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A theoretical investigation of the performance of single-mode coupled spon-
taneous parametric down-conversion sources is proposed, which only requires
very few assumptions of practical interest: quasi-degenerate collinear gener-
ation and narrow bandwidth obtained through spectral filtering. Other as-
sumptions like pump beam spatial and temporal envelopes, target single-mode
profile and size, and non-linear susceptibility distribution, are only taken into
account in the final step of the computation, thus making the theory general
and flexible. Figures of merit for performance include absolute coupled bright-
ness and conditional coupling efficiency. Their optimization is investigated
using functions that only depend on dimensionless parameters, so that the re-
sults provide the best experimental configuration for a whole range of design
choices (e.g. crystal length, pump power). A particular application of the the-
ory is validated by an experimental optimization obtained under compatible
assumptions. A comparison with other works and proposals for numerically
implementing the theory under less stringent assumptions are also provided.
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1. Introduction

Sources of entangled photons have applications ranging
from fundamental tests of quantum mechanics [1, 2] to
quantum information and communications [3, 4]. Entan-
glement based quantum key distribution protocols have
been reported [5] as an alternative to those based on sin-
gle photon sources and quantum repeaters have also been
shown to require entanglement as a primary resource
[6, 7].

Spontaneous parametric down-conversion (SPDC) re-
mains the simplest way to generate entangled pho-
tons, enabling telecommunication wavelength generation
which cannot be easily achieved using atomic cascades.
A large choice of configurations is available according to
the emission geometry (collinear [8] or not [9, 10]), the
phase matching type (I [11] or II [9]) and the signal and
idler frequencies (degenerate [12] or not [13]). The non-
collinear emission geometry has some advantages, pro-
viding direct separation of signal and idler photons but
collinear emission in periodically poled crystals recently
became increasingly popular [14–16], because of the high
brightness obtained with longer crystals and higher non-
linear susceptibilities.

Filtering is one of the most important aspects of pho-
ton pair engineering. Spatial filtering and more specifi-
cally coupling the photon pairs to a single spatial mode,
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like an optical fiber, is the first requirement for long-
distance communications. The coupling efficiency is then
a crucial parameter, knowing that photon losses limit the
visibility of quantum interferences [17, 18]. Narrowband
spectral filtering can be necessary to ensure spectral in-
distinguishability but also to obtain efficient coupling to
a quantum memory [19–23] which is a central element
in quantum repeaters [3, 20]. It is also beneficial for
long-distance communications of polarization states as
it reduces polarization mode dispersion and group delay
dispersion problems.

Since the pioneering works of SPDC concerning the
quantum fluctuation and noise in parametric processes
[24] and those dealing with probability of coincidences
in the emission of signal and idler photons [25–27] an
important theoretical effort has been developed in order
to optimize various kind of sources [28, 29], some of them
dedicated to strongly focused beams [30].

After studies of the collection of SPDC through aper-
tures [31, 32], numerous authors have reported studies of
the coupling of SPDC into a single spatial mode like that
of a fiber [33–39], with various assumptions and exper-
imental methods of validation. The optimal focusing of
a continuous wave monochromatic pump has been inves-
tigated [36] in order to calculate the maximum coupling
efficiency of photon pairs into single-mode fibers but the
pump diffraction was neglected and the phase mismatch
was not taken into account in the optimization process.
The same approximations have been used in [37] to cal-
culate the absolute emission rates of SPDC into single
modes, where the crystal is moreover assumed to be thin.
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The absolute coupled brightness is also calculated in [38]
but with a continuous wave pump, emphasizing the par-
allel between SPDC and classical nonlinear phenomena.
Very recently, R. S. Bennink studied the case of Gaussian
beam profiles, directly writing the nonlinear interaction
Hamiltonian with a Gaussian beam profile for both the
pump and the SPDC generated photon pairs [39]. This
method enables the evaluation of the coupled brightness
in a Gaussian target mode and can be adapted to in-
clude the effect of spectral filtering; it therefore leads to
interesting results that are complementary to ours.

To our knowledge, a comprehensive study of narrow-
band SPDC pumped by a diffracting beam of arbi-
trary pulse envelope and duration (from short pulses to
continuous-wave lasers) and arbitrary transverse profile,
covering a full range of focusing (from tight focusing to
parallel beams) and arbitrary filter shapes, has not been
addressed. Such a generalization can however be useful
in view of optimizing future SPDC sources that might
require specific spectral and spatial characteristics to in-
terface with particular quantum information systems.

In this paper, we propose a theoretical framework that
is general enough to allow the investigation of these char-
acteristics and their effects on the source performance
(e.g. coupled brightness, conditional coupling efficiency)
under assumptions suited to the desirable features men-
tioned above: narrow-bandwidth and collinear emission
in long crystals with a given non-linear susceptibility dis-
tribution. Using a dedicated source, we also experimen-
tally validate the theoretical predictions for particular
assumptions.

Section 2 describes the general formalism of the ad-
dressed problem and derives the wave-function of the cre-
ated photon pairs, taking into account spatial and spec-
tral filtering. We also define various figures of merit that
are useful to characterize a source performance. The nu-
merical application of this general theoretical approach
to the case of a narrowband fibered source pumped by
a Gaussian beam is developed in section 3. The experi-
mental setup is described in section 4 and the measured
performances are compared with the theoretical predic-
tions. A comparison of our results with other works, as
well as guidelines for generalizing the numerical calcula-
tions are proposed in section 5.

2. Theoretical framework

A. The down-converted two-photon state

The general configuration considered hereafter is de-
picted in Figure 1. The nonlinear interaction takes place

in a crystal with a second-order susceptibility χ
(2)

(r),
pumped by a classical field of positive-frequency com-

plex amplitude E
(+)
p . The spontaneous parametric down-

conversion process is described by a time-dependent

Hamiltonian Ĥ(t). The signal and idler fields Ê
(+)
s and

Ê
(+)
i have the following plane-wave decomposition in the

Fig. 1. General configuration considered in the theoreti-
cal framework: a nonlinear crystal is pumped by a beam
of arbitrary temporal and spatial profiles. The photon
pairs produced through SPDC are spectrally filtered and
coupled to a single spatial mode, before being split to-
wards channels A and B.

quantization volume V :

Ê
(+)
s,i(r, t) =

∑

ℓs,i

~εℓs,i
âℓs,i

A(ℓs,i)e
i(kℓs,i

·r−ωℓs,i
t) (1)

where the field amplitude A(ℓ) for the mode ℓ associated

with annihilation operator âℓ is

A(ℓ) = i

√

h̄ωℓ

2ǫ0Vn2(kℓ)
. (2)

Frequency and polarization are respectively denoted by
ωℓ and ~εℓ, wavevectors in the crystal by kℓ. A notation k

′
ℓ

will be used when the wavevector is evaluated in another
medium.

