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a b s t r a c t

Given a finite set X and a collectionΠ , called a profile, of binary relations defined on X (which can be linear
orders, complete preorders, any relations, and so on), a relation R is said to be median if it minimizes the
total number of disagreements with respect to Π . In the context of voting theory, X can be considered
as a set of candidates and the relations of Π as the preferences of voters, while a median relation can
be adopted as the collective preference with respect to the voters’ opinions. If the relations of Π are
tournaments (which includes linear orders), then there always exists a median complete preorder (i.e. a
median complete and transitive relation) which is in fact a linear order. Moreover, if there is no tie when
aggregating the tournaments of Π , then all the median complete preorders are linear orders. We show
the same when the median is assumed to be a weak order (a weak order being the asymmetric part of a
complete preorder). We then deduce from this that the computation of a median complete preorder or of
a median weak order of a profile Π of m linear orders is NP-hard for any even m greater than or equal to
4 or for odd m large enough with respect to |X | (about |X |

2). We then sharpen these complexity results
when coping with other kinds of profilesΠ for odd values ofm. In particular, when the relations ofΠ and
the median relation are complete preorders, we obtain the same results for the NP-hardness of Kemeny’s
problem.

© 2012 Published by Elsevier B.V.

1. Introduction

Assume that we are given a finite set X = {1, 2, . . . , n} of n
candidates and a collection (or multi-set) Π = (R1, R2, . . . , Rm),
called a profile, of the preferences Ri of m voters (1 ≤ i ≤ m) who
want to rank the n candidates. These preferences can be binary
relations without noticeable properties, or can be linear orders,
or complete preorders, and so on (see below for the definition of
these ordered structures). Note that the relations involved in the
profile may be the same: two different voters may share the same
preference.

In order to aggregate these m relations into a collective rank-
ing, wemay apply Condorcet’s pairwise comparisonmethod (Con-
dorcet, 1785) (according to McLean et al. (2008), this method had
been suggested a long time ago by Ramon Llull: ‘‘Ramon Llull
(ca 1232–1316) (. . . ) made contributions which have been be-
lieved to be centuries more recent. Llull promotes the method of
pairwise comparison, and proposes the Copeland rule to select a
winner’’; for references upon the historical context, see also for
instance (Black, 1958; McLean, 1995; McLean and Urken, 1995;
Monjardet, 1991, 2008)). Such a pairwise comparisonmethod con-
sists in computing, for each pair of candidates {x, y} (with x ≠ y),
the number mxy of voters who prefer x to y and the number myx

E-mail addresses: hudry@enst.fr, hudry@infres.enst.fr.

of voters who prefer y to x. Then x is collectively preferred to y if
we have mxy > myx; the relation M∗ defined on X by xM∗y when
we have mxy > myx is called the (strict) majority relation. Unfor-
tunately, as pointed out by Condorcet himself, the relation thus
defined does not necessarily provide a transitive ranking, even if
all the preferences Ri (1 ≤ i ≤ m) are linear orders: amajoritymay
prefer a candidate x to another candidate y, another majority may
prefer y to a third candidate z, and still another majority may pre-
fer z to x. This is the well-known ‘‘voting paradox’’ or ‘‘Condorcet
effect’’ (Guilbaud, 1952).

When such a situation occurs, one possibility for defining the
collective ranking consists in computing a binary relation with
structural properties like transitivity and which summarizes the
individual preferences as well as possible, or more precisely which
minimizes the number of disagreements with respect to Π (see
below). A relation which minimizes this number of disagreements
is called a median relation (Barthélemy and Monjardet, 1981). A
usual solution consists in looking for amedian linear order. In such
a linear order, all the candidates are ranked, without ties. It seems
that Condorcet already suggested this approach (see Guilbaud
(1952) and Young (1988)). It is quite often attributed to Kemeny,
but in his 1959 paper (Kemeny, 1959), Kemeny, following Arrow
and his famous impossibility theorem (Arrow, 1951), considers in
fact the aggregation of complete preorders (i.e. relations which are
complete and transitive) into a complete preorder.

0165-4896/$ – see front matter© 2012 Published by Elsevier B.V.
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The aim of this paper is to study the complexity of the
computation of median complete preorders and of median weak
orders (for algorithmic considerations, see for instance Ailon
(2010) or Charon and Hudry (2010) and references therein).
With respect to a linear order, a complete preorder relaxes the
antisymmetry property and thus allows ties between candidates
(a complete preorder is a linear order if and only if it is
antisymmetric). A weak order is the antisymmetric part of a
complete preorder. It is known that the computation of a median
linear order is NP-hard, even if all the preferences Ri (1 ≤ i ≤ m)
are linear orders (see Bartholdi III et al. (1989), Biedl et al. (2009),
Dwork et al. (2001), Hemaspaandra et al. (2005), Hudry (1989,
2008), Wakabayashi (1986, 1998); see Charon and Hudry (2010)
for more general references on the properties of median linear
orders). Moreover, Wakabayashi showed in Wakabayashi (1986,
1998) that the computation of a median complete preorder of a
profile of m binary relations is NP-hard if m is at least about n4.
This result has been improved and extended in Hudry (1989, 2008)
in three directions. First, it has been extended to a profile of m
linear orders or to a profile of m relations extending the structure
of linear order (for instance, a profile of complete preorders, or of
partial orders, or of interval orders, and so on); secondly, it has
been extended to lower values of m by showing that the problem
remains NP-hard when m is at least about n2 for even values of
n (and still at least about n4 when n is odd); thirdly, it has been
extended to medians which must be weak orders, under the same
conditions as for median complete preorders.

Summary of results and outline of the paper
In this paper, after giving some definitions and notation in

Section 2, we show in Section 3 that, when Π is a profile of
linear orders, or more generally a profile of tournaments, there
always exists a median complete preorder which is a linear order;
moreover, if the majority relation M∗ contains no tie (this is
systematically the case for instance when m is odd), any median
complete preorder of a profile of tournaments is a linear order; this
answers a question set in Hudry (2008) (Remark 19). From this, we
deduce in Section 4 that the computation of a median complete
preorder or a median weak order of a profile of m linear orders
is NP-hard for any fixed even m greater than or equal to 4 and
for m large enough (about n2) when m is odd. In Section 5, we
sharpen the results dealing with profiles of linear orders when we
consider profiles of tournaments, and we do the same in Section 6
for other kinds of profiles, considering the main partially ordered
structures used as models of preferences (see Bouyssou et al.
(2006) and Caspard et al. (2007)). The results are summarized in
the conclusion (Section 7).

