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ABSTRACT

Gaussian process (GP) models are widely used in machine learning

to account for spatial or temporal relationships between multivari-

ate random variables. In this paper, we propose a formulation of

underdetermined source separation in multidimensional spaces as a

problem involving GP regression. The advantage of the proposed

approach is firstly to provide a flexible means to include a variety

of prior information concerning the sources and secondly to lead to

minimum mean squared error estimates. We show that if the additive

GPs are supposed to be locally-stationary, computations can be done

very efficiently in the frequency domain. These findings establish a

deep connection between GP and nonnegative tensor factorizations

with the Itakura-Saito distance and we show that when the signals

are monodimensional, the resulting framework coincides with many

popular methods that are based on nonnegative matrix factorization

and time-frequency masking.

Index Terms— Gaussian Processes, Nonnegative Tensor Fac-

torization, Source Separation, Probability Theory, Regression

1. INTRODUCTION

Gaussian processes (GPs) [10, 11] are commonly used to model

functions whose mean and covariances are known. Given some

learning points, they permit to estimate the values taken by the func-

tion at any other points of interest. Their advantages are to provide

a simple and effective probabilistic framework for regression and

classification as well as an effective means to optimize models’ pa-

rameters. They are thus widely used in many areas and their use can

be traced back at least to works by Wiener in 1941 [12].

Source separation is another very intense field of research (see

[6] for a review) where the objective is to recover several unknown

signals called sources that were mixed together in observable mix-

tures. Source separation problems arise in many fields such as sound

processing, telecommunications and image processing. When there

are fewer mixtures than sources, the problem is said to be underde-

termined and is notably known to be very difficult. Indeed, in this

case there are less observable signals than necessary to solve the un-

derlying mixing equations. Among the most popular approaches, we

can mention Independent Component Analysis [2] that relies both

on the probabilistic independence between the source signals and

on higher order statistics. We can also cite Non-negative Matrix

Factorization (NMF) source separation that models the sources as

locally stationary with constant normalized power spectra and time-

varying energy [8, 7]. Most of the methods devised so far focus on

1-dimensional signals.
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In this study, we consider the case of additive signals defined on

multidimensional input spaces and revisit underdetermined source

separation as a problem involving GP regression. Due to its heavy

computational burden, the GP framework has to come along with ef-

fective methods to simplify the computations in order to be of prac-

tical use. For the special case of locally stationary and regularly

sampled signals, we show that computations can be performed ex-

tremely efficiently in the frequency domain and we establish a novel

connection between GP models and the emerging techniques of Non-

negative Tensor Factorization (NTF) [5] using the Itakura-Saito di-

vergence.

The article is organized as follows: first, we present the use of

GP regression for source separation in section 2. Then, we show

in section 3 that when the GPs are assumed separable and locally-

stationary, computations can be done very efficiently in the fre-

quency domain. We finally illustrate the framework through a simple

toy example in section 4 and give some conclusions in section 5.

2. GAUSSIAN PROCESSES FOR SOURCE SEPARATION

2.1. Introduction to Gaussian processes

A Gaussian process [10, 11] is a possibly infinite set of scalar ran-

dom variables {f (x)}x∈X
indexed by an input space X , typically

X = R
D , and taking values in R, such that for any finite set of inputs

X = {x1 · · ·xn} ∈ Xn, f , [f (x1) · · · f (xn)]⊤ is distributed ac-

cording to a multivariate Gaussian distribution1. A GP is thus com-

pletely determined by a mean function m (x) = E [f (x)] and a co-

variance function kf (x, x′) = E [(f (x) − m (x)) (f (x′) − m (x′))].
In this study, we will consider centered signals, i.e ∀x ∈ X , m (x) =
0.

Let X be a finite set of elements from X . The covariance matrix

Kf,XX is defined as [Kf,XX ]i,j = kf (xi, xj) and the probability

of f given X is then given by:

p (f | X) =
1

(2π)
n
2 |Kf,XX |

1
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exp

„

−
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2
f
⊤

K
−1
f,XXf

«

(1)

which is usually written f ∼ GP (0, kf (x, x′)). |Kf,XX | is the

determinant of Kf,XX .

The covariance function kf of a GP f must be such that for any

X , the covariance matrix Kf,XX is positive definite2. Such a func-

tion is called a positive definite function [1]. When it is stationary,

i.e. when it can be expressed as a function of τ = x − x′, then the

covariance function can be parameterized by its Fourier transform.

More generally, covariance functions are parameterized by a set of

scalar values that are often called hyperparameters and are usually

gathered in a hyperparameter set Θ.