In the interaction picture, the Hamiltonian is given by
[40, 41]

Ĥ(t) = ǫ0

∫

d3
r E

(+)
p (r, t) χ

(2)
(r)Ê(−)

s (r, t)Ê
(−)
i (r, t)

+ H.c. (3)

where Ê
(−) is the Hermitian conjugate (H.c.) of Ê

(+).
The pump field is assumed to be a linearly ~εx-polarized

classical paraxial beam propagating along the z axis with
L2-normalized temporal and spatial envelopes Tp and Sp.

Using transverse coordinates ρ = ( x
y ) such that r =

( ρ

z ),

E
(+)
p (ρ, z, t) = ~εxCpTp

(

t− z

vp

)

Sp(ρ, z)e
i(kp0

z−ωp0
t). (4)

Here kp0
is the pump wavevector modulus at its central

frequency ωp0
and vp is the group velocity in the crystal.

We neglect its spectral dispersion, therefore vp = c/np

where np is the refractive index in the crystal at ωp0
.

The constant Cp =
√

Ep/(2ǫ0n2
pvp) depends on the pump

pulse energy Ep.
When the down-conversion efficiency is small, the gen-

erated two-photon state is the first-order approximate
solution to the Schrödinger equation. Discarding the
zeroth-order term,

|ψ(t)〉 =
1

ih̄

∫ t

−∞

dt′Ĥ(t′)|0〉. (5)
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Let us separate the spatial dependence R(r) of the non-
linear susceptibility:

~εx χ
(2)

(r)~εℓs
~εℓi

= χ(ℓs, ℓi) ·R(r). (6)

After the pump has propagated through the whole crystal
length, (t → ∞), the state is time-independent in the
interaction picture. Identifying the integral in Eq. (5) as

the Fourier transform Ĕ
(+)
p of E

(+)
p ·~εx with respect to its

temporal variable, the state is given by

|ψ〉 =
ǫ0
ih̄

∑

ℓs,ℓi

χ(ℓs, ℓi)A(ℓs)A(ℓi)

∫

d3
r e−i(kℓs+kℓi

)·r

×R(r)Ĕ(+)
p (r, ωℓs

+ ωℓi
)â†ℓs

â†ℓi
|0〉 (7)

This equation can be understood as the sum of the con-
tributions of local interactions to the delocalized down-
converted two-photon state |ψ〉. The integral has the
form of a spatial Fourier transform, which leads to

|ψ〉 =
∑

ℓs,ℓi

γ0(ℓs, ℓi)â
†
ℓs
â†ℓi

|0〉 (8)

where

γ0(ℓs, ℓi) =
ǫ0
ih̄
χ(ℓs, ℓi)A(ℓs)A(ℓi)

× R̆∗Ĕ(+)
p (kℓs

+ kℓi
, ωℓs

+ ωℓi
) (9)

R̆ being the Fourier transform of R and ∗ the convolu-
tion operator. Using the fact that, for a diffracting beam
in the paraxial approximation, the Fourier transform of
the transverse spatial envelope has the following z depen-
dence:

S̆p(κ, z) = S̆p(κ, 0)e
−i |κ|2

2kp0

z
(10)

where κ is the transverse wavevector, we have

Ĕ(+)
p (κ, kz , ω) = CpT̆p(ω − ωp0

)S̆p(κ, 0)

× 2πδ
(

kz − kp0
− ω − ωp0

vp
+

|κ|2
2kp0

)

. (11)

We consider a crystal of length L centered on z = 0
whose transverse dimensions are large compared to the
pump beam profile. If its nonlinear susceptiblity distri-
bution is transversally invariant, it can be expressed as a
one-dimensional Fourier series:

R(z) = rect(z/L)×
∑

m

Rme
−i2πm z

L (12)

where rect(z) is the rectangular function with rect(0) =
1. In the reciprocal space,

R̆(kz) =
∑

m

Rm sinc (kz + 2πm/L) . (13)

Then γ0(ℓs, ℓi) =
∑

m γ0m(ℓs, ℓi) with

γ0m(ℓs, ℓi) =
ǫ0
ih̄
Rmχ(ℓs, ℓi)A(ℓs)A(ℓi)

× CpT̆p(ωℓs
+ ωℓi

− ωp0
)S̆p(κℓs

+ κℓi
, 0)

× L sinc

(

∆Km(kℓs
+ kℓi

, ωℓs
+ ωℓi

)
L

2

)

(14)

where

∆Km(k, ω) = kz − kp0
− ω − ωp0

vp
+

|κ|2
2kp0

+m
2π

L
. (15)

So far, we have written explicitly in Eq. (8) the un-
normalized state, |ψ〉, of a photon-pair down-converted
during a pump pulse. Its squared modulus 〈ψ|ψ〉 is the
probability that such a down-conversion effectively oc-
curs. The effect of spectral and spatial filtering on the
photon-pair state is developed in the following section.

B. Spectral and spatial filtering

The calculation of the effect of filtering on one-photon
states is detailed in Appendix A. Extrapolation to two-
photon states is straightforward and only results are
given here. Filters give rise to losses and two photon
states are consequently transformed into mixed states,
i.e. non coherent superpositions of two-photon, one-
photon and zero-photon terms. In the case of coinci-
dence counting, the two-photon state component is post-
selected and we will discard zero- and one-photon terms.

Purely spectral filters are described by a function
F(ω − ωF) defining their amplitude transmission with
a maximum normalized at 1 at their central frequency
ωF. More generally, a spectral filter can be sensitive to
the direction of the wavevector (like prisms, gratings or
Fabry-Pérot etalons), and it may be necessary to take a
κ-dependence into account: F(ω − ωF,κ).

