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ABSTRACT

In this paper, we present a new method for decomposing musical
spectrograms. This method is similar to shift-invariant Probabilistic
Latent Component Analysis, but, when the latter works with con-
stant Q spectrograms (i.e. with a logarithmic frequency resolution),
our technique is designed to decompose standard short time Fourier
transform spectrograms (i.e. with a linear frequency resolution).
This makes it possible to easily reconstruct the latent signals (which
can be useful for source separation).

Index Terms— Music signal processing, non-negative ma-
trix factorization, probabilistic latent component analysis, shift-
invariant decomposition.

1. INTRODUCTION

Non-negative decompositions are widely used for audio spec-
trograms processing: non-negative matrix factorization (NMF) [1]
and PLCA [2] are both used to decompose spectrograms with appli-
cations such as source separation [3, 4] and automatic music tran-
scription [5]. Shift-invariant models [6, 7] decompose constant-Q
spectrograms [8] with a single frequency template for each har-
monic instrument: with a log-frequency resolution, a frequency
shift corresponds to a transposition. Then each note of a single
instrument can be modeled as a base template shifted to the right
pitch.

Unfortunately, constant-Q transforms (CQT) are difficult to use
for sound source separation: even if a near-perfect inverse CQT
transform was recently proposed [9], the variable resolution of the
decomposition makes it difficult to apply time-frequency masking
and source separation using CQT is still an open problem. Attempts
were made to use shift-invariant decomposition of CQT for source
separation [10] using a mapping between log-frequency and linear
frequency resolution to avoid CQT inversion. This paper presents
a new decomposition method inspired by shift-invariant decompo-
sitions, but which is designed to directly decompose STFT spec-
trograms. In a constant-Q spectrogram, a change of fundamental
frequency approximately corresponds to a translation of the spec-
tral template; in a standard STFT spectrogram, one can model such
a change with an homothety of the spectral template. This approxi-
mation remains only valid for small modifications since:

• For real acoustic instruments, a note change usually leads to
a different energy balance between the different harmonics.
Even if it is widely used in Shift-Invariant decomposition, the
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assumption that this balance does not change is only exact for
a few electronic instruments.

• The spectral width of harmonics (or partials) is affected by the
homothety, in opposition with the real world case where it is
mostly related to the analysis window type and length.

We call the new decomposition scale-invariant PLCA (SIPLCA).
This scale-invariant model presents some new issues that were not
encountered with shift-invariant models: an homothety on a set of
integers does not yield integers. We propose a solution to this is-
sue. In section 2, we remind the principle of standard PLCA and
shift-invariant PLCA. We then present, in section 3, the new scale-
invariant model and derive an algorithm to estimate the parameters.
Some examples are presented in section 4 and we propose an appli-
cation of single notes repitching in a polyphonic signal. Finally, we
draw conclusions in section 5.

2. PROBABILISTIC LATENT COMPONENT ANALYSIS

The model that we used is inspired by shift-invariant PLCA [7]
which is a probabilistic drawing model. In PLCA decompositions
[2], a non-negative spectrogram Vft is considered as an histogram
obtained from a structured draw of a frequency random variable
f ∈ {1, 2, . . . , F} and a time random variable t ∈ {1, 2, . . . , T}
which follow the joint distribution P (f, t). One can design P (f, t)
in different ways, which lead to different decompositions.

2.1. Standard PLCA

Standard PLCA (non shift-invariant) [2] leads to a decomposi-
tion similar to NMF. The draw is structured with a latent (hidden)
random variable z which corresponds to a “component”, assuming
that f and t are independent given z:

P (f, t) =

Z∑

z=1

P (z)P (f, t|z) =
Z∑

z=1

P (z)P (f |z)P (t|z).

The histogram Vft is thus assumed to be obtained in the following
way: first z is drawn following P (z) and then f and t are drawn
following respectively P (f |z) and P (t|z).

In an NMF framework, P (f |z) corresponds to the spectral tem-
plates and P (t|z) corresponds to the activations of each component.
P (z) is the relative weight of each component.

2.2. Shift-invariant PLCA

Shift-invariant PLCA introduces another latent random variable
f ′ ∈ {1, 2, . . . , F ′}, the base frequency, in reference of which a
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transposition variable τ ∈ Z is defined. f ′ and t are assumed inde-
pendent given z, and τ and f ′ are also independent given z (but t
and τ are not). f is obtained by a transposition of the base template:
f = f ′ + τ . P (f, t) then takes the form:

P (f, t) =

Z∑

z=1

P (z)

F ′∑

f ′=1

PK(f ′|z)PI(f − f ′, t|z).