2. Definitions and notation

Let X = {1, 2, . . . , n} be a finite set with n elements. A binary
relation R defined on X is a subset of the Cartesian product X × X .
If (x, y) belongs to R, then we write xRy; otherwise, we write xR̄y.
Given a binary relation R, wemay define an asymmetric relation Ra

(called the asymmetric part of R) by: xRay ⇔ (xRy and yR̄x).
Basic properties that R may fulfil are:

∗ reflexivity: R is reflexive if, for any x ∈ X , we have xRx;
∗ irreflexivity: R is irreflexive if, for any x ∈ X , we have xR̄x;
∗ antisymmetry: R is antisymmetric if, for any (x, y) ∈ X2 with

x ≠ y, we have xRy ⇒ yR̄x;
∗ completeness: R is complete if, for any (x, y) ∈ X2 with x ≠ y,

we have xRy or yRx;
∗ transitivity: R is transitive if, for any (x, y, z) ∈ X3 with x ≠ y ≠

z ≠ x, we have the implication (xRy and yRz) ⇒ xRz.

From the point of view of the theory of NP-completeness,
reflexivity or irreflexivity do notmatterwhen dealingwithmedian
relations: if reflexivity is required, it will be necessary to add the
missing loops (x, x); if irreflexivity is required, it will be necessary
to delete the existing loops (x, x) (see Hudry (2008) for more
details). So we do not pay much attention to these two properties
(or to the lack of these properties) in the sequel: the results for the
complexity of the problems studied in Section 4 will remain the
same if we require reflexivity or irreflexivity or neither of these
two properties.

From these basic properties, we may define partially ordered
structures (see Bouyssou et al. (2006) or Caspard et al. (2007)). As
the names used to denote the usual structures are not always the
same in the literature, we specify them below. For the reflexivity
or irreflexivity, we choose the irreflexive version because it seems
to be the most convenient for the proofs below (once again, it does
not matter anyway):

∗ tournament: a tournament is a relationwhich is irreflexive, anti-
symmetric and complete; T will denote the set of tournaments;

∗ linear order: a linear order is a relation which is irreflexive, an-
tisymmetric, complete and transitive; L will denote the set of
linear orders;

∗ partial order: a partial order is a relation which is irreflexive,
antisymmetric and transitive; O will denote the set of partial
orders;

∗ interval order: an interval order is a partial order R verifying the
following property: ∀(x, y, z, t) ∈ X4 with x, y, z and t pairwise
distinct, (xRy and zRt) ⇒ (xRt or zRy); I will denote the set of
interval orders;

∗ semiorder: a semiorder is an interval order R verifying the fol-
lowing property: ∀(x, y, z, t) ∈ X4 with x, y, z and t pairwise
distinct, (xRy and yRz)⇒ (xRt or tRz); S will denote the set of
semiorders;

∗ quasi-order: a quasi-order is a complete relation of which the
asymmetric part is a semiorder; Q will denote the set of quasi-
orders;

∗ preorder: a preorder is a relation which is irreflexive and tran-
sitive; P will denote the set of preorders;

∗ complete preorder: a complete preorder is a relation which is ir-
reflexive, complete and transitive;C will denote the set of com-
plete preorders;

∗ weak order: a weak order is the asymmetric part of any com-
plete preorder; W will denote the set of weak orders.

Moreover, let Co (respectively A) denote the set of complete
(respectively antisymmetric) relations. Note the following inclu-
sions: L ⊂ S ⊂ I ⊂ O = P ∩ A; L ⊂ W ⊂ A; L ⊂ C =

P ∩ Co; L ⊂ T = Co ∩ A; L ⊂ Q ⊂ Co.
In a complete preorder C , it is possible to partition X into

k subsets X1, X2, . . . , Xk for an appropriate value of k in such a
way that two distinct elements x and y of a same subset are in
symmetric relation (xCy and yCx) while in contrast two distinct
elements x ∈ Xi and y ∈ Xj of different subsets Xi and Xj with
1 ≤ i < j ≤ k are in antisymmetric relation: xCy and yC̄x. We
shall call such a partition the canonic partition of C and we write
X1 ≻ X2 ≻ · · · ≻ Xk to recall that the elements x of Xi and y of Xj

with 1 ≤ i < j ≤ k are in the relations xCy and yC̄x. If an element
x of X belongs to the subset Xi, we say that Xi is the class of x (with
respect to C). For a linear order, k is equal to n and the subsets
X1, X2, . . . , Xn are singletons. Conversely, if k is equal to n, then
necessarily C is a linear order. For a linear order L, we write also
L = x1 ≻ x2 ≻ · · · ≻ xn to denote L. More generally, for a partially
ordered relation, we write x ≻ y whenever x is preferred to y
according to this relation. For any order L = x1 ≻ x2 ≻ · · · ≻ xn, L̄
will denote the order xn ≻ xn−1 ≻ · · · ≻ x1. The symbols <, ≤, >
and ≥ will be used for the usual inequalities between integers.



Author's personal copy

4 O. Hudry / Mathematical Social Sciences 64 (2012) 2–10

To define a median relation, we use the symmetric difference
distance δ between two relations R and R′. This distance is defined
by

δ(R, R′) =
R1 R′

 ,
where 1 denotes the usual symmetric difference between sets. This
distance, which has good axiomatic properties (see Barthélemy
(1979) and Barthélemy and Monjardet (1981)), measures the
number of disagreements between R and R′:

δ(R, R′) =
(x, y) ∈ X2

: [xRy and xR̄′y] or [xR̄y and xR′y]
 .

Thenwe define a remoteness (Barthélemy andMonjardet, 1981)
ρ(Π, R) between the profile Π = (R1, R2, . . . , Rm) and a binary
relation R by

ρ(Π, R) =

m
i=1

δ (Ri, R) .

So, the remoteness ρ(Π, R) measures the total number of
disagreements between Π and R. Given a prescribed set R of
relations (in the following, wewill consider the casesR = L, R =

C and R = W ), an R-median relation, or simply a median relation
when there is no ambiguity, is a relation R∗ belonging to R and
minimizing ρ:

ρ(Π, R∗) = min
R∈R

ρ(Π, R).