Spatial filtering is modeled as the coupling of the down-
converted field to a single spatial mode defined, in a
medium of refractive index n′, by a frequency dependent
function Oω,0(r). The filter location z = z0 defines the
transverse plane where the coupling is considered to take
place. This coupling induces a state projection on the
target mode, and the state of the transmitted photons is
associated to a creation operator ô†ω.

Following Eq. (8), the spectrally-filtered, free-space
two-photon state is given by

|ψ0〉 =
∑

ℓs,ℓi

γ0(ℓs, ℓi)γ
(2)
T (ℓs, ℓi)â

†
ℓs
â†ℓi

|0〉

⊕ ignored one and zero-photon terms. (16)

where ⊕ stands for the incoherent sum of components of
a statistical mixture (see also end of Appendix A) and

γ
(2)
T (ℓs, ℓi) = F(ωℓs

− ωs0
,κℓs

)F(ωℓi
− ωi0 ,κℓi

), (17)
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ωs0
and ωi0 being the signal and idler frequencies selected

by the filters, which can be equal for degenerate down-
conversion using a unique filter. The squared modulus of
this state, 〈ψ0|ψ0〉, is the probability P0 of generating a
photon pair during a pump pulse in the filter bandwidth.

The spectrally and spatially filtered state is given by

|ψ2〉 =
∑

ℓs,ℓi

γ0(ℓs, ℓi)γ
(2)
T (ℓs, ℓi)γ

(2)
S (ℓs, ℓi)ô

†
ωℓs
ô†ωℓi

|0〉

⊕ ignored one and zero-photon terms. (18)

with

γ
(2)
S (ℓs, ℓi) =

1

S Ŏ∗
ωℓs ,0(κℓs

, z0)Ŏ∗
ωℓi

,0(κℓi
, z0)

× ei(k
′
z,ℓs

+k′
z,ℓi

)z0 (19)

where Ŏ∗
ω,0 is the complex conjugate of the transverse

Fourier transform of Oω,0, k
′
z,ℓ = kz,ℓn

′(ωℓ)/n(ωℓ) is the
longitudinal wavevector evaluated in a medium of re-
fractive index n′, and S is the transverse section of the
quantization volume (see Appendix A for details).

After spectral and spatial filtering, |ψ〉 has become
|ψ2〉. Since the state has not been renormalized, P2 =
〈ψ2|ψ2〉 is the probability that one pulse has generated
a photon pair and that this pair has been transmitted
by the spectral and spatial filters. Its calculation is per-
formed in subsection 2 D, using assumptions that will
allow us to separate the frequency dependence from the
wavevector dependence in Eq. (15) as shown in the next
subsection.

C. Assumptions

A few assumptions are quite natural when aiming at
applications in quantum information. Moreover, they
enable further analytical development as well as faster
numerical calculation. The following approximations,
mostly used to simplify the expressions of ∆K in (19),
aim at eventually decoupling the frequency dependence
(ω) from the angular dependence (κ) in the wavevectors
k.

1. Collinear collection

When using long crystals, as in most recent and efficient
devices [42, 43], a collinear configuration is required. In
such a case, the paraxial approximation, as already used
for the pump beam, can be applied to the down-converted
photons on the z-axis, giving the following expression for
the longitudinal component of the signal wavevector:

kzs = ks0
+
ωs − ωs0

vs
− 1

2

|κs|2
|ks|

(20)

where ks0
is the wavenumber of collinearly emitted signal

photons at the central frequency of the filter ωs0
, and

vs = c/ns with ns the refractive index in the crystal at
the signal frequency. A similar expression applies for kzi.

2. Narrow bandwidth

When filtering limits the source bandwidth to less than
a few nanometers (∆ωF ≪ ωp0

), we have ωs ≈ ωs0
and

ωi ≈ ωi0 in which case, according to Eq. (20), the phase
mismatch ∆K depends only on κs,κi. The field ampli-
tudes and nonlinear susceptibility, respectively defined
in Eqs. (2) and (6), can then be considered constant. In
quantum memories based on atomic and ionic resonances,
the acceptance bandwidth is lower than a few GHz [22],
which definitely lies within the present assumption.

3. Spatial dependence of the nonlinear susceptibility

Although it is possible to calculate
∑

m γ0m for an ar-
bitrary R(z), this function is generally chosen such that
one term γ0m̃ is as high as possible and is the only op-
timally phase-matched one. This is achieved by period-
ically poling the nonlinear susceptibility with a period
Λ. In this case, m̃ should be chosen such that L = m̃Λ,
and Rm̃ = 2/π is the first term of the Fourier expan-
sion of a square periodic function. In the following, we
will consider the case of a collinear interaction in a pe-
riodically poled crystal with an effective susceptibility
χeff = χ(ωs0

, ωi0) × 2/π corresponding to specific polar-
izations of the pump, signal and idler beams. The case
of the homogeneous crystal could also be described using
an infinite period and Rm̃ = 1.

4. Quasi-degenerate down-conversion

In the following, we will restrict the process to quasi-
degenerate down-conversion, that is |δω| ≪ ωp0

with
δω = ωs0

− ωi0 .
The phase mismatch then reduces to

∆K(κs,κi) ≈ ∆k0 +
|κs + κi|2

2kp0

−
(

1 − δω

ωp0

)np

ns

|κs|2
kp0

−
(

1 +
δω

ωp0

)np

ni

|κi|2
kp0

(21)

where ∆k0 = ks0
+ ki0 − kp0

+ 2π
Λ is the longitu-

dinal phase mismatch. This together with the narrow
bandwidth assumption allows to omit the frequency de-
pendence of the functions Oω,0 describing the target
mode. It can therefore be replaced by the unique function
O0 = Oωp0

/2,0 ≈ Oωs0
,0 ≈ Oωi0

,0.