PK is called the kernel distribution: it corresponds to the base
spectral templates which are shifted by the impulse distribution PI .

3. SCALE-INVARIANT PLCA

3.1. Model

In standard short-time Fourier transform spectrograms (with a
linear frequency resolution), transposition is no longer a shift but
approximately corresponds to an homothety of the spectral tem-
plate: we thus model it with a multiplication by a scalar λ ∈
R+\{0}. Let X be a discrete random variable taking its values
in {0, 1, 2, ...K} and λ a continuous positive random variable with
a density function p. The density of u = λX is then:

pλX(u) =

K∑

k=1

P (X = k)p(u
k

)

k
+ δ(u)P (X = 0) (1)

where δ(u) is a Dirac delta function.
In our model, one assumes that the continuous frequency ran-

dom variable fc ∈ R (the link between fc and the observed variable
f will be made clearer later) is obtained by multiplying the base
frequency f ′ ∈ {0, 1, . . . , F ′} (which is independent of t given z)
with the transposition factor λ ∈ R+\{0} (which depends on t but
not on f ′ given z). Using (1) with u = fc, k = f ′ and K = F ′,
we get:

P (fc, t|z) =

F ′∑

f ′=1

PK(f ′|z)
f ′

PI

(
fc
f ′
, t|z

)
+ δ(fc)PK(0|z).

We use the notation PK for the kernel distribution and PI for the
impulse distribution, as for shift-invariant PLCA. However they do
not represent the same object. PK still corresponds to the base spec-
tral templates but is now rescaled by the impulse distribution PI .

In this paper, we consider that PK(0|z) = 0 to avoid the singu-
larity at the null frequency (there still can be energy in the frequency
channel 0 introduced when scaling down the frequency template).
We then get:

P (fc, t) =
Z∑

z=1

P (z)
F ′∑

f ′=1

PK(f ′|z)
f ′

PI

(
fc
f ′
, t|z

)
.

The random variable fc is continuous, but the observed random
variable f ∈ {0, 1, . . . , F} is discrete. Then we will suppose that
f = round(fc) and consequently:

P (f, t) =

∫ f+ 1
2

f− 1
2

P (fc, t)dfc.

Consequently, ∀f ∈ {0, 1, . . . , F},∀t ∈ {1, . . . , T}:

P (f, t) =
∑

z,f ′

P (z)PK(f ′|z)
f ′

∫ f+ 1
2

f− 1
2

PI

(
fc
f ′
, t|z

)
dfc.

The parameters to be estimated are then: θ =
{P (z), PK(f ′|z), PI(λ, t|z)}.

For practical purposes, one needs to discretize PI (which is a
continuous density function with respect to λ) in some way, in order
to estimate θ. We propose to perform this discretization by param-
eterizing PI assuming that λ 7→ PI(λ, t|z) is piece-wise constant
for all t and z. We select a family {λk}k∈{1,...,K} (which does

not depend on t and z). In this paper, we choose λk = 2
k−k0
12nst :

this exponential discretization is chosen to fit a transposition scale
in subdivisions of the tone (nst corresponds to the number of dis-
cretized values of λ for each semitone). We assume that PI is given
by:

∀λ ∈ [λk2
− 1

24nst , λk2
1

24nst ], PI(λ, t|z) = PI(λk, t|z).

Moreover, we assume that PI is zero outside these intervals. The
values PI(λk, t|z) (for all k, t and z) then completely describe PI .

Then:

∫ f+ 1
2

f− 1
2

PI(
fc
f ′
, t|z)dfc = f ′

kf,f′
max∑

k=k
f,f′
min

PI(λk, t|z)δλf,f
′

k

where kf,f
′

min is chosen so that λ
k

f,f′
min

2
− 1

24nst <
f− 1

2
f ′ ≤

λ
k

f,f′
min

2
1

24nst and kf,f
′

max is chosen so that λ
k

f,f′
max

2
− 1

24nst ≤ f+ 1
2

f ′ <

λ
k

f,f′
max

2
1

24nst (with the following constraints: 1 ≤ kf,f
′

min ≤ K and

1 ≤ kf,f ′max ≤ K):

kmin =

⌈
k0 − 1

2
+ 12nst log2(

f − 1
2

f ′
)

⌉

kmax =

⌊
k0 +

1

2
+ 12nst log2(

f + 1
2

f ′
)

⌋

where d.e is the ceiling function and b.c the floor function.

