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ABSTRACT

This paper describes a method for segmentation of triaxial
accelerometer signals recorded during continuous treadmill
walking. More specifically, we aim at detecting changes
in speed and in incline by analyzing the accelerometer sig-
nals recorded on the shin or the waist of the walker. The
raw accelerometer signals are transformed either in the time-
frequency domain (with a Short-Time Fourier Transform) or
in a specific features space (which emphasizes the charac-
teristics of the gait). The transformed signals serve as in-
puts for change-point detection methods which output a num-
ber of estimated change times. Several change-point detec-
tion methods are tested, either parametric or non-parametric.
In particular, a new change-point detection method is intro-
duced, which takes into account the frequency structure of
walking signals. The different signal representations and
change-points detection methods are evaluated on a corpus
of 24 subjects. An analysis of the obtained results is pre-
sented for the two considered sensors (waist and shin).

1. INTRODUCTION

The monitoring of energy expenditure (EE) can be useful in
the prevention and the treatment of obese or elderly people.
Even if there exist some reliable methods to evaluate the level
of physical activity (such as oxygen uptake measurement or
doubly labeled water), those are often expensive and intru-
sive and then do not suit for daily use. An alternative ap-
proach for the assessment of EE involves the use of uncon-
strained portable systems such as accelerometers [1].

As walking is one the most energy consuming activity
in human daily life, it makes sense to evaluate the associ-
ated EE as precisely as possible. Yet, the EE strongly de-
pends on the type of walking (speed and incline for example)
[2]. Many recent works have therefore attempted to classify
walking segments according to their incline or speed. This
classification relies on the prior calculation of some time-
domain [3, 4, 5] or time-frequency domain [4, 5, 6, 7, 8, 9]
features, which emphasize the characteristics of the differ-
ent types of walking. The classification is finally performed
by using empirical thresholds [6, 7, 8] or classical machine
learning procedures such as neural networks [3] or Gaussian
Mixture Models (GMM) [4, 5, 9].

Whereas much attention has been given to the classi-
fication of walking segments, most of the publications as-
sume that the accelerometer signals have beforehand been
divided into coherent segments. Only a few works have in-
vestigated the automatic segmentation of continuous walking
records [6, 8]. Furthermore, these methods only enable to
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Activity Start time End time
Level walking at 3.3 km/h 10:56:00 11:01:00
Level walking at 4.4 km/h 11:01:00 11:06:00
Level walking at 5.5 km/h 11:08:00 11:13:00

Slope walking at 4.4 km/h with 5% incline 11:14:30 11:19:30
Slope walking at 4.4 km/h with 10% incline 11:19:30 11:24:30

Table 1: Typical sequence of activities

segregate the level walking from the ascending or descend-
ing stairs. We here propose to divide a continuous treadmill
walking record into segments where the speed and the in-
cline are constant, by using some multiple change-points de-
tection methods. In particular, we introduce a new multiple
change-points detection method which takes into account the
frequency structure of walking.

Section 2 explains the experimental protocol for the
recording of the accelerometer signals. Section 3 describes
the two types of signal representation we chose to use in this
paper. Section 4 introduces a number of change-point detec-
tion methods, some of them new. The results obtained on
our 9 subjects corpus are finally presented and explained on
Section 5.

2. EXPERIMENTAL PROTOCOL

Twenty-four healthy and consenting subjects were asked to
walk on a treadmill for 20 to 25 minutes. They wore two
triaxial accelerometers (MotionPodTMby MOVEA): one at
the shin and one at the waist. The data acquisition was per-
formed by the Centre de Recherche en Nutrition Humaine
(Rhône-Alpes) and CEA-LETI. The signals were digitized
with a sampling frequency of Fs = 100Hz. During the ex-
periment, either the speed or the incline of the treadmill was
changed every 5 minutes (which gives 3 or 4 change points
for each subject). The changes were annotated either as one
time value or as two time values (in this case the change oc-
curred between these two times). A typical annotation file
is presented on Table 1. Since the sensors can sometimes
be misplaced, an off-line calibration was performed in or-
der to identify the three dimensions of the sensor: mediolat-
eral, vertical and anteroposterior. An example of continuous
walking record is presented on Figure 1.