D. Figures of merit

In our general configuration of Fig. 1, only the pho-
ton pairs that are spectrally and spatially filtered, with a
probability P2, will give rise to measured coincidences be-
tween the two channels: P2 will be called coupled bright-
ness. The source coherence can be quantified by the ratio
of coincidences to single counts. In our framework this is
directly related to the probability Γ2|1 of having the idler
photon coupled to the target spatial mode when the sig-
nal is coupled to that mode (or vice versa). Sometimes
called conditional coupling efficiency, this parameter is
very useful as a quality figure of merit when the source
is to be used as an entangled photon pair source. It will
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be evaluated using the single-photon coupling probability
P1 of having at least one photon transmitted by the fil-
ters. In the following subsections, a detailed calculation
of each of these parameters is given.

1. Coupled brightness

The coincidental presence of both photons in the target
spatial mode over a whole pulse duration is based on the
two-photon state |ψ2〉 (Eq. (18)) and is given by

P2 = 〈ψ2|ψ2〉 (22)

To make further calculations, we take the limit of an
infinite quantization volume, in which sums over modes
ℓ are replaced by integrals over the wavevectors k in
the usual way [44, 45] with discrete variables like kℓ,
ωℓ and operators like ôωℓ

changed into their continuous

counterparts k, ω(k) and ô(ω(k)). Moreover, the nar-
row bandwidth assumption allows to calculate integrals
over κ independently of integrals over ω, since κ mostly
varies with the wavevector angle when ω is restricted to
a small interval. Equation (22) gives, under the previous
assumptions:

P2 = |C|2Ω2K2, (23)

where

C = iei(n
′
sωs0

+n′
iωi0

)z0/c

√

Epχ2
effωs0

ωi0

8ǫ0c3npnsni
(24)

is a constant with n′
s (resp. n′

i) the refractive index in
the medium.

Using the target mode O0 introduced in subsection
2 C 4, the functions

Ω2 =

∫

dωs

2π

∫

dωi

2π

∣

∣

∣
T̆p(ωs + ωi − ωp0

)

×F(ωs − ωs0
)F(ωi − ωi0)

∣

∣

∣

2

(25)

and

K2 =

∣

∣

∣

∣

∫∫

d2
κs

(2π)2

∫∫

d2
κi

(2π)2
S̆p(κs + κi, 0)

× Ŏ0(κs, z0)Ŏ0(κi, z0)e
−iz0(

np

n′
s

|κs|2

kp0

+
np

n′
i

|κi|
2

kp0

)

× L sinc

(

∆K(κs,κi) L

2

) ∣

∣

∣

∣

2

(26)

describe respectively the spectral and spatial dependence
of P2. They must be both maximized in order to optimize
the coupled brightness.

The function Ω2 has the dimension of a frequency and
can be interpreted as the effective source bandwidth. It
can be written as a convolution of the three spectrally-
dependent functions and, as such, it is maximum when
the filters are tuned so as to satisfy the energy conserva-
tion ωs0

+ ωi0 = ωp0
:

Ω2 = |T̆p|2∗|F|2∗|F|2(ωs0
+ ωi0 − ωp0

) (27)

In the following, we will assume that this energy conser-
vation condition is satisfied.

The dimensionless function K2 takes into account the
spatial interferences caused both by phase matching and
coupling to the target mode. Its maximization will re-
quire a numerical optimization (see 3 C 2).

The factor |C|2 appears then as a spectral probability
density.

2. Conditional coupling efficiency

Evaluating the conditional coupling efficiency requires
calculating the single-photon coupling probability de-
fined by

P1 = 〈ψ1|ψ1〉 (28)

for the state

|ψ1〉 =
∑

ℓs,ℓi

γ0(ℓs, ℓi)γ
(1)
T (ℓs)γ

(1)
S (ℓs)ô

†
ωℓs
â†ℓi

|0〉

⊕ ignored zero-photon terms (29)

where

γ
(1)
T = F(ωℓs

− ωs0
,κℓs

) (30)

corresponds to a spectral filtering of the signal and no
filtering for the idler 1, and

γ
(1)
S =

1√
S
Ŏ∗

0(κℓs
, z0)e

ik′
z,ℓs

z0 (31)

describes the coupling of the signal photon only into the
target single mode.

In the same way as for P2,

P1 = |C|2Ω1K1 (32)

where

Ω1 =

∫

dωs

2π

∫

dωi

2π

∣

∣

∣
T̆p(ωs + ωi − ωp0

)F(ωs − ωs0
)
∣

∣

∣

2

(33)

K1 =

∫∫

d2
κi

(2π)2

∣

∣

∣

∣

∫∫

d2
κs

(2π)2
S̆p(κs + κi, 0)Ŏ0(κs, z0)

×e−iz0

np

n′
s

|κs|2

kp0 L sinc
∆K L

2

∣

∣

∣

∣

2

. (34)

As K2, K1 requires numerical computation, whereas
Ω1 reduces to

Ω1 =

∫

dω

2π
|F(ω)|2 (35)

which is proportional to the filter bandwidth itself.

1 The natural phase matching bandwidth has no influence on the
results that follow if it is much larger than the pump linewidth.
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The conditional coupling efficiency i.e. the conditional
probability to couple the second photon to the target
spatial mode when its twin has been coupled, is defined
by

Γ2|1 =
K2

K1
. (36)

Note that the conditional coupling efficiency should
not be confused with the heralding ratio, which is of-
ten used to refer to the conditional probability to detect
one photon when the other one has been detected and
includes spectral filtering effects. Notwithstanding triv-
ial factors like detector sensitivities, the heralding ratio is
equal to P2

P1

= K2

K1

Ω2

Ω1

, hence it indeed takes the spectral as
well as spatial loss of coherence into account. Since in the
narrowband regime spatial and spectral filtering effects
can be treated separately, we focus hereafter on optimiz-
ing the conditional coupling efficiency independently of
spectral factors. Note that in the context of quantum
information applications, the complex spectral filtering
required, for instance, for quantum memories associated
with their limited storage-retrieval efficiency, makes the
coupling efficiency a parameter that has to be maximized.
Spectral factors are shortly analyzed in subsection 3 C 1;
for an indepth investigation of the influence of spectral
filtering we refer to our previous work [18, 46].

In order to get a physical insight into these results and
show how this description can be used as a tool for the
design and optimization of entangled photon pair sources,
the following section is devoted to a numerical calculation
corresponding to the particular case of the experiment
described subsequently in Section 4.