Thus δλf,f
′

k is given by δλf,f
′

k = min (λk2
1

24nst ,
f+ 1

2
f ′ ) −

max (λk2
− 1

24nst ,
f− 1

2
f ′ ). When δλf,f

′
k is not limited by constraints

on f and f ′, we will denote δλk = λk2
1

24nst − λk2
− 1

24nst .
The parameters to be estimated are then: θ =

{P (z), PK(f ′|z), PI(λk, t|z)|z ∈ [[1, Z]], f ′ ∈ [[1, F ′]], k ∈
[[1,K]], t ∈ [[1, T ]]}.

3.2. Expectation-Maximization algorithm

We intend to estimate the value of the parameter θ that maxi-
mizes the log-likelihood of observing Vft:

L((f̄ , t̄)|θ) =
∑

i∈I
logP (fi, ti), (2)

where f̄ and t̄ correspond to the draws of f and t (draws are indexed
by i ∈ I = {1, ..., N} where N is the total number of draws). As
the number of draws that leads to the value (f, t) is Vft, the log-
likelihood can be rewritten:

L((f̄ , t̄)|θ) =

F∑

f=1

T∑

t=1

Vft logP (f, t)
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The estimation will be performed with the Expectation-
Maximization (EM) algorithm with latent variables z and f ′ (it
would be equivalent to consider z and λ as latent variables since
f = λf ′). The completed log-likelihood is:

L((f̄ , t̄, z, f ′)|θ) =

F∑

f=1

T∑

t=1

Vft logP (f, t, z, f ′)

=
∑

f,t

Vft

{
logP (z) + logPK(f ′|z)

+ log

(∫ f+ 1
2

f− 1
2

PI(
fc
f ′
, t|z)dfc

)}
+ c

where c is a constant that does not depend on θ.
The completed log-likelihood expectation is then:

Q(θ|θ(c)) =
∑

f ′,z,f,t

VftP (z, f ′|f, t, θ(c))
{

logP (z)

+ logPK(f ′|z) + log

(∫ f+ 1
2

f− 1
2

PI(
fc
f ′
, t|z)dfc

)}
+ c

(3)

where θ(c) is the current value of the parameter.
We can get an expression for P (z, f ′|f, t, θ(c)) with respect to

θ(c) using the Bayes theorem (E step):

P (z, f ′|f, t, θ(c)) =
P

(c)
K (f ′|z)P (c)(z)

∫ f+ 1
2

f− 1
2
P

(c)
I ( fc

f ′ , t|z)dfc
f ′P (c)(f, t)

.

(4)
The notation (.)(c) refers to values computed from the current pa-
rameter: θ(c) = {P (c)(z), P

(c)
K (f ′|z), P (c)

I (λ, t|z)}.
The completed expectation (3) will be maximized (M step) with

respect to θ (θ(c) being fixed). As θ is made up of probabilities that
must sum to 1, the maximization is constrained. Thus we use the
Lagrangian1:

H(θ|θ(c)) = Q(θ|θ(c)) +
∑

z

ρz


1−

∑

f ′
PK(f ′|z)




+ µ

(
1−

∑

z

P (z)

)
+
∑

z

τz

(
1−

∑

t

∫ λmax

λmin

PI(λ, t|z)
)

(5)

where ρz , µ, and τz are Lagrange multipliers.

3.2.1. Update of P (z) and PK(f ′|z)
∂H(θ|θ(c))
∂P (z)

= 0 leads to the update rule of P (z):

P (z)←

∑

f,f ′,t

VftP (z, f ′|f, t, θ(c))
∑

z,f,f ′,t

VftP (z, f ′|f, t, θ(c))
. (6)

1We did not write non-negative constraints in the problem statement be-
cause our final solution guarantees that parameters remain non-negative,
then these constraints are inactive.

In a similar way, we obtain the update rule of PK(f ′|z):

PK(f ′|z)←

∑

f,t

VftP (z, f ′|f, t, θ(c))
∑

f,f ′,t

VftP (z, f ′|f, t, θ(c))
. (7)

3.2.2. Update of PI(λk, t|z)

Because of the expression of the Lagrangian H(θ|θ(c)) with
respect to PI(λk, t|z), the update rule of PI(λk, t|z) is more com-
plex to derive. We consider the following “fixed-point” update rule
(iterated several times) which hopefully will converge to a zero of

∂H
∂PI (λk,t|z) :

PI(λk, t|z)←
∑

f,f ′

VftP (z,f ′|f,t,θ(c))PI (λk,t|z)1[kmin,kmax](k)

τzδλk
∑k

f,f′
max

k′=k
f,f′
min

PI (λk′ ,t|z)δλ
f,f′
k′

δλf,f
′

k .