3. SIGNAL REPRESENTATIONS

Change in speed or in incline are hardly identifiable in raw
accelerometer signals. We therefore transform these raw sig-
nals either in the time-frequency domain or in a specific fea-
tures domain, so as the characteristics of the gait are more
visible.
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Figure 1: Example of continuous walking record. aML, aV

and aAP respectively stands for the mediolateral, vertical and
anteroposterior acceleration. The annotated change points
are located at 300, 600, 900 and 1200 seconds. The associ-
ated speeds and inclines are the same as those presented on
Table 1.

3.1 Representation A: Short-Time Fourier Transform
(STFT)

In order to better identify the changes in speed and incline,
we propose to work in the time-frequency domain. We chose
the most common time-frequency representation of signals:
the Short-Time Fourier Transform (STFT).

Let a be an accelerometer signal. Let X ∈ C
F×N f be

the Short-Time Fourier Transform (STFT) of a, calculated
with window w of size Nw = 1024 and hop size Nh = 256.
Since the frequency of walking movements are ranged from
0.6Hz to 2.5Hz [10], we only consider the frequency bins
comprised between fmin = 0.5Hz and fmax = 5Hz.

While our accelerometers are able to output the acceler-
ation in all three directions, our experiments showed that the
best results were achieved by applying the STFT to the ante-
rioposterior component.

3.2 Representation B: Features vector

Most of the walking pattern classification methods calculate
specific features from the raw accelerometer signals, in or-
der to emphasize some characteristics of the gait. Even if
these features have only been used in a classification context
so far, they can also be used to segment a walking record,
since a change gait is likely to be reflected on the features.
We decided to work on a subset of the features introduced in
[4], and more specifically the 12 time-domain features they
define. Note that, contrary to the STFT representation which
only required one component, these features are calculated
by using all three components of our accelerometers.

The signals are first divided into frames of 360 samples
with an hop size of 60 samples. By denoting aML, aV and
aAP respectively the mediolateral, vertical and anteroposte-
rior acceleration, 12 time-domain features are calculated on
each frame:

• mean of aML +aV , aAP and aV

• standard deviation of aAP +aV and aML

• median of aV

• upper 95th percentile of aML

• number of zero-crossing of aML and aV

• cross-correlation between aML, aAP and aV .

The justification of this choice of features, as well as their
interpretation in the walking context are presented in [4].

4. CHANGE POINTS DETECTION

Our aim is to detect a series of change times in either the
STFT or the features matrix, which correspond to changes
in speed or incline. The number of desired change points is
supposed to be unknown.

4.1 Methods 1 & 2: Change in the non-centrality pa-
rameter in a multivariate noncentral chi-square distribu-
tion. Application to STFT.

4.1.1 Multiple change-point detection basics

The change point detection method we use here is adapted
from the off-line estimation of change time proposed in [11],
based on the generalized likelihood ratio. Consider a se-
quence of N independent vector-valued random observations
{yn}n of size F . We assume that all F components are inde-
pendent and that yn follows a noncentral chi square distribu-
tion of non-centrality parameter θθθ n and l degrees of freedom,
whose density can be written as pθθθ n

(yn).
Let us first describe the single change point method. As-

sume that there exists at most one change point in [1 : N]. We
introduce the following hypotheses:

H0 θθθ n = θθθ 1 ≤ n ≤ N (1)

Hk θθθ n = θθθ 0 1 ≤ n ≤ k (2)

θθθ n = θθθ 1 k+1 ≤ n ≤ N (3)

There, θθθ , θθθ 0 and θθθ 1 are unknown, as well as the possible
change point k. With the noncentral chi square distribution
assumption, θθθ , θθθ 0 and θθθ 1 are estimated by:

θ̂θθ =
1

N

N

∑
n=1

yn − l

θ̂θθ
0
=

1

k

k

∑
n=1

yn − l θ̂θθ
1
=

1

N − k

N

∑
n=k+1

yn − l (4)

Assume there exists one and only one change in the non-
centrality parameter in [1 : N]. Then, it means that k exists,
such as Hk is true. This change time can be estimated as:

k̂ = argmax
k

log

[

k

∏
n=1

p
θ̂θθ

0(yn)
N

∏
n=k+1

p
θ̂θθ

1(yn)

]

= argmax
k

[

N

∑
n=k+1

log
p

θ̂θθ
1(yn)

p
θ̂θθ

0(yn)
+

N

∑
n=1

log p
θ̂θθ

0(yn)

]

= argmax
k

N

∑
n=k+1

log
p

θ̂θθ
1(yn)

p
θ̂θθ

0(yn)
(5)

In order to check if k̂ is an acceptable change time, we cal-
culate the logarithm of the generalized likelihood ratio cor-



responding to the hypotheses H0 and Hk̂:

M(k̂)=
k̂

∑
n=1

log p
θ̂θθ

0(yn)+
N

∑
n=k̂+1

log p
θ̂θθ

1(yn)−
N

∑
n=1

log pθ̂θθ (yn).

(6)

We conclude that if M(k̂) > M∗ (where M∗ is an em-
pirical threshold chosen as explained in Section 5.2.2), then

there is a change point in [1 : N], and this change point is k̂
This single change-point detection method can be ex-

tended for the estimation of multiple change-points. In this
case, the change points are estimated iteratively through the
Iterated Cumulative Sums of Squares Algorithm (ICSS) [12].
We first apply our single change-point detection method to
the whole sequence so as to estimate the first and last change-
points, and then apply iteratively the algorithm to the se-
quence comprised between those two points, until no other
change-point is detected.

4.1.2 Method 1: Straightforward application to the STFT
(classical)

Let x f ,n ∈C be the STFT at frame n ∈ [1 : N f ] and frequency
bin f ∈ [1 : F ]. Consider the distribution:

x f ,n ∼ C N (µ f ,n,σ
2) (7)

where C N (µ ,σ2) denotes the complex circular Gaussian

distribution of mean µ and variance σ2. Then, if we write

v f ,n =
2|x f ,n|

2

σ2 and θ f ,n =
2|µ f ,n|

2

σ2 :

v f ,n ∼ χ2
(

θ f ,n,2
)

. (8)

where χ2 (θ , l) is the noncentral chi square distribution with
non-centrality parameter θ and l degrees of freedom. As-
sume that all frequency components are independent. We
note symbolically:

vn ∼ χ2 (θθθ n,2) . (9)

where vn = [v1,n, · · · ,vF,n]
′

and θθθ n = [θ1,n, · · · ,θF,n]
′
.

Method 1 consists in the application of the change-point
detection algorithm described in Section 4.1.1 to the se-
quence {vn}n. Note that, in order to compute vn, we need

to know the value of σ2. This value is estimated by calculat-
ing the variance of X for frequency bins which stand outside
of the peak values of the spectrogram.

4.1.3 Method 2: Frequency model of the STFT (structured)

The STFT calculated on walking periods tends to show a
strong harmonic structure (see Figure 2). Each spectrogram
frame can therefore be modeled by peaks located at each
integer-multiple of a fundamental frequency bin f0. If the

width of the main lobe of window w is lower than
f0
2

, we can
assume that there is no overlap between the contributions of
each harmonic. We introduce the following model:

E
[

v f ,n

]