3. Numerical optimization of a narrow-band

fibered source pumped by a Gaussian beam

A. Gaussian pump beam, Gaussian target mode

We assume the pump beam to be Gaussian with a waist
radius w0 and Rayleigh length zR:

Sp(ρ, 0) =

√

2

πw2
0

e−|ρ|2/w2

0 (37)

S̆p(κ, 0) =
√

2πw2
0 e

−|κ|2w2

0
/4 (38)

Using the fact that kp0
/2 = zR/w

2
0, the phase matching

function from Eq. 21 becomes

∆K ≈ ∆k0 +
w2

0

4zR

[

|κs + κi|2

− 2
(

1 − δω

ωp0

)np

ns
|κs|2 − 2

(

1 +
δω

ωp0

)np

ni
|κi|2

]

(39)

The target mode acting as a spatial filter is defined by
the profile of a Gaussian mode at its waist of radius a0

located at z0. This can be the transverse mode of a fiber

or its image by a lens collection system:

O0(ρ, z0) =

√

2

πa2
0

e−|ρ|2/a2

0 (40)

Ŏ0(κ, z0) =
√

2πa2
0 e

−|κ|2a2

0
/4. (41)

B. Nondimensionalization

The coupled brightness P2 given by Eq. (23) can now
be detailed. It is useful to separate the fixed parame-
ters from the configuration of the experiment that can
be optimized:

P2 =
Epχ

2
effL∆ωFωs0

ωi0ωp0

8ǫ0c4nsni
· Ω2

∆ωF
(δ) · K2

kp0
L

(ξ, α, ζ, ϕ0)

(42)
where ∆ωF is the filter bandwidth, and the dimension-
less spectral and spatial terms Ω2/∆ωF and K2/(kp0

L)
depend only on the experimental configuration described
by the following dimensionless parameters:

δ =
4 ln 2

∆tp∆ωF
(relative pump bandwidth)

ξ =
L

2zR
(pump focusing parameter)

α =
a0

w0
(normalized target mode waist size)

ζ =
z0
L

(longitudinal collection offset)

ϕ0 = ∆k0 L (longitudinal phase mismatch)

ϕs =
w0

2
κs (normalized signal transverse wavevector)

ϕi =
w0

2
κi (normalized idler transverse wavevector)

The parameter ∆tp is the pump pulse duration.
Eq. (42), that will be used to calculate the conditional
coupling efficiency, has a particular importance, as it
quantifies the coupled brightness and its dependence on
various experimental parameters. It will be discussed
and compared to other reported works in section 5. In
the following section we will theoretically determine the
experimental configuration that maximizes this bright-
ness.

C. Optimization of the coupled brightness

1. Spectral optimization

The optimisation of Ω2 from Eq. (25) must generally be
made numerically, but the influence of the relative pump
bandwidth δ can be developped in a fully analytical way
if the pump temporal envelope and the spectral filters
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Fig. 2. Effect of the relative Gaussian pump linewidth δ
on the spectral transmission factor Ω2/∆ωF for Gaussian
spectral filters.

are both Gaussian:

Tp(t) =

[

4 ln 2

π∆t2p

]
1

4

e−2 ln 2 t2/∆t2p (44)

T̆p(ω) =

[

π∆t2p
ln 2

]
1

4

e−ω2∆t2p/(8 ln 2) (45)

F(ω) = e−2 ln 2 ω2/∆ω2

F (46)

where ∆tp and ∆ωF are full widths at half maximum
intensity. The spectral transmission factor can then be
expressed as a function of the relative pump bandwidth
δ in the following way:

Ω2

∆ωF
(δ) =

√

π/(8 ln 2)

1 + δ2

2

(47)

This quantity is plotted in Fig. 2 showing that
the maximum value is asymptotically reached when the
pump beam is monochromatic. The joint probability for
a photon and its twin to be transmitted is then optimal.

When the pump linewidth increases, some idler pho-
tons at ωi = ωp −ωs and their corresponding signal pho-
ton at ωs are not frequency-symmetric with respect to the
filter center frequency (ωp 6= ωp0

), which is necessarily
detrimental. This effect becomes significant as the pump
linewidth gets greater than the filter bandwidth (δ ≥ 1).
As a consequence, even though it could seem beneficial
to reduce the pulse duration ∆tp in order to achieve a
higher repetition rate, the curve of Fig. 2 shows that
it would also contribute to decrease Ω2. In other words,
the achievable photon pair rate per second is a result of a
compromise on the pulse duration, which is all the more
stringent as the filter bandwidth is low.

2. Spatial optimization for degenerate down-conversion

In the following, we restrict ourselves to the case of a
frequency-degenerate down-conversion (ωs = ωi), which
corresponds to the experimental setup described in sec-
tion 4. The dimensionless term to be optimized has the

following expression:

K2

kp0
L

(ξ, α, ζ, ϕ0) =
8

π5
ξα4

∣

∣

∣

∫∫

d2
ϕs

∫∫

d2
ϕi Q2

∣

∣

∣

2

(48)
with

Q2 = exp
{

− |ϕs + ϕi|2
}

(49)

× exp
{

− α2
(

|ϕs|2 + |ϕi|2
)

}

× exp i
{

− 4ξζ

(

np

n′
s

|ϕs|2 +
np

n′
i

|ϕi|2
)

}

× sinc
{ϕ0

2
+ ξ

[

|ϕs + ϕi|2 − 2
np

ns
|ϕs|2 − 2

np

ni
|ϕi|2

]}

Using polar coordinates, we can use the following map-
ping:

∫∫

d2
ϕs

∫∫

d2
ϕi Q2

−→ 2π

∫ ∞

0

ρsdρs

∫ ∞

0

ρidρi

∫ 2π

0

d(θs − θi)Q
′
2 (50)

with

Q′
2 = exp

{

−
(

1 + α2
)(

ρ2
s + ρ2

i

)

}

× exp
{

− 2ρsρi cos(θs − θi)
}

× exp i
{

− 4ξζ

(

np

n′
s

ρ2
s +

np

n′
i

ρ2
i

)

}

× sinc
{ϕ0

2
+ ξ

[

(

1 − 2
np

ns

)

ρ2
s +

(

1 − 2
np

ns

)

ρ2
i

+ 2ρsρi cos(θs − θi)
]}

(51)

In this way, the quadruple integral turns into a triple
integral which is numerically evaluated using an adapta-
tive 3D quadrature algorithm [47].