(8)

In equation (8), the division by τz is a normalization.
We have not managed to prove convergence of PI under sev-

eral iterations of the update rule (8) to a zero of ∂H
∂PI

. However we
observed it in practice.

As Q(θ|θ(c)) (defined in equation (3)) and the constraints are
C1, Q(θ|θ(c)) is strictly concave and the constraints are affine,
and the regularity conditions are satisfied, a stationary point of
H(θ|θ(c)) is necessarily the global maximum of Q(θ|θ(c)) under
the normalization constraints. Thus, Q(θ|θ(c)) is effectively maxi-
mized at each iteration using the update rules (6), (7) and (8) and the
EM algorithm makes the likelihood of the observed data increase at
each iteration. More details about the calculation of the update rules
can be found in [11].

4. EXAMPLES AND APPLICATIONS

4.1. Toy example

In this section, we use our algorithm to decompose a simple
spectrogram. This spectrogram is obtained by STFT (using a 1024
sample-long Hann window with 75% overlap and no zero-padding)
of a short excerpt of synthesizer which plays the notes of a A ma-
jor scale on two octaves (from A4 to A6) sampled at 11025Hz.
The original spectrogram is pictured in figure 1(a). The decom-
position provides the reconstructed spectrogram pictured in figure
1(b): the reconstructed spectrogram is very similar to the original
one. The difference of maximum amplitudes between original and
reconstructed spectrograms come from the normalization of P (f, t)
(Vft is not normalized), but the dynamic remains the same in both
spectrograms. High frequency harmonics of the reconstructed spec-
trogram are slightly larger than the original one.

Obtained kernel distribution PK is represented in figure 1(d):
we can see that the factorized template is actually harmonic. For
high values of the frequency index, amplitudes of the templates tend
to be very small. This comes from the fact that our model consid-
ers that values of the spectrogram outside the observed frequencies
are zeros whereas the model spectrogram P (f, t) can take positive
values outside this range. This can be solved using the approach
described in [12]. In practice, for signals of actual acoustic instru-
ments, this is not a real issue, since the harmonic content of such
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(a) Original spectrogram (b) Reconstructed spectrogram

(c) Impulse distribution PI (d) Kernel distribution PK

Figure 1: Scale-invariant PLCA: decomposition of a diatonic scale.

signals is mostly smothered by noise from 5000Hz: thus a sampling
rate of 22050Hz or more permits to reduce this issue.

Impulse distribution PI is represented in figure 1(c): high prob-
abilities clearly appear at actual notes relative positions. There are
also some replicas of the notes at positions with high harmonic
similitudes (octave, twelfth, double octave...). At onset times, PI
takes high values for many values of the homothety factor λ: this is
caused by the flat shape of the spectrum of onsets which is matched
here with several rescaled harmonic templates.

4.2. Real audio data

In this section, we present the SIPLCA decomposition of the
spectrogram of the 10 first seconds of the song Because by the Bea-
tles with a single template (Z = 1). The decomposed signal con-
sists of a polyphonic harpsichord introduction recorded in real con-
ditions. The original stereo signal was transformed into a mono sig-
nal (summing both channels) and downsampled to 22050Hz. The
spectrogram was calculated with a STFT using a 2048 sample-long
Hann window with 75% overlap and no zero-padding.

The obtained impulse distribution PI is represented in figure 2:
actually played notes are materialized by a rectangle in the figure.
We can see that in all rectangles, PI takes high values.

The impulse distribution PI is thus very similar to the impulse
distribution that can be obtained with shift-invariant decomposi-
tions. However, as our decomposition is computed on linear fre-
quency resolution spectrograms, it has an important advantage: it is
possible to generate time-frequency masks that can be directly used
to separate different components with Wiener filtering. Thus, it is
possible to isolate single notes in a polyphonic signal and to repitch
them individually. Examples of processed sounds are available on
the webpage [13].

5. CONCLUSION

In this paper, we proposed a new way of decomposing non-
negative music spectrograms: the decomposition is based on a few
frequency templates that can be rescaled at each frame (which cor-
responds to a transposition). We presented examples of this decom-

Figure 2: Impulse distribution of the introduction of Because.

position on music spectrograms and showed how it can be used to
modify individual notes in a polyphonic signal.

Future works will include a better representation of non-
harmonic components of musical sounds, such as transients.
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