We may state ρ(Π, R) for any relation R thanks to variables de-
scribing R. Let r =


rxy


(x,y)∈X2 be the characteristic matrix associ-

ated with R, i.e. the matrix defined by: rxy = 1 if xRy and rxy = 0
otherwise. Similarly, for 1 ≤ i ≤ m, let r ixy be equal to 1 if xRiy and
to 0 otherwise; note the equalities r ixy + r iyx = 1 for any distinct x
and ywhen the relations Ri are tournaments, and r ixx = 0 for any x
when the relations Ri are irreflexive. Because the quantities r ixy and
rxy are equal to 1 or 0, we have

δ(Ri, R) =


(x,y)∈X2

r ixy − rxy
 =


(x,y)∈X2


r ixy − rxy

2
=


(x,y)∈X2

r ixy +


(x,y)∈X2

(1 − 2r ixy) · rxy.

From this we obtain

ρ(Π, R) =

m
i=1

δ (Ri, R) = λΠ +


(x,y)∈X2

mΠ
xy · rxy

where λΠ =
m

i=1


(x,y)∈X2 r ixy is a constant for any given profile
Π and with, for (x, y) ∈ X2, mΠ

xy = m − 2
m

i=1 r
i
xy. When there

is no ambiguity, we simply write λ andmxy instead of λΠ andmΠ
xy.

The quantitymxy may be interpreted as the difference between the
total number m of voters and twice the number of the voters who
prefer x to y. Moreover, when all the relations Ri for 1 ≤ i ≤ m are
tournaments, then note the relation myx = −mxy and the equality
λ = mn(n − 1)/2 (both relations coming from the equality r ixy +

r iyx = 1, true for any distinct x and y, and from the equality r ixx = 0,
true for any x); then mxy can also be interpreted in this case as the
difference between the number of voters who prefer y to x and the
number of voters who prefer x to y (e.g., if all the voters prefer x to
y, myx is equal to m and mxy is equal to −m). In the following, the
matrix MΠ =


mΠ

xy


(x,y)∈X2 , or simply M =


mxy


(x,y)∈X2 if there is

no ambiguity, will be called the summarizing matrix of Π .

3. Links between median complete preorders or median weak
orders and median linear orders for a profile of tournaments

In this section, all the relations Ri (1 ≤ i ≤ m) belonging to the
profile Π are assumed to be tournaments (which includes the

particular case of linear orders). The next lemma shows that, when
dealing with such a profile Π of tournaments, the remoteness of
any relation R from Π is the same if we consider the asymmetric
part of R.

Lemma 1. Let Π = (T1, T2, . . . , Tm) be a profile of m tournaments.
Let R be a binary relation and let Ra be the asymmetric part of R. Then
we have ρ(Π, R) = ρ(Π, Ra).

Proof. We have (see above)

ρ(Π, R) =

m
i=1

δ (Ti, R) = λ +


(x,y)∈X2

mxy · rxy

where

rxy


(x,y)∈X2 is the characteristic matrix associated with R.

We may split ρ(Π, R) into two terms: one associated with the
asymmetric part of R, i.e. ρ(Π, Ra), and the other associated with
the symmetric part of R. We obtain

ρ(Π, R) = λ +


(x,y)∈X2
with xRay

mxy · rxy +


(x,y)∈X2

with xRy and yRx

mxy · rxy.

Thequantityλ+


(x,y)∈X2
with xRay

mxy·rxy is equal toρ(Π, Ra). On the other

hand, let x and y be two elements of X with xRy and yRx. Then rxy is
equal to 1 as well as rxy. As we deal with a profile of tournaments,
we have mxy = −myx. So,


(x,y)∈X2

with xRy and yRx
mxy · rxy is equal to 0 and

we have ρ(Π, R) = ρ(Π, Ra). �

We may now state the following theorems (which generalize
the result of Lemma 3 of Bartholdi III et al. (1989), dealing with the
median complete preorders of a profile of linear orders), specifying
some links betweenmedian complete preorders andmedian linear
orders for profiles of linear orders, and more generally for profiles
of tournaments.

Theorem 2. Let Π be a profile of m tournaments defined on X. Then
there exists a median complete preorder which is a linear order.

Proof. Among the median complete preorders of Π , consider a
median complete preorder C of which the canonic partition X1 ≻

X2 ≻ · · · ≻ Xk contains a maximum number k of classes. If k is
equal to n, C is a linear order and we are done. So assume that C is
not a linear order: k < n. Necessarily, there exists an index i with
|Xi| ≥ 2. Let α be any element of Xi and consider the new complete
preorder C1 of which the canonic partition is X1 ≻ X2 ≻ · · · ≻

Xi−1 ≻ {α} ≻ Xi − {α} ≻ Xi+1 ≻ · · · , ≻ Xk. In other words, we
extract α from its current class Xi with respect to C and we create
a new class for building C1, reduced to α, inserted just before what
remains from Xi; note that what remains from Xi is not empty and
thus C1 contains more classes than C .

With respect to the characteristic matrices

cxy


(x,y)∈X2 of C and

c1xy

(x,y)∈X2 of C1, we have:

• for x ∈ Xi − {α}, c1αx = cαx = 1, c1xα = 0, cxα = 1,
• c1xy = cxy otherwise.

Then we obtain

ρ(Π, C1) = λ +


(x,y)∈X2

mxy · c1xy = ρ(Π, C) −


x∈Xi−{α}

mxα.

Since the number of classes of C1 is greater than that of C ,
then by definition of C, C1 cannot be the median. Thus we have

x∈Xi−{α}
mxα < 0.

Now, consider the new complete preorder C2 of which the
canonic partition is X1 ≻ X2 ≻ · · · ≻ Xi−1 ≻ Xi − {α} ≻ {α} ≻

Xi+1 ≻ · · · ≻ Xk: α is now extracted from its current class to
be inserted, alone, after what remains from Xi. The characteristic
matrix


c2xy


(x,y)∈X2 of C2 is defined from the one of C by:
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• for x ∈ Xi − {α}, c2xα = cxα = 1, c2αx = 0, cαx = 1,
• c2xy = cxy otherwise.

Thus,

ρ(Π, C2) = λ +


(x,y)∈X2

mxy · c2xy = ρ(Π, C) −


x∈Xi−{α}

mαx.