1The symbol , denotes a definition.
2Positive semi-definite covariance matrices are possible. In the case of

singular Kf,XX , a characterization involving the characteristic function in-
stead of (1) is required.



2.2. Source separation with Gaussian processes

Suppose we observe the sum y (x) of M signals fm (x): y (x) =
PM

m=1 fm (x) for a finite set X of n input points from X : X =
{x1 · · ·xn}. We assume that the {fm (x)}m=1···M are independent

and we want to estimate the values taken by one of the signals fm0

for m0 ∈ (1 · · ·M) on a finite and possibly different set X∗ =
{x∗

1 · · ·x
∗
n∗} of n∗ input points from X .3 Let us furthermore assume

that ∀m, fm ∼ GP (0, km (x, x′)) where the covariance functions

km are known. As {fm (x)}m=1···M are supposed independent, we

have:
M
X

m=1

fm ∼ GP

 

0,

M
X

m=1

km

`

x, x
′
´

!

. (2)

Let Km,XX∗ be the covariance matrix defined by [Km,XX∗ ]ij =

km

`

xi, x
∗
j

´

. We define Km,X∗X , Km,X∗X∗ in the same way. Let

fm , [fm (x1) · · · fm (xn)]⊤, f∗m , [fm (x∗
1) · · · fm (x∗

n)]⊤ and

similarly for y. We have:

»

y

f∗m0

–

∼ N

„

0,

»
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–«

.

Classical probability results then assert that the conditional dis-

tribution of f∗m0
given y is (see [10]) f∗m0

| y ∼ N
`

f∗m0
, covf∗m0

´

with4:

f∗m0
= Km0,X∗X

"

M
X

m=1

Km,XX

#−1

y (3)

and

covf
∗

m0
= Km0,X∗X∗ − Km0,X∗X

"

M
X

m=1

Km,XX

#−1

Km0,XX∗ .

(4)

The minimum mean squared error (MMSE) estimate f̂∗m0
of

f∗m0
| y is thus found by setting f̂∗m0

= f∗m0
. A problematic issue

with this method is the requirement to invert an n × n covariance

matrix. This O
`

n3
´

computational cost is often prohibitive.

3. EFFICIENT COMPUTATIONS FOR LARGE SIGNALS

In this section, we assume that the signals are defined on X = R
D

for D > 1 and that xi ∈ X can be written xi = (xi,1, · · · , xi,D).

We will moreover assume that all the covariance functions k that we

consider are separable, i.e. there are D covariance functions k(d)

such that ∀ (xi, xj) ∈ X 2, k (xi, xj) =
QD

d=1 k(d) (xi,d, xj,d).

This assumption implies that all the covariance matrices K consid-

ered can be expressed as a Kronecker product (see [5]) of D covari-

ance matrices K(d) of lower dimensions:

K = K
(1) ⊗ K

(2) · · · ⊗ K
(D) ,

D
O

d=1

K
(d)

. (5)

From now on, we suppose that the points are regularly sampled.

This is equivalent to assuming that any signal y, fm or k considered

is the vectorization of a corresponding underlying D-dimensional

tensor y, fm or k.5

3In source separation, X and X∗ are usually equal and correspond to
regularly spaced points.

4In the case of singular covariance matrix
PM

m=1 Km,XX , numerical
methods such as Moore-Penrose pseudo-inversion may be used.

5Vectorization is done recursively. For example, with D = 2 where
tensors are matrices, it is done one row after the other.

3.1. Stationarity assumption

Let us assume that a mixture {y (x)}x∈X
is the sum of several GPs

{fm (x)}m=1...M,x∈X
whose covariance functions km (x, x′) are

all stationary, and let us furthermore suppose that we are interested

in separating the different sources for all points in X, thus having

X∗ = X . The covariance matrix Ky of y is given by : Ky =
PM

m=1 Km where Km is the covariance matrix of source m. Con-

sidering (5), it is given by: Km =
ND

d=1 K
(d)
m where

h

K
(d)
m

i

i,j
=

k
(d)
m (xi,d − xj,d) can approximately be considered as circulant6. It

is readily shown that any circulant matrix M can be expressed as

M = W ∗
F ΛWF where WF is the discrete Fourier transform ma-

trix7 and where Λ is diagonal. Thus, for all m and d, there is a

diagonal positive semidefinite matrix diagS
(d)
m such that K

(d)
m ≈

W ∗
F diagS

(d)
m WF where the vector S

(d)
m is the discrete Fourier trans-

form of τ 7→ k
(d)
m (x + τ, x). We can thus write Ky as:

Ky =

M
X

m=1

D
O

d=1

W
∗

F diagS
(d)
m WF . (6)

Using classical results from tensor algebra, We can show that (3)

can be written using (6) as8:

f∗m0
=
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Introducing the D-dimensional tensor9

Sm = S
(1)
m ◦ S

(2)
m · · ·S(D)

m , ©D
d=1S

(d)
m (8)

as the model for source m and FD

˘

y
¯

as the D-dimensional

Fourier transform of y, we can simply write (7) in tensor form as:

FD

n

f∗

m0

o

=

 

Sm0
PM

m=1 Sm

!

