for any
(x, x′) ∈ X2, σ− ≤ m(x, x′) ≤ σ+.

b) There exists c− > 0 s.t.
∫
χ(dx)g(x, y1) ≥ c− and

inf
2≤t≤T

inf
x

∫
m(x, x′)g(x′, yt)λ(dx′) ≥ c− .



For the FFBS algorithm, the smoothing error can be decom-
posed into a sum of two terms. The first one is a martingale
whose Lq-mean error is upper-bounded by

√
T/N and the

Lq-mean error of the second one is bounded by T/N . For the
exponential deviation inequalities of the FFBS algorithm, the
martingale term can be dealt with using the Azuma-Hoeffding
inequality while the second term needs a specific exponential
deviation inequality for ratios of random variables. Finally,
the difference between the FFBS and the FFBSi approxima-
tions can be rewritten as a martingale, thus yielding the results
for the FFBSi. The proof of Theorem 1 is given in [8]. Define
the FFBS and the FFBSi smoothing errors by

∆algo,N
T (H, y1:T )

def
= φ1:T |T (H, y1:T )− φalgo,N1:T |T (H, y1:T ) ,

where algo is FFBS or FFBSi.

Theorem 1. Let H be a function of the form (1) for some
bounded functions {ht}Tt=1. Assume A1–2. Then, for all q ≥
2, there exists a constant C s.t. for all T , N ∈ N? and ε > 0:∥∥∥∆algo,N

T (H, y1:T )
∥∥∥
q
≤ CσT

(√
T

N
+
T

N

)
,

P
{∣∣∣∆algo,N

T (H, y1:T )
∣∣∣ > ε

}
≤ 2 exp

(
−CNε

2

σ2
TT

)
+ 8 exp

(
−CNε
σTT

)
,

where σT
def
= max

1≤t≤T
{osc(ht)} and algo is FFBS or FFBSi.

3. APPLICATIONS

3.1. Linear Gaussian model

The performance of the FFBS and FFBSi algorithms - imple-
mented resp. as in [3] and [4] and referred to as Forward-
FFBS and Fast-FFBSi - are compared when applied to the
estimation of IT

def
= T−1

∑T
t=1 E [Xt|Y1:T ]. It is illustrated

with the following linear Gaussian model:

Xt+1 = φXt + σuUt , Yt = Xt + σvVt ,

where X1 ∼ N
(

0,
σ2
u

1−φ2

)
, {Ut}t≥1 and {Vt}t≥1 are inde-

pendent sequences of i.i.d. standard gaussian random vari-
ables (independent of X1). The parameters (φ, σu, σv) are
assumed to be known. Data were generated using the model
with φ = 0.9, σu = 0.6 and σv = 1.

Table 1 provides the empirical variance of the estimation
of IT given by the genealogical tree and the FFBSi methods
over 250 independent Monte Carlo experiments. We display
in Figure 1 the empirical variance for different values of N
as a function of T for both estimators. These estimates are
represented by dots and a linear regression (resp. quadratic
regression) is also provided for the FFBSi algorithm (resp.
for the genealogical tree method).

Genealogical tree
HHH

HHT
N

300 500 750 1000 1500

300 137.8 119.4 63.7 46.1 36.2
500 290.0 215.3 192.5 161.9 80.3
750 474.9 394.5 332.9 250.5 206.8

1000 673.7 593.2 505.1 483.2 326.4
1500 1274.6 1279.7 916.7 804.7 655.1

FFBSi
H
HHHHT

N
300 500 750 1000 1500

300 5.1 3.1 2.3 1.4 1.0
500 9.7 5.1 3.7 2.6 2.2
750 11.2 7.1 4.9 3.7 2.6

1000 16.5 10.5 6.7 5.1 3.4
1500 25.6 14.1 7.8 6.8 5.1

Table 1: Empirical variance for different values of T and N .
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Fig. 1: Empirical variance for N = 300 (dotted line), N =
750 (dashed line) and N = 1500 (bold line).