Figure 3 represents, for three different pump focus-
ing parameters ξ, the value of the spatial filtering term
K2/(kp0

L) as a function of parameters α and ϕ0. It shows
that there exists a unique couple (αopt, ϕ0

opt) that allows

reaching the maximum Kopt
2 /(kp0

L) for a given value of
ξ. Moreover, that maximum varies with ξ and the accu-
racy of (αopt, ϕ0

opt) is found to be more critical for low ξ.
Indeed, when the focusing of the pump beam increases,
phase matching can only be satisfied in an average way,
because of the large range of emitted angles, and αopt

results from a compromise between collecting weakly di-
vergent photons with high efficiency and reducing this
efficiency to collect more strongly divergent photons. Op-
timizing the pump beam for photon pair collection indeed
consists in finding the focusing parameter for which these
two compromises offer the best performance.

Note that in Fig. 3, the normalized longitudinal offset
of single-mode collection ζ has been set to zero. We have
checked that this choice gives optimal results. The opti-
mality of ζ = 0 is due to the symmetry of the problem



8

Fig. 3. Optimization of the spatial filtering factor
K2/(kp0

L) with respect to the normalized target mode
waist α and the longitudinal phase mismatch ϕ0 for three
values of the focusing parameter ξ: ξ = 0.1 (a), ξ = 1 (b)
and ξ = 10 (c).

in our particular choice of a Gaussian pump beam and
Gaussian target spatial mode ; this might not be the case
in other circumstances.

In order to find the focusing parameter ξ that gives
rise to the highest collected brightness Kopt

2 /(kp0
L), we

have performed optimizations similar to that of Fig. 3
for values of ξ ranging from 0.03 to 40, that is for waist
radiuses from ∼ 200 to ∼ 5 µm for a red pump in common
crystals, for instance. Knowing that ζ = 0 is optimal in
the whole range, we have plotted in Fig. 4 the values
Kopt

2 /(kp0
L) (4a), αopt (4b) and ϕ0

opt (4c) as a function
of ξ.

According to Fig. 4b, the optimal normalized target
mode waist αopt does not vary very much over this large

Fig. 4. Maximal value of the spatial filtering factor
K2/(kp0

L) (a) and associated optimal values of the nor-
malized target mode waist α (b) and the longitudinal
phase mismatch ϕ0 (c), for various values of the focusing
parameter ξ.

range of focusing parameters. Starting with an approx-
imate matching of the target mode to the pump waists
αopt ≈ 1 at low focusing, our calculations exhibit a slow
increase, showing that when focusing gets stronger, it is
preferable to collect the weakly divergent photon pairs,
since modes of larger waist sizes have smaller numerical
apertures. On Fig. 4c, the optimum longitudinal phase
mismatch ϕ0

opt increases with the focusing parameter,
as if to compensate for the transverse mismatch caused
by the strong focusing.

Fig. 4a shows that the value of the focusing parame-
ter giving the highest value of Kopt

2 /(kp0
L) is ξ = 2.84,

for which the longitudinal phase mismatch is ϕ0 = 3.2.
These values correspond to the Boyd and Kleinman con-
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Fig. 5. Pair coupling efficiency Γ2 = P2/〈ψ0|ψ0〉 (a) com-
pared to the pair production probability (b), for various
values of the focusing parameter ξ. P0 is evaluated for
the longitunal phase mismatch ϕ0 that maximizes Γ2.

ditions [48] for a highest second harmonic generation ef-
ficiency with Gaussian beams. Indeed, when evaluating
the brightness produced in a single Gaussian mode, the
collinear degenerate down-conversion is a process sym-
metric to second harmonic generation.

However, part of the down-converted photons are not
in this particular target mode : Fig. 5a shows the ra-
tio Γ2 of the coupled brightness P2 to the probability
P0 = 〈ψ0|ψ0〉, defined in section 2 B, of producing a pho-
ton pair within the filter bandwidth independently of its
spatial coupling. Not only does Γ2 not reach 1, but its
optimum is slightly shifted from 2.84 to ∼ 2. This is due
to the variation of P0 with ξ as depicted in Fig. 5b. For a
red pump in common crystals, this shift in ξ corresponds
to a waist radius difference of about 20 % but the shift
may be more significant with different filtering or crystal
configurations. However, it is to be noted that maximiz-
ing Γ2 rather than P2 has no practical advantage apart
from a higher power efficiency.

D. Optimization of the conditional coupling efficiency

The conditional coupling efficiency Γ2|1 (Eq. (36)) re-
quires the computation of the single-photon coupling

probability P1, (cf. Eq. (32)):

P1 =
Epχ

2
effL∆ωFωs0

ωi0ωp0

8ǫ0c4nsni
· Ω1

∆ωF
(δ) · K1

kp0
L

(ξ, α, ζ, ϕ0)

(52)
where Ω1

∆ωF
only depends on the shape of the filter itself

and where

K1

kp0
L

=
4

π4
ξα2

∫∫

d2
ϕs

∣

∣

∣

∣

∫∫

d2
ϕiQ1

∣

∣

∣

∣

2

(53)

with

Q1 = exp
{

− |ϕs + ϕi|2
}

(54)

× exp
{

− α2|ϕs|2
}

× exp i
{

− 4ξζ
np

n′
s

|ϕs|2
}

× sinc
{ϕ0

2
− ξ

[

|ϕs + ϕi|2 − 2
np

ns
|ϕs|2 − 2

np

ni
|ϕi|2

]}

which can be reduced to a 3D-integral as for Q2 and Q0.
The conditional coupling efficiency Γ2|1 = K2/K1 is

plotted in Fig. 6 as a function of parameters α and ϕ0

for three values of the focusing parameter ξ = 0.1, 1, 10.
Contrary to the coupled brightness (whose variation with
ξ can be seen in Fig. 4a through the spatial filtering fac-
tor K2/(kp0

L)), the conditional coupling efficiency can
reach a value close to its maximum on the whole range
of ξ. A large range of ϕ0 is compatible with this max-
imum, but its overlap with the range leading to a high
brightness is small. On the contrary, the tolerance on α
is relatively low. When the results of P2 and Γ2|1 are
both taken into account, the theory gives indeed use-
ful information about the target mode waist for which
the collection should be optimized with respect to the
longitudinal phase mismatch parameter ϕ0 (through the
crystal temperature in the case of periodically poled crys-
tals for instance), to find the best compromise between
the coupled brightness and the conditional coupling effi-
ciency.