· FD

˘

y
¯

(9)

which is similar to the classical Wiener filter for stationary pro-

cesses. The differences between this expression and the classical

one is firstly that it is valid for any dimension D of the input space

and secondly that it is not restricted to the case of only two station-

ary sources. The sources themselves can be recovered through an

inverse D-dimensional Fourier transform. The nonnegative tensor

Sm can be understood as the D-dimensional Fourier transform of the

stationary covariance function τ 7→ km (x + τ, x). The complexity

of this approximate GP inference method relying on stationarity of

the covariance functions and on regular sampling is O (n log n). If

FD

˘

y
¯

is known beforehand, the complexity of (9) decreases to

O (n), which is remarkable compared to the O
`

n3
´

operations re-

quired by the basic GP setup presented in section 2.2.

6If the signal is regularly sampled, this approximation holds when the

number nd of points along dimension d tends to infinity or when k(d) (τ) is
periodic of period

nd

p
with p ∈ N

∗.
7W ∗

F denotes the complex conjugate of WF .
8 A

B
and A.B are respectively the element-wise division and multiplica-

tion of A and B.
9◦ denotes the outer product.



3.2. Frame-wise correlations

3.2.1. Frames and locally dependent signals

In many areas of interest, we cannot handle matrices of size n × n

where n is the number of observations. In audio signal processing, it

is common to split the signal into overlapping frames and to process

the frames independently. The original signal can then be recov-

ered through a deterministic overlap-add procedure. This idea can

very well be generalized in any dimension D. Instead of consider-

ing the original signal y, we can split it into nI overlapping frames

{yi (x)}i=1···nI
of dimension L1 × L2 × · · · × LD . A common

assumption is to consider that the different frames are independent,

and thus that the signals are only locally-correlated.

3.2.2. Separation of locally stationary Gaussian Processes

Let {y (x)}x∈X
be a particular signal, observed on a finite input set

X ∈ Xn and let {yi}i=1···nI
be a set of nI corresponding frames.

We assume that the frames are independent and further suppose that

the covariance function kim of source m within frame i is stationary.

Each source is thus composed of several small stationary frames,

each of which has its own covariance function.

Let us denote Y the (D + 1)-dimensional tensor whose last di-

mension goes over the frames index and whose first D dimensions

for a fixed frame contain the D-dimensional Fourier transform of

the signal tensor for this frame as in section 3.1. As this tensor Y is

called the Short Term Fourier Transform (STFT) of the signal when

D = 1, it will be called the STFT tensor of the mixture. We define

the STFT tensors Fm of the sources and the model tensor Sm of

source m in the same way. We can use (9) for each frame and for

source m0: the MMSE estimate F
∗

m0
of Fm0

is then given by:

F
∗

m0
=

Sm0
PM

m=1 Sm

· Y. (10)

The sources can then be recovered by first applying an in-

verse D-dimensional Fourier transform to the estimate (10) for each

frame, and then using the overlap-add scheme mentioned in section

3.2 to obtain the estimated sources in the original input space X .

Similarly, the marginal likelihood log p (y | X) of the ob-

servations can be shown to be equal (up to an additive constant

independent of the models Θ = {S1, · · ·SM} of the sources) to

− 1
2
DIS

“

Y|
PM

m=1 Sm

”

where DIS

`

x|y
´

is the Itakura-Saito (IS)

divergence [7] between tensors x and y.10 This expression can be

computed in O (n) operations when Y is known.