As we deal with a profile of tournaments, we have, for x ∈ Xi −

{α},mxα = −mαx. So

ρ(Π, C2) = ρ(Π, C) +


x∈Xi−{α}

mxα < ρ(Π, C),

a contradiction with the fact that C is a median complete preorder.
So the initial assumptionwas false, andC is a linear order,which

proves the statement of Theorem 2. �

Theorem 3. Let Π be a profile of m tournaments defined on X such
that there is no tie: ∀(x, y) ∈ X2 with x ≠ y, mxy ≠ 0. Then all the
median complete preorders are linear orders.

Proof. The proof of Theorem 2 shows that, for any median
complete preorder C of Π which is not a linear order, the canonic
partition X1 ≻ X2 ≻ · · · ≻ Xk of C (with k < n) is such that, if Xi
denotes a class with at least two elements, then for any element α
of Xi, we have
β∈Xi−{α}

mαβ =


β∈Xi−{α}

mβα = 0. (1)

Assume that there exists a median complete preorder C of Π

which is not a linear order and let X1 ≻ X2 ≻ · · · ≻ Xk (k < n)
still denote the canonic partition of C . Let Xi be a class with at least
two elements x and y. Then consider the complete preorder C1 of
Π of which the canonic partition is X1 ≻ X2 ≻ · · · ≻ Xi−1 ≻ {x} ≻

Xi − {x} ≻ Xi+1 > · · · > Xk. As in the proof of Theorem 2, we have

ρ(Π, C1) = ρ(Π, C) −


β∈Xi−{x}

mβx

= ρ(Π, C) − mxy −


β∈Xi−{x,y}

mβx. (2)

By (1), we have


β∈Xi−{x} mβx = 0 and thus ρ(Π, C1) = ρ(Π, C) :

C1 is also a median complete preorder of Π with Xi − {x} as one
of its classes. By (2), we have also


β∈Xi−{x,y} mβx = −mxy, while

mxy is not equal to 0 by hypothesis. Thus Xi − {x, y} is not empty
and we may apply (1) to the class Xi − {x} of C1 with α = y:

β∈Xi−{x,y} myβ = 0. On the other hand, the application of (1)
to the class Xi of C with α = y gives


β∈Xi−{y} myβ = 0. But

β∈Xi−{y} myβ is also equal to


β∈Xi−{x,y} myβ + myx, involving
the equality myx = 0, a contradiction with the hypothesis of the
statement of Theorem 3. The conclusion follows. �

Theorem 3 applies in particular when we consider a profile of
an odd number of tournaments (or linear orders). We then obtain
Corollary 4:

Corollary 4. Let Π be a profile of m tournaments defined on X with
m odd. Then all the median complete preorders are linear orders.

Proof. Note that the parity of mxy is the same of that of m. If m is
odd, then the mxy’s cannot be equal to 0 and Theorem 3 yields the
conclusion. �

Thanks to Lemma 1, we can do the same for a profile of
tournaments (or of course of linear orders) when we look for a
median weak order:

Theorem 5. Let Π be a profile of m tournaments defined on X.
1. There exists a median weak order which is a linear order.

2. If there is no tie, i.e. if we have: ∀(x, y) ∈ X2 with x ≠ y,mxy ≠ 0,
then all the median weak orders are linear orders.

3. If m is odd, all the median weak orders are linear orders.
Proof. Thanks to Lemma 1, the proofs of the three statements
of Theorem 5 are similar to those of Theorem 2, Theorem 3 and
Corollary 4 respectively. �

4. Complexity results for profiles of linear orders

In this section, we pay attention to the complexity of the
aggregation of linear orders into a median complete preorder or
a median weak order (for the theory of NP-completeness, see for
instance Barthélemy et al. (1996) orGarey and Johnson (1979)).We
first improve the results of Hudry (1989, 2008) and Wakabayashi
(1986, 1998) by specifying theminimum even value ofm such that
this aggregation is an NP-hard problem.

To prove Theorem 8, we will use the following two results. The
first one deals with the NP-completeness of the aggregation of an
even numberm of linear orders withm ≥ 4 into a linear order (see
Dwork et al. (2001) and Biedl et al. (2009) where a small error in
the proof of Dwork et al. (2001) is corrected; see also Charon and
Hudry (2010)).

Theorem 6. For any even m with m ≥ 4, the following problem is
NP-complete:
Name: aggregation of a profile of m linear orders into a linear order
(APLO-LO-even);
Instance: a profile Π of m linear orders defined on a finite set X; an
integer k;
Question: does there exist a linear order L with ρ(Π, L) ≤ k?

Note that, for m = 2, APLO-LO-even is polynomial (see Charon and
Hudry (2010)).

The second result deals with Slater’s problem (Slater, 1961)
which is also NP-complete (see Alon (2006), Charbit et al. (2007),
Conitzer (2006) and Hudry (2010)). This problem can be stated as
follows (see Charon and Hudry (2010) for different possibilities
for stating this problem and Hudry (2009) for a survey on the
complexities of tournament solutions):

Theorem 7. The following problem is NP-complete:
Name: Slater’s problem (SP);
Instance: a tournament T defined on a finite set X with n elements;
an integer h;
Question: does there exist a linear order L with δ(T , L) ≤ h?

We must be more precise for the sequel about the encoding of
a tournament T in any instance of SP. The tournament T can be
described by a matrix (txy)(x,y)∈X2 with txy = 1 if we have xTy and
txy = −1 otherwise for x ≠ y. Notice the relation txy = −tyx for
any x and y with x ≠ y. As we have


txy=1 txy = n(n − 1)/2 and

txy=1 txy =


txy=1
x>y

txy +


txy=1
x<y

txy, it is easy (i.e., polynomial)

to find a numbering of the vertices of T such that the number of
entries txy with txy = 1 and x < y is at most n(n − 1)/4. We adopt
such a numbering to code T , what can be done in polynomial time.

We may now prove some complexity results. We begin by
giving a result copingwith the casewhen themedian relationmust
be a complete preorder.

Theorem 8. The following problem is NP-complete:
Name: aggregation of a profile of linear orders into a complete
preorder (APLO-CP);
Instance: a profile Π of m linear orders defined on a finite set X with
n elements; an integer k;
Question: does there exist a complete preorder C with ρ(Π, C) ≤ k?