The details of an experiment that enabled a validation
of our model is given in the following section.

4. Experimental validation

A. Experimental setup

The experimental setup used to validate the theory is
depicted in Fig. 7. SPDC is generated by focusing a
pulsed pump beam at 782 nm in a periodically poled
lithium niobate (PPLN) crystal of length L = 2 cm
with a poling period Λ = 19.34µm. A “type 0” phase
matching (pump, signal and idler have identical polar-
izations) has been chosen. The mean pump power is 5
mW and the 25 ns Gaussian pulses (FWHM) are Fourier
transform limited with a 2 MHz repetition rate. The
spatial profile of the pump beam is also Gaussian. On-
axis fluorescence around 1564 nm is collected into a tele-
com optical fiber through the lenses Lc (achromatic dou-
blet) and Li (asphere). The same low bandwidth filter
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Fig. 6. Optimization of the conditional coupling effi-
ciency Γ2|1 with respect to the normalized target mode
waist α and the longitudinal phase mismatch ϕ0 for three
values of the focusing parameter ξ: (a) ξ = 0.1, (b) ξ = 1,
(c) ξ = 10.

(∆ωF = 2π × 75 GHz) is used for both signal and idler
photons so that the source is operated at the degeneracy
frequency (ωs0

= ωi0 = ωp0
/2). A balanced coupler is

used to split photon pairs with 50 % efficiency and the
photons are detected on paths A and B.

B. Experimental method

In order to explain how the conditional coupling effi-
ciency Γ2|1 can be determined experimentally, let us show
its relation to measured parameters.

Γ2|1 =
K2

K1
=

Ω1

Ω2

P2

P1
. (55)

Fig. 7. Experimental setup: A pulsed pump laser at
wavelength 782 nm is focused in a periodically-poled
lithium niobate crystal (PPLN) with a lens Lp of focal
length fp. Down-converted photons at 1564 nm are cou-
pled into an single mode fiber through an optical system
composed of lenses Lc and Li of respective focal lengths
fc and fi. Spectral filtering is performed via a DWDM
add-drop filter of bandwidth 75 GHz, and photons are
split with 50 % efficiency towards detectors A and B us-
ing a balanced fibered coupler.

The experimental parameter corresponding to the calcu-
lated P2 (Eq.42) is PAB, the measured coincidence prob-
ability per pulse from which accidental and noise coinci-
dences are subtracted, and PI is related to the measured
counts on channel I = A,B from which dark counts have
been subtracted:

PAB = TATBP2 PI = TIP1 (56)

where TI is the transmission factor on channel I including
the 50% loss induced by the coupler. We obtain

Γ2|1 =
Ω1

Ω2

TI

TATB

PAB

PI
. (57)

The conditional coupling efficiency Γ2|1 can hence be de-
termined from the measurements of single counts and co-
incidences, provided the transmission factors have been
previously determined. TI is measured by injecting a
narrowband laser at frequency ωp/2 in the fiber out-
put where the photon detector is otherwise connected,
and measuring the transmitted power on a detector po-
sitioned right after the crystal [46]. It is also necessary
to measure the filter shape by tuning the frequency of
the narrowband laser in the whole filter bandwidth, so
that Ω1 and Ω2 can be determined. It is then possible
to validate the dependence of Γ2|1 with respect to the
pump focusing parameter ξ and the normalized target
mode waist α.

The variation of ξ was obtained by changing the lens
Lp focusing the pump beam into the PPLN crystal. For
each value of the focal length fp, the waist of the pump
beam was measured, allowing the determination of zR

and ξ = L/(2zR).
Counts and coincidences were then measured using

various focal lengths fi of the lens focusing the SPDC
beam into the fiber. The value a0 of the image of the
fiber waist in the crystal was determined using the mag-
nification factor fc/fi of the collection system (composed
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Fig. 8. (a) Measured conditional coupling efficiency
Γ2|1 plotted for four focal lengths fp = 150, 100, 75, 50
mm, as a function of the focusing parameter ξ =
0.44, 0.76, 1.05, 2.70. (b) Corresponding experimental
(circles) and calculated (solid line) values of the normal-
ized target mode waist α for each value of Γ2|1

.

of the lenses Lc and Li) in order to determine α = a0/w0.
Let us note that each data point requires changing the
focusing lens, realigning the setup, and successively opti-
mizing the collection with at least five different injection
lenses, with the phase mismatch (crystal temperature) as
an additional degree of freedom.

C. Experimental results

The conditional coupling efficiency was derived using the
measurements of TA = 0.026 and TB = 0.024. In Fig. 8a,
the measured conditional coupling efficiency Γ2|1 is plot-
ted as a function of the focusing parameter ξ. The result
is almost constant, as predicted by the theory, but around
30 % below the expected optimal value that is close to
100 %. This difference is probably due to imperfections
in the Gaussian pump beam and aberrations in the opti-
cal system used to eliminate pump photons and to collect
down-converted photon pairs into the fiber. The values
of the normalized target mode waist α as a function of ξ
for each value of Γ2|1 are shown in Fig. 8b.