=
H

∑
h=1

ρh,n |W ( f −h f0)|
2

(10)

where W ( f ) is the Fourier transform of window w, H the
number of harmonics (which value is determined by fmax

and f0) and ρh,n is the magnitude of harmonic h on frame

n. Under this model, the parameter θ̂
0

calculated in (4) is

now structured and entirely determined by f̂ 0 (frequency bin

of the main peak in the averaged spectrogram) and
{

ρ̂h
0
}

h
(magnitude of the averaged spectrogram at integer-multiple

values of f̂ 0) such as:

f̂ 0 = argmax
f

1

k

k

∑
n=1

v f ,n ρ̂h
0 =

1

k

k

∑
n=1

vh f̂ 0,n (11)

The same process can be used to estimate θ 1 and θ .
Method 2 is therefore an adaptation of the algorithm pre-

viously described, taking into account the particularity of
the spectrogram structure. The only difference between this

method and the previous one lies in the estimation of θ̂ 0 and

θ̂ 1 in (4).

4.2 Method 3: Non-parametric rank-based multivariate
change-point detection (dynMKW)

The non-parametric method we consider here is introduced
and described in [13]. Note that this method can either be
applied on the STFT or on the features matrix and that it
makes no assumption on the underlying distribution of the
observations. Also, contrary to methods 1&2, this approach
is parameter-free.

Let {yn}n be a sequence of N F-dimensional random ob-
servations. Suppose that there exist K − 1 change points in
[1 : N], which will be written k1, · · · ,kK−1 with k0 = 0 and
kK = N. Introduce

r f ,n =
N

∑
n′=1

1{y f ,n′≤y f ,n}−
N

2
(12)

whose first term represents the rank of y f ,n and

r̄ f , j =
1

k j+1 − k j

k j+1

∑
n=k j+1

r f ,n (13)

the average rank of the jth group in the f th dimension.
Define the statistic

T (k1, . . . ,kK−1) =
1

N2

K−1

∑
j=0

(k j+1 − k j)r̄
′
j Σ̂

−1
r̄ j , (14)

where r̄ j =
[

r̄1, j, · · · , r̄F, j

]′
and Σ̂ is a F ×F matrix defined

by:

Σ̂ f , f ′ =
1

N2

N

∑
n=1

r f ,nr f ′,n. (15)

If we suppose that the number of change-points is known and
that the signal can be segmented into K groups, the change-
points locations can be estimated by maximizing (14):

(k̂1, . . . , k̂K−1) = argmax
0<k1<···<kK−1<N

T (k1, . . . ,kK−1). (16)

Obviously, computing the statistic for all possible values of
the potential location of the segment boundaries has a pro-
hibitive computational cost. Given the additive characteristic
of the objective function, it can nonetheless be done in an ef-
ficient manner using a dynamic programming algorithm [14].

The number of segments in the signal is estimated heuris-
tically by using a method described in [13].



4.3 Method 4: Change in the mean of a multivariate
Gaussian distribution (dynGAU)

This method is an adaptation of the one presented in Section
4.2, in the case where data is assumed to be Gaussian.

Let us write ỹn = yn −∑N
n′=1yn′ . Then, the test statistic

described in (14) is now computed by replacing r̄ f , j in (13)
by:

r̄ f , j =
1

k j+1 − k j

k j+1

∑
n=k j+1

ỹ f ,n (17)

and Σ̂ f , f ′ in (15) by:

Σ̂ f , f ′ =
1

N2

N

∑
n=1

ỹ f ,nỹ f ′,n. (18)

The estimation method is the same as with dynMKW.

5. RESULTS

5.1 Comparison between Methods 1 & 2

An example of change-point detection in the STFT (Methods
1 & 2) is presented on Figure 2. We see that only Method 2
(structured), when applied to the shin sensor, is able to detect
all four annotated change points. All the other methods only
detect the three first ones, which involve a change in speed
(easily visible in the time-frequency domain as with a con-
stant step length, a change of speed corresponds to a change
in frequency). On the contrary, a change in incline does not
seem to involve a change in frequency, but rather a change in
the magnitudes of the harmonics. Then, it seems logical that
Method 2, which explicitly evaluates these magnitudes, bet-
ter detects the changes in incline. The better results obtained
with the shin sensor can be explained by the fact that the first
harmonic of the waist signal has a very low amplitude (de-
grading the evaluation of the fundamental frequency), while
the higher harmonics tend to oscillate (degrading the evalua-
tion of the magnitudes of the harmonics).