Moreover, this problem remains NP-hard for any fixed even value
of m with m ≥ 4 or for odd value of m large enough (m ≥ 1+n(n−

1)/2 is sufficient). It is polynomial for m ∈ {1, 2}.
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Proof. We prove Theorem 8 in several steps.
1. Belonging of APLO-CP to NP.

First, note that APLO-CP belongs to NP. Indeed, let (Π, k) be
any instance of APLO-CP admitting the answer ‘‘yes’’. To check that
the answer is really ‘‘yes’’, imagine that we are given a structure
C which should be a complete preorder at a remoteness less than
or equal to k from Π . It is easy to check that C is complete
and transitive in O(n3) (it is even possible to do it with a lower
complexity, but this does notmatter here) and to computeρ(Π, C)
in O(mn2), while the (binary) size of the instance is about mn2

+

log k. Hence the polynomiality of the checking, and the belonging
of APLO-CP to NP.
2. NP-completeness of APLO-CP whenm is even withm ≥ 4.

Now, assume that m is even with m ≥ 4. Let (Π, k) be any
instance of APLO-LO-even with m linear orders and consider it
as an instance of APLO-CP. This transformation (the identity!)
is obviously polynomial. Moreover, if (Π, k) admits the answer
‘‘yes’’ for APLO-LO-even, then there exists a linear order L with
ρ(Π, L) ≤ k. By considering L as a complete preorder, which is
always possible, we obtain that (Π, k) admits the answer ‘‘yes’’ for
APLO-CP. Conversely, if (Π, k) admits the answer ‘‘yes’’ for APLO-
CP, there exists a complete preorder C with ρ(Π, C) ≤ k. From
Theorem 2, we deduce that there exists also a linear order L with
ρ(Π, L) ≤ k: then (Π, k) admits the answer ‘‘yes’’ for APLO-
LO-even. So this transformation keeps the answer. Hence the NP-
completeness of APLO-CP for any even m ≥ 4, because of that of
APLO-LO-even for the same values ofm.
3. Polynomiality of APLO-CP form = 2.

The polynomiality of APLO-CP for m = 2 can be shown in a
similar way, by considering any instance of APLO-CP as an instance
of APLO-LO-even. The polynomiality of APLO-LO-even when there
are only two linear orders in the profile allows concluding. Details
are left to the reader.
4. NP-completeness of APLO-CP when m is odd with m = n(n −

1)/2 + 1 or m = n(n − 1)/2 + 2.
To prove that APLO-CP is NP-completewhenm has an odd value

equal to n(n − 1)/2 + 1 or to n(n − 1)/2 + 2, we polynomially
transform SP. Let (T , h) be any instance of SP where T is encoded
by a matrix (txy)(x,y)∈X2 with, for x ≠ y, txy = 1 if we have xTy and
txy = −1 otherwise and such that the number of entries txy with
txy = 1 and x < y is at most n(n − 1)/4. Let MT = (mT

xy)(x,y)∈X2 be
the summarizing matrix associated with T : we have mT

xy = −txy.
We are going to polynomially build a profile Π of m linear orders
such that the summarizing matrix (mΠ

xy)(x,y)∈X2 satisfies the equal-
itymΠ

xy = mT
xy for any x and any ywith x ≠ y (note that McGarvey’s

result (Mcgarvey, 1953) showing that any unweighted tournament
is themajority tournament of a profile of linear orders is of no help
here, though it can be extended to weighted tournaments with
even weights, since we consider weighted tournaments with odd
weights; other constructions can be found for instance in Dwork
et al. (2001) and Hudry (1989, 2008), but involving more linear or-
ders; the construction in Bartholdi III et al. (1989) does not apply
whenm is odd; the ones inWakabayashi (1986, 1998) do not build
profiles of linear orders but ones of generic binary relations). So, let
x and y be two distinct vertices of T with txy = 1 and x < y. We
build two linear orders L1xy and L2xy defined by

L1xy = α1 ≻ α2 ≻ . . . > αn−2 ≻ x ≻ y and

L2xy = x ≻ y ≻ αn−2 ≻ . . . ≻ α2 ≻ α1,

with {α1, α2, . . . , αn−2} = X − {x, y}. Let L0 be the linear order
defined by n ≻ n − 1 ≻ · · · ≻ 2 ≻ 1. The profile Π that we build
to define the instance of APLO-CP contains L0 and, for any pair
{x, y} with txy = 1 and x < y, the orders L1xy and L2xy. Note that Π

contains just now an odd number of linear orders which is at most
n(n−1)/2+1 since, in addition to L0, there are at most n(n−1)/4
pairs {x, y} with txy = 1 and x < y and that each pair gives two
linear orders. If Π contains in fact less than n(n − 1)/2 + 1, then
we add to Π the pair (L0, L̄0) as many times as necessary to reach
an odd number of linear orders equal to n(n−1)/2+1 or to n(n−

1)/2+ 2, depending on the parity of n(n− 1)/2. Moreover, we set
k = h+n(n−1)(m−1)/2. The instance of APLO-CP is then (Π, k).

This transformation is polynomial with respect to the size of
(T , h), which is about n2

+ log h. Indeed, each linear order ofΠ can
be encoded by its adjacencymatrixwith n2 bits. There are less than
n2 such linear orders. The size of Π is thus less than n4. Similarly, k
requires a number of bitswhich is about log(h+n(n−1)(m−1)/2),
i.e. about log(h+n4/4). Then the size of the whole instance (Π, k)
can be bounded by a polynomial in n2

+ log h.
Moreover, this transformation is such that, for any two distinct

elements x and y of X , the quantities mΠ
xy used to summarize the

profileΠ are equal tomT
xy. Indeed, consider the number of orders of

Π forwhich x is preferred to ywith x < y. To compute this number,
assume first that we have txy = 1 (and hence mT

xy = −1). Then Π

contains the two orders L1xy and L2xy, which both prefer x to y. The
other orders of Π , except one occurrence of L0, can be gathered by
pairs such that one order prefers x to ywhile the other prefers y to
x. There are (m− 3)/2 such pairs. Moreover, L0 prefers y to x since
we have x < y. Thus, there are exactly 2+ (m− 3)/2 = (m+ 1)/2
voters who prefer x to y and 1 + (m − 3)/2 = (m − 1)/2 voters
who prefer y to x. Consequently, mΠ

xy is equal to −1, i.e. also equal
to mT

xy. Assume now that we have txy = −1 (and hence mT
xy = 1)

still with x < y. Then the two orders L1xy and L2xy do not belong to Π

(nor the orders L1yx and L2yx). So we may gather all the orders of Π ,
except one occurrence of L0, by pairs such that one order prefers
x to y while the other prefers y to x, and there are (m − 1)/2 such
pairs.Moreover, L0 still prefers y to x. So there are exactly (m−1)/2
voterswho prefer x to y and (m+1)/2 voterswho prefer y to x. This
involves that mΠ

xy is equal to 1, i.e. also equal to mT
xy. In conclusion,

whatever the value of txy,mΠ
xy is equal tomT

xy for x and ywith x ≠ y,
and thus for any distinct x and y, because of the relations mT

yx =

−mT
xy and mΠ

yx = −mΠ
xy applicable for any x and ywith x ≠ y.