The variation of the measured value of Γ2|1 with the
normalized target mode waist α can then be compared
to the theoretical predictions. Figure 9 shows two exam-
ples: the pump focusing is kept constant with fp = 100

Fig. 9. Conditional coupling efficiency Γ2|1: experimen-
tal values normalized to the measured maximum (repre-
sented with their error bars) and theoretical values (solid
line), plotted as a function of the normalized target mode
waist α, for two different focusing parameters: ξ = 0.76
(a) and ξ = 2.7 (b). The corresponding raw data are
given in Appendix B.

mm (ξ = 0.76, Fig. 9a) or fp = 50 mm (ξ = 2.7, Fig. 9b).
The experimental value of Γ2|1 is normalized to the max-
imum of Fig. 8a and plotted as a function of α for ζ = 0
while the appropriate value of the remaining unknown
dimensionless parameter ϕ0 is found by horizontally fit-
ting the theoretical curve to the experimental data. For
ξ = 0.76, ϕ0 is found to be around 2.0 while it is around
3.2 for ξ = 2.7. These values of ϕ0 are also in agree-
ment with the theoretical predictions corresponding to
the coupled brightness optimization. Indeed, although
each plotted value of Γ2|1 was obtained after optimizing
this figure of merit itself, the experimental starting point
was a preliminary optimization around a maximum cou-
pled brightness. As Γ2|1 and P2 have a common optimum
in the (α, ϕ0) space, it is not surprising to converge close
to (αopt, ϕ0

opt) (optimum of P2 as shown in Fig. 4 as a
function of ξ) when optimizing with respect to Γ2|1.

The very good agreement of our theory with the exper-
imental results confirms its validity. Using our analysis
for practical applications, only the measurement of the
pump waist is required in order to determine the opti-
mum value of α and hence the lens system that couples
the down-converted photons into the most appropriate
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single mode. The phase-matching parameter ϕ0 (i.e. in
our case, the crystal temperature) is the only remaining
degree of freedom and has to be optimized experimen-
tally.

In summary, we have confirmed experimentally 1) the
quasi-independence of the conditional coupling efficiency
on the focusing parameter, 2) its dependence on the tar-
get mode size and 3) that our theory predicts with a very
good precision the optimal target mode waist size for a
particular focusing parameter.

5. Discussion

A. Comparison with other works

As mentioned in the introduction, our work covers issues
that were addressed by other authors with various as-
sumptions or methods. Both the absolute coupled bright-
ness and the conditional coupling efficiency can provide a
relevant comparison. We will also discuss a few reported
experimental validations.

About the brightness, Ling et al. [37] were among the
first to propose an expression of the absolute photon pair
rate collected into a single Gaussian spatial mode. Apart
from the fact that they consider the case of a continuous
pump (δ = 0), our calculations are consistent dimension-
wise. Moreover, after identifying in their analysis a spa-
tial filtering factor analogous to our K2/(kp0

L), we found

it to be proportional to ∼ ξ sinc2(ϕ0/2). This is indeed
the result we find for the specific case of low focusing
(ξ ≪ 1) and α =

√
2, which correspond to Ling’s assump-

tions: thin crystal, negligible pump diffraction, equal
Rayleigh lengths for pump and down-converted photons.
However, under our less restrictive assumptions, we have
shown that α =

√
2 is optimal for ξ = 2.84, whereas for

low focusing, α ≤ 1.
More recently, the absolute value of the coupled bright-

ness was calculated by Mitchell [38] in the Heisenberg pic-
ture, under assumptions similar to ours. This investiga-
tion has been restricted to a monochromatic, continuous
pump field, and a direct expansion of the Hamiltonian
onto the target Gaussian modes has been performed, as
opposed to our choice of investigating the single-mode
coupling of free-space expanded fluorescence. Our theory,
which is developed in the Schrödinger picture, is never-
theless fully consistent with the results of Mitchell and
we suggest in the next subsection how to generalize it
using the same framework.

As for the dependence on crystal length, our results
concerning the pair collection efficiency are consistent
with that of Bennink [39], who found a linear depen-
dence when the source bandwidth is much smaller than
the phase-matching bandwidth, as opposed to Ljunggren
et al. [36] who conclude on a

√
L-dependence. Let us

point out that, as Bennink [39], we have taken into ac-
count the diffracting nature of the pump beam, and con-
sidered the longitudinal phase mismatch as a degree of
freedom for optimization. As a result, our optimization
of P2 for Gaussian beams at the degenerate frequency is

optimal close to the well-known Boyd & Kleinman condi-
tions [48]: ξ = 2.84, ϕ0 = 3.2 and equal Rayleigh length

for the pump and down-converted photons (α =
√

2). An
advantage of our framework is that the particular pump
and target modes, filter shape, pump linewidth, etc. are
only used in the very last step of the optimization, i.e.
the computation of a multiple integral. Up to then, our
framework remains very general.

As far as the conditional coupling efficiency is con-
cerned, contrary to the coupled brightness, it is found
to be close to 1 for any focusing strength, provided the
target mode waist α and phase mismatch ϕ0 are ad-
justed according to our theory. Interestingly, a subset
of (α, ϕ0) which maximizes the conditional coupling effi-
ciency is generally close to the optimal brightness, giving
the configuration for an optimal general source perfor-
mance. Benninck [39] finds, on the other hand, that a
strong reduction of brightness is necessary to achieve a
high heralding ratio, highlighting what could be a fun-
damental trade-off for single-mode applications. The re-
sults may however be consistent when we consider the
narrow-band assumption under which our optimization
is valid.

As remarked by Bennink, very few among the reported
theoretical works have been experimentally validated,
probably because of the complexity of such experiments
that involve multiple parameters to optimize simultane-
ously and to measure precisely. Reported experiments
were realized for a single set of non-optimal parameters
[36] or in a configuration which is not in the scope of our
theory [35]. We showed that our model could be used in
order to optimize the experimental source configuration.

B. Extension to other source designs

Although the calculation done in section 3 uses a bulk
periodically-poled crystal pumped with a single-mode
diffractive Gaussian pump beam, as required for success-
ful comparison with our experiment, the general theoret-
ical framework of section 2 can be applied to other source
designs. A few examples are given hereafter.

Let us start with the question of phase-matching. Our
model is perfectly suited for the quasi-phase matching
case, where pump, signal and idler have identical polar-
ization. Type I phase matching can also be described
correctly, although one should take into account the de-
crease of the interaction length due to walk-off. Type II
phase-matching involves different target modes for signal
and idler photons, which is not taken into account here.

As far as the crystal type is concerned, a non-
periodically or multi-periodically poled crystal can be
used by coherently summing the first N components of
the Fourier series expansion of the nonlinear suscepti-

bility χ
(2)

(z). When χ
(2)

(z) is not of high complexity,
the expansion can be truncated to a low N , making the
calculation not much more time