3.2. EM-based inference in non-linear HMM

Inference in non-linear HMM can be solved by EM-based al-
gorithms: the E-step is in general, not explicit, and has to be
approximated by Monte Carlo methods [1]. In HMM, when
the complete likelihood belongs to the exponential family, the
E-step consists in computing φ1:T |T (H, y1:T ) where H is of
the form

∑T−1
t=1 ht(xt, xt+1). Note that if the state transition

density m does not depend on the parameter of interest, H
takes the form (1). In the example below, we approximate the
E-step by using the FFBSi algorithm. Using Theorem 1 and
the results in [9, section 5], the convergence of this FFBSi-
EM algorithm to the same limit points as EM is addressed



in [11].
The Simultaneous Localization And Mapping (SLAM)

problem arises when a robot seeks to acquire a map estimate
and at the same time wishes to localize itself. We illustrate the
good performance of the Fast-FFBSi algorithm for SLAM.

The robot pose is represented byXt = (Xt,1, Xt,2, Xt,3)T

where (Xt,1, Xt,2) are the robot’s cartesian coordinates and
Xt,3 is its heading direction. The controls ut = (vt, ψt)

T

given to the robot are supposed to be known; ψt is the robot’s
steering angle and vt its velocity. The state transition model
can be written:

Xt = Xt−1 +

(vt + εt,1) dt cos(Xt−1,3 + (ψt + εt,2))
(vt + εt,1) dt sin(Xt−1,3 + (ψt + εt,2))

(vt + εt,1) dt
sin((ψt+εt,2))

B + εt,3


whereB is the robot’s wheelbase, (εt,1, εt,2, εt,3) ∼ N3(0,Σ)
with known 3 × 3 covariance matrix Σ and dt is the time
between two successive poses. The robot’s environment is
represented by a 2-dimensional map where landmarks are se-
lected in the robot’s neighborhood. The total number of land-
marks q is assumed to be known. At each time step the robot
is able to determine which landmarks are observed. Let θ·,j
(in R2) be the cartesian coordinates of the j−th landmark.

At time t, the perceives qt landmarks and for each ob-
served landmark i, the observation model relates the measure-
ment Yt,i to the robot pose:

Yt,i =

(√
(θ1,i −Xt,1)2 + (θ2,i −Xt,2)2

arctan
θ2,i−Xt,2

θ1,i−Xt,1
−Xt,3

)
+ δt,i ,

where the noise vectors
(
δt,i
)
t,i

i.i.d∼ N2(0, R) with known
2 × 2 covariance matrix R. Since the state transition density
does not depend on the map, H is of the form (1). To make
the exposition short and easier, we consider a quite simple
model for SLAM; more realistic models (relaxing e.g. some
conditions on the association errors or on the Gaussian noise)
are considered in [12].

Data are generated with R = diag(σ2
r , σ

2
b ) where σr =

0.5m and σb = π
60 rad. The controls ut were given by a set

of waypoints, B = 2m and the robot path was sampled using
Σ = diag(σ2

v , σ
2
φ, σ

2
ψ) with σv = 0.6m.s−1, σφ = 10−2rad

and σψ = π
30 rad. Landmarks positions are given in Figure 2.

The map is estimated using FFBSi-EM based on T = 104 ob-
servations obtained along the path of the robot; see figure 2.
At each iteration, the observation model is linearized so that
the complete-data log-likelihood belongs to the exponential
family. When a landmark is seen for the first time, its posi-
tion is initialized with the received observation and the esti-
mated pose (empirical mean of the particles). All runs were
performed using N = 100 particles. For the forward pass
of Fast-FFBSi, pt is a Gaussian approximation of the optimal
proposal kernel (i.e. the distribution of Xt given the previous
pose, the last control and the last observation). Figure 2 dis-
plays the mean error estimate over all landmarks (Euclidian

distance between the true position and the estimated one) as
a function of the FFBSi-EM iterations. Plots are based on 50
independent runs summarized by the median (bold line) and
by the upper and lower quartiles (dotted lines).
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Fig. 2: [top] Evolution of the error for all landmarks. [bottom]
True map (star), Estimated map (circle), and the robot path.
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