We may now prove easily that (Π, k) admits the same answer
as (T , h). The computations done at the end of Section 2 specify
the expression for the remoteness for any complete preorder C of
which the characteristic matrix is (cxy)(x,y)∈X2 :

ρ(Π, C) = λΠ +


(x,y)∈X2

mΠ
xy · cxy

= mn(n − 1)/2 +


(x,y)∈X2

mΠ
xy · cxy.

Because of the relationmΠ
xy = mT

xy, we have also

ρ(Π, C) = mn(n − 1)/2 +


(x,y)∈X2

mT
xy · cxy.

Assume that (T , h) admits the answer ‘‘yes’’: there exists a lin-
ear order L with δ(T , L) ≤ h. Let (ωxy)(x,y)∈X2 be the characteristic
matrix of L and (rxy)(x,y)∈X2 be that of T . Then we have

δ(T , L) =


(x,y)∈X2

rxy +


(x,y)∈X2

(1 − 2rxy) · ωxy

= n(n − 1)/2 +


(x,y)∈X2

mT
xy · ωxy.

As a linear order is a complete preorder, consider L as a com-
plete preorder. So the inequality δ(T , L) ≤ h involves ρ(Π, L) ≤
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h+n(n−1)(m−1)/2 = k. Consequently, (Π, k) admits the answer
‘‘yes’’.

Conversely, assume that (Π, k) admits the answer ‘‘yes’’. This
means that there exists a complete preorder C with ρ(Π, C) ≤ k.
By Theorem 2, as we deal with a profile of linear orders, there ex-
ists a linear order L with ρ(Π, L) ≤ k. With the same notation as
above, we get

δ(T , L) = n(n − 1)/2 +


(x,y)∈X2

mT
xy · ωxy

= ρ(Π, L) − n(n − 1)(m − 1)/2,

from which we deduce

δ(T , L) ≤ k − n(n − 1)(m − 1)/2 = h.

So (T , h) admits the answer ‘‘yes’’.
This completes step 4 of the proof.

5. NP-completeness of APLO-CP when m is odd with m > m =

n(n − 1)/2 + 2
For larger values ofm, we proceed by induction. Let (Π, k) be an

instance of APLO-CP such thatΠ containsm−2 linear orders. Then
we build a new profile Π ′ with m linear orders by adding the pair
(L, L̄) to Π , where L denotes any linear order. It is easy to check
the following equality, for any complete preorder C: ρ(Π ′, C) =

ρ(Π, C)+n(n−1). Then, for any integer k, the instance (Π, k) ad-
mits the answer ‘‘yes’’ if and only if the instance (Π ′, k+ n(n− 1))
admits the answer ‘‘yes’’. As adding two linear orders to a profile
can be done in polynomial time, this transformation is polynomial
and keeps the answer. Hence the complexity of APLO-CP when we
consider a profileΠ ′ withm linear orders from the one of the same
problem when considering profiles with m − 2 linear orders, and
then the complexity of APLO-CP when we consider a profile with
an odd number m of linear orders when m is greater than or equal
to n(n − 1)/2 + 1.
6. Polynomiality of APLO-CP form = 1

The polynomiality of APLO-CP for m = 1 comes from the fact
that any instance (Π, k) of APLO-CP for m = 1, with Π = (L) and
L a linear order, admits the answer ‘‘yes’’. Indeed, as L can be con-
sidered as a complete preorder, L is a median complete preorder of
Π and the minimum remoteness is equal to 0. �

The same kind of proof applies to show that the aggregation of
an odd numberm of linear orders into a median linear order is NP-
hard when m is greater than or equal to n(n − 1)/2 + 1. We give
below the sketch of another proof, based on Theorem 2.

Theorem 9. The following problem is NP-complete:
Name: aggregation of a profile of linear orders into a linear order
(APLO-LO-odd);
Instance: a profile Π of m linear orders defined on a finite set X with
n elements with m odd and m ≥ 1 + n(n − 1)/2; an integer k;
Question: does there exist a linear order L with ρ(Π, L) ≤ k?
Proof. The proof is based on the NP-completeness of APLO-CP and
on Theorem 2. Indeed, consider any instance of APLO-CP (Π, k)
with an odd numberm of linear orders, withm ≥ n(n − 1)/2 + 1,
as an instance of APLO-LO-odd. Then Theorem 2 shows that there
exists a linear order L with ρ(Π, L) ≤ k if and only if there exists
a complete preorder C with ρ(Π, C) ≤ k. Details are left to the
reader. �

From the NP-completeness of APLO-CP, we may also deduce
the NP-completeness of the similar problem when we require the
median relation to be a weak order instead of a complete preorder.
This will be a consequence of Lemma 1:

Theorem 10. The following problem is NP-complete:
Name: aggregation of a profile of linear orders into a weak order
(APLO-WO);
Instance: a profile Π of m linear orders defined on a finite set X with
n elements; an integer k;

Question: does there exist a weak order W with ρ(Π,W ) ≤ k?
Moreover, this problem remains NP-hard for any fixed even value of m
with m ≥ 4 or for odd value of m large enough (m ≥ 1+ n(n− 1)/2
is sufficient). It is polynomial for m ∈ {1, 2}.