5.2 General results

5.2.1 Metrics

In order to evaluate our different approaches, we compare the
output sequence of detected change times to the annotations.
Let us remind that as described in Section 2 and Table 1, our
change times are either annotated as one or two times. Since
these annotations are not perfect, we need to introduce some
tolerance for the evaluation. We use the following conven-
tions (times are given in seconds):

• If the change point is annotated as one time t, the detected
change point t̂ is correct if t̂ ∈ [t −30 : t +30].

• If the change point is annotated as two times [t1 : t2], the
detected change point is correct if t̂ ∈ [t1 −10 : t2 +10]

We then compute two scores: the precision and the recall,
defined as follows:

• If among the K̂ detected change points, only Ĉ are cor-

rect, the precision is defined as p = Ĉ

K̂
.

• If among the K ground truth change points, only C are

correctly detected, the recall is defined as r = C
K

Those scores are then averaged among all the subjects of the
corpus.

Waist Shin
p r p r

(A) STFT

(1) classical 0.50 0.72 0.49 0.77
(2) structured 0.46 0.65 0.49 0.79
(3) dynMKW 0.50 0.67 0.51 0.71
(4) dynGAU 0.50 0.63 0.47 0.61

(B) Features
(3) dynMKW 0.51 0.69 0.57 0.79
(4) dynGAU 0.49 0.66 0.57 0.73

Table 2: Precision and recall obtained on the 24 subjects cor-
pus

5.2.2 Results

The precisions and recalls obtained with the different sen-
sors, signal representations and change-point detection meth-
ods are displayed on Table 2. The empirical threshold used
in Methods 1 & 2 has been chosen so as to give a precision
approximately equal to 0.50 (which is the average precision
value of Methods 3 & 4).

Representation A (STFT) Concerning Methods 1 & 2,
these results tend to confirm the assumptions made in Sec-
tion 5.1. Indeed, the recall scores are always higher with
the shin sensor (whose STFT has a clearer structure than
the waist one) and the introduction of the frequency struc-
ture improves the scores when using the shin sensor. It is
interesting to notice that when working with the shin sensor,
the best recall is obtained by using a method with a dedi-
cated model (structured). On the contrary, since the STFT
calculated on the waist signals shows some properties which
do not fit our model (oscillating harmonics, low magnitudes
of the fundamental frequencies), the best recall is obtained
with a non-parametric method (dynMKW) or a more generic
method (classical).

Representation B (Features) When working with rep-
resentation B, the non-parametric method 3 performs better
that the parametric one. This can be due by the fact that the
Gaussian assumption does not fit the reality of these signals.
Also, Method 4 only detects changes in mean but in reality
it is more likely that these changes may occur in mean and
variance.

6. CONCLUSION

We have presented and evaluated several approaches for the
segmentation of accelerometers signals recorded during con-
tinuous treadmill walking. On our corpus composed of 24
subjects, 72% of the changes in speed of incline were cor-
rectly detected when working on waist signals, and 79% on
the shin signals. A straightforward perspective would be to
adapt and test these methods on real-life walking records,
where the changes in speed and incline are smoother than on
a treadmill. Also, this study could be extended to a larger
set of subjects, in order to better investigate the limits of our
systems.
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Figure 2: Change point detection in the Short-Time Fourier Transform with methods 1 & 2 and sensors waist and shin. The
annotated change points are located at 300, 600, 900 and 1200 seconds. The two first change points correspond to a change in
speed, the third one to a change in speed and incline and the last one to a change in incline.
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