3.3. Putting structures over the covariances

As highlighted by CEMGIL et al. in [3, 4] for the case of audio

processing (D = 1), the important issue raised by this probabilistic

framework becomes devising realistic but effective models for the

nonnegative sources parameters Sm. A solution is to suppose de-

terministic structures into the covariance functions of the GPs. A

simple assumption to this end is to consider that for a given source

m, the covariance functions of the different frames are locally scaled

and thus identical up to an amplification gain depending on the

frame. This can be written Sim = Him S0,m where i ∈ {1 · · ·nI}

and S0,m , ©D
d=1S

(d)
0,m is the D-dimensional Fourier transform

10DIS

“

x|y
”

,
P

i1···iD+1

"

[x]i1···iD+1

[y]
i1···iD+1

− log
[x]i1···iD+1

[y]
i1···iD+1

− 1

#

of some template covariance function k0,m for source m that is

independent of the frame index i. We get:

Sm =
“

©D
d=1S

(d)
0,m

”

◦ Hm (11)

where Hm = (H1m · · ·HnIm) denotes the amplification gains

of the covariance function for source m on the different frames.

Considering (11) we readily see that it is equivalent to a classical

Nonnegative Tensor Factorization (NTF) model called Canonical

Polyadic (CP) decomposition11. The different parameters become

Θ =
nn

Hm, S
(1)
0,m · · ·S(D)

0,m

o

m=1···M

o

and can be estimated by

standard CP algorithms using the IS-divergence function [5, 7].

4. TOY EXAMPLE

In this section, we set D = 2 and M = 2, which means that we

aim at separating two additive functions f1 (x1, x2) and f2 (x1, x2)
defined on the plane and summed in an observable mixture signal12

y (x1, x2). Following the notation introduced in section 3.1, we will

thus suppose that the mixture tensor y is the sum of two source ten-

sors f
1

and f
2
. The corresponding vectors y, f1 and f2 will denote

the vectorization of these tensors one row after the other.

In this experimental setup, the dimensions of the sources and

mixture tensors are 500 × 500 each, leading to n = 250000. In the

following, we will assume that the covariance function k
(d)
m (xd, x′

d)
of each source m along each dimension d is stationary and given by:

k
(d)
m

`

xd, x
′

d

´

= exp

0

@−
2 sin2 π(xd−x′

d)

Tm,d

l2m,d

−
(xd − x′

d)2

2λ2
m,d

1

A (12)

where {Tm,d, lm,d, λm,d}m,d are scalar parameters. This model

implements a particular prior knowledge where each source m is

known to be pseudo-periodic of period (Tm,1, Tm,2) and (lm,1, lm,2)
controls its smoothness within one period. A further lengthscale

(λm,1, λm,2) controls the global covariance between two input

points. In the particular example illustrated in Figure 1, the parame-

ters were:

m λm,1 λm,2 Tm,1 Tm,2 lm,1 lm,2

1 100 100 50 20 0.5 0.7
2 40 4 25 +∞ 0.7 N/A

In this very simple experimental setup and for each experiment,

we first synthesize the sources using those hyperparameters. During

the separation step, we consider that only the synthesized mixture

and the hyperparameters are known and we can perform separation

through the method presented in section 3.2.2. To this purpose, we

can build the spectral covariance tensor Sm of each source and then

perform separation in the frequency domain as in (10). The sources

are recovered through an inverse 2-dimensional Fourier transform.

It is worth noticing here that the computations only involve element-

wise multiplications of 500 × 500 images, instead of the inversion

of the 250000×250000 covariance matrix required by the basic GP

setup. Results for one example are shown in Figure 1. The average

Signal to Error Ratio (SER) obtained on 50 experiments was 8dB

and the average computing time was less than 2s13.

11CP is also called PARAFAC or CANDECOMP [5].
12This usecase is common in geostatistics: the observed signal is often

modeled as the sum of the signal of interest with a contaminating white Gaus-
sian noise. Estimating the value of the target signal through Kriging is hence
a special case of GPSS.

13Since exact computation is not tractable in this case, we also performed
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Fig. 1. GP for the separation of two stationary random fields (D = 2) using GPs. On the left are the original sources. On the center is the

mixture and on the right are the estimated sources. A temperature colormap is used : blue indicates large negative values, red indicates large

positive values.

5. CONCLUSION

In this study, we have stated the linear underdetermined source sep-

aration problem in terms of GP regression and we have shown that

it leads to simple formulas to optimally proceed to signals separa-

tion with respect to the MMSE criterion. We have furthermore noted

connections between GP models and Nonnegative Tensor Factoriza-

tions when the mixtures are regularly sampled and the sources are

locally stationary. It is noticeable that the proposed framework be-

comes equivalent to popular NMF methods when the signals are 1-

dimensional.

Setting the source separation problem in such a unified frame-

work permits to consider it from a larger perspective where its objec-

tive is to separate additive independent functions on arbitrary input

spaces that are mathematically characterized by their first and sec-

ond moments only. More information on this topic can be found in

[9].
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