Proof. This is a consequence of Lemma 1 and of the complexity of
APLO-CP (Theorem 8). Indeed, if we consider any instance (Π, k)
of APLO-CP as an instance of APLO-WO (thus the transformation
is the identity), Lemma 1 shows that (Π, k) considered as an
instance of APLO-CP admits the answer ‘‘yes’’ if and only if (Π, k)
considered as an instance of APLO-WO admits the answer ‘‘yes’’.
Details (including the belonging of APLO-WO to NP) are left to the
reader. �

5. Extensions of Slater’s problem: complexity results for
profiles of tournaments

Stated as above, Slater’s problem (Slater, 1961) corresponds to
the case where the profile Π contains only one tournament T and
we look for a linear orderminimizing ρ(Π,O), i.e. δ(T ,O), over the
set L of linear orders. This problem is NP-hard (see Theorem 7).
We can wonder what happens if we relax some constraints in the
required structure for the median relation. For instance, what is
the complexity if, instead of a linear order, we look for a complete
preorder or a weak order? Theorems 11 and 12 applied tom equal
to 1 show that these extensions of Slater’s problem remain NP-
hard. More generally, this remains true for any set R including
T (for instance the set Co of complete relations or the set A of
antisymmetric relations).

Theorem 11. Let m be any integer greater than or equal to 1. Let R
be any set of relations with T ⊆ R. The following problem is NP-
complete:
Name: aggregation of anR-profile into a complete preorder (APT-CP);
Instance: a profile Π of m relations belonging to R; an integer k;
Question: does there exist a complete preorder C with ρ(Π, C) ≤ k?

Proof. As for the other aggregation problems considered here, the
belonging of APT-CP to NP is easy and is left to the reader.

We transform Slater’s problem SP into APT-CP as follows. Let
(T , h) be any instance of SP. We define an instance (Π, k) of APT-
CP by duplicating m times the tournament T : Π = (T , T , . . . , T ),
and by setting k = mh. Since m is fixed, this transformation is
polynomial. Let us check that it keeps the answer.

For this, assume that (T , h) admits the answer ‘‘yes’’: there
exists a linear order L with δ(T , L) ≤ h. By considering L as a
complete preorder and because of the linearity of the remoteness,
we get ρ(Π, L) = m · δ(T , L) ≤ mh = k. Thus (Π, k) admits the
answer ‘‘yes’’.

Conversely, assume that (Π, k) admits the answer ‘‘yes’’: there
exists a complete preorder C with ρ(Π, C) ≤ k. Then, as Π con-
tains only tournaments, by Theorem 2, there exists a linear order
L with ρ(Π, L) ≤ k. As we still have ρ(Π, L) = m · δ(T , L), we get
δ(T , L) ≤ h and, thus, (T , h) admits the answer ‘‘yes’’.

The transformation is polynomial and keeps the answer while
APT-CP belongs to NP and SP is NP-complete. Hence the NP-
completeness of APT-CP. �

A very similar proof, left to the reader, allows proving
Theorem 12:

Theorem 12. Let m be any integer greater than or equal to 1. Let R
be any set of relations with T ⊆ R. The following problem is NP-
complete:
Name: aggregation of an R-profile into a weak order (APT-WO);
Instance: a profile Π of m relations belonging to R; an integer k;
Question: does there exist a weak order W with ρ(Π,W ) ≤ k?
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It is still easier to prove the following result, still obtained from
Slater’s problem SP by duplicating the tournament of any instance
of SP:

Theorem 13. Let m be any integer greater than or equal to 1. Let R
be any set of relations with T ⊆ R. The following problem is NP-
complete:
Name: aggregation of an R-profile into a linear order (APT-LO);
Instance: a profile Π of m relations belonging to R; an integer k;
Question: does there exist a linear order L with ρ(Π, L) ≤ k?

6. Complexity results for the computation of median relations
of other kinds of profiles

We consider now the complexity of the aggregation of other
kinds of relations. In this section, R will denote a set of relations
of a given type (for instance, R could be the set C of complete
preorders). The relations belonging to the profiles considered will
all belong to R; we shall say that we deal with an R-profile. The
subsections below are characterized by some subsets contained by
R. In all of these subsections, R will include at least L. Thus, the
results of Section 4 (the NP-completeness of the aggregation of m
linear orders whenm is even and greater than or equal to 4) can be
obviously extended toR-profiles whenR containsL (it suffices to
consider the identity for the polynomial transformation). The aim
of Section 6 is to obtain, for fixed odd values ofm, results similar to
those of Section 4 applicable for fixed even values ofm.

6.1. Median linear orders for R containing C, P or Q

In this subsection, we consider the case for which the profiles
contain relations belonging to a set R including L and containing
the ‘‘full’’ relation F0 defined by: ∀(x, y) ∈ X2 with x ≠ y, xF0y
(F0 is a complete preorder and a quasi-order); note that the
characteristic matrix (f 0xy)(x,y)∈X2 associated with F0 is the matrix
of which all the entries are equal to 1 except for x equal to y, in
which case the entry is equal to 0. This is the case for instance for
R = C, R = P or R = Q, but also for the set of all the relations
defined on X .

Theorem 14. Let m be an integer greater than or equal to 4. Let R be
any set of relations with L ⊆ R and F0 ∈ R. The following problem
is NP-complete:
Name: aggregation of an R-profile of m relations into a linear order
(APCP-LO);
Instance: a profile Π of m relations belonging to R; an integer k;
Question: does there exist a linear order L with ρ(Π, L) ≤ k?

Proof. The belonging of APCP-LO to NP is easy and is left to the
reader.

We transform the NP-complete problem APLO-LO-even with
four orders into APCP-LO with m relations belonging to R. Let
(Π = (L1, L2, L3, L4), h) be any instance of APLO-LO-even with
four linear orders. We build a new profile Π ′ by adding m − 4
times F0 to Π . Then we consider the instance (Π ′, k) of APCP-LO
with k = h + (m − 4)n(n − 1)/2. Hence Π ′ contains m relations
belonging to R. Sincem is fixed, the transformation is polynomial.
Let us show that it keeps the answer.

Let L be any linear order with (ωxy)(x,y)∈X2 as its characteristic
matrix. Since the difference between Π and Π ′ relies in the fact
that Π ′ containsm − 4 times the full relation F0, it is easy to show
the following equality:

ρ(Π ′, L) = ρ(Π, L) + (m − 4)n(n − 1)/2.

Indeed, we may partition ρ(Π ′, L) into the sum of the contri-
butions of L1, L2, L3 and L4, which provides ρ(Π, L), and of the

contributions of them−4 relations F0 (the amount of each copy of
F0 is equal to n(n−1)/2). Because k is equal to h+(m−4)n(n−1)/2,
we have ρ(Π ′, L) ≤ k if and only if we have ρ(Π, L) ≤ h and the
answer is kept by the transformation.

The NP-completeness of APLO-LO-even with four orders
involves that of APCP-LO for anym greater than or equal to 4. �

6.2. Median linear orders for R containing S, I, O or W

We consider now the case for which the profiles contain
relations belonging to a set R including L and containing the
‘‘empty’’ relation E0 defined by: ∀(x, y) ∈ X2, xĒ0y; note that the
characteristic matrix associated with E0 is the matrix equal to 0.
This is the case for instance for R = S, R = I, R = O or R = W ,
but also for the set of acyclic relations or, still, for the set of all the
relations defined on X .

Theorem 15. Let m be an integer greater than or equal to 4. Let R be
any set of relations with L ⊆ R and E0 ∈ R. The following problem
is NP-complete:
Name: aggregation of anR-profile into a linear order (APSO/WO-LO);
Instance: a profile Π of m relations belonging to R; an integer k;
Question: does there exist a linear order L with ρ(Π, L) ≤ k?

Proof. The proof is quite similar to that of Theorem 14 and we do
not detail all its steps. The main difference is in the relation which
is added to the profile Π of the transformed instance of APLO-LO-
even. Instead of adding the full relation F0 to Π , we add the empty
relation E0 to obtain the profile Π ′ appearing in the instance of
APSO/WO-LO.

Thus, starting from any instance (Π = (L1, L2, L3, L4), h) of
APLO-LO-evenwith four linear orders, we build a newprofileΠ ′ by
addingm−4 times E0 to Π and we set k = h+ (m−4)n(n−1)/2.
As in the proof of Theorem 14, it is easy to show the following
equality:

ρ(Π ′, L) = ρ(Π, L) + (m − 4) n(n − 1)/2.

Indeed, we may still partition ρ(Π ′, L) into the sum of the
contributions of L1, L2, L3 and L4, which provides ρ(Π, L), and of
the contributions of the m − 4 relations E0 (the amount of each
copy of E0 is equal to n(n − 1)/2). Hence ρ(Π ′, L) ≤ k if and only
if ρ(Π, L) ≤ h. �

6.3. Median complete preorders or weak orders for R containing L

In the following theorems, R denotes any set of relations
defined on a same set X containing all the linear orders defined
on X; e.g., R can be the set L of linear orders on X , the set C of
complete preorders on X , the set T of tournaments defined on X ,
and so on, including mixtures of such sets (e.g., R can be the set of
complete preorders and tournaments on X). Observe that almost
all the usual ordered structures include linear orders as special
cases.

Theorem 16. Let R denote any set of relations with L ⊆ R. The
following problem is NP-complete:
Name: aggregation of anR-profile into a complete preorder (APR-CP);
Instance: a profile Π of m relations defined on a finite set X with n
elements and belonging to R; an integer k;
Question: does there exist a complete preorder C with ρ(Π, C) ≤ k?
Moreover, this problem remains NP-hard for any fixed even value of m
withm ≥ 4 and for large enough odd values of m (m ≥ 1+n(n−1)/2
is sufficient).

Proof. This is a consequence of Theorem 8. Indeed, any instance
of APLO-CP can be considered as an instance of APR-CP, since R is
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Fig. 1. Minimum known values ofm for which the computation of a median linear order is NP-hard.

Fig. 2. Minimum known values ofm for which the computation of a median complete preorder or a median weak order is NP-hard.

assumed to include L. This transformation, i.e. the identity, is of
course polynomial and keeps the answer. As it is easy to prove that
APR-CP belongs to NP, the NP-completeness of APLO-CP involves
that of APR-CP. �

By choosing R equal to the set C of complete preorders, we
obtain the complexity of Kemeny’s problem:

Corollary 17. The following problem is NP-complete:
Name: aggregation of a C-profile into a complete preorder (Kemeny’s
problem);
Instance: a profile Π of m complete preorders defined on a finite set
X with n elements; an integer k;
Question: does there exist a complete preorder C with ρ(Π, C) ≤ k?
Moreover, this problem remains NP-hard for any fixed even value of m
withm ≥ 4 and for large enough odd values of m (m ≥ n(n−1)/2+1
is sufficient).

A similar result holds for the median which would be a weak
order:

Theorem 18. Let R denote any set of relations with L ⊆ R. The
following problem is NP-complete:
Name: aggregation of an R-profile into a weak order (APR-WO);
Instance: a profile Π of m relations defined on a finite set X with n
elements and belonging to R; an integer k;
Question: does there exist a weak order W with ρ(Π,W ) ≤ k?
Moreover, this problem remains NP-hard for any fixed even value of m
withm ≥ 4 and for large enough odd values of m (m ≥ n(n−1)/2+1
is sufficient).

Proof. This is a consequence of Theorem 10. Indeed, any instance
of APLO-WO can be considered as an instance of APR-WO. As
for Theorem 16, this transformation is polynomial and keeps the
answer. As it is easy to prove that APR-WO belongs to NP, the NP-
completeness of APLO-WO involves that of APR-WO. �

7. Conclusion

Wemay summarize the results obtained in this paper.
First, it is shown (Section 3) that any profile of tournaments

admits a median complete order and a median weak order which
are linear orders. Moreover, if the number m of voters is odd, then
all the median complete orders and all the median weak orders
are linear orders. This is not the case for any kind of median. For
instance, an example on six candidates is given in Hudry (2008),
for which no median partial order is a linear order.

The complexity results are summarized in Figs. 1 and 2. The first
column specifies for both figures the setR towhich the relations of
the profile are assumed to belong. The second columnof Fig. 1 gives
the minimum known odd value of m for which the computation
of a median linear order is NP-hard, while the third column does
the same for even values of m. Fig. 2 specifies the same results
when computing a median complete preorder or a median weak
order. The parentheses specify where the result can be found (with
respect to the previous theorems or to the references below).

The results remain applicable if we require that the relations
considered (the relations of the profiles or the median relations)
are reflexive or irreflexive. They also remain applicable if we
consider, for the relations of the profile, supersets of the sets
involved in Figs. 1 and2or bymixing these sets (thenwemay adopt
for m the lowest of the values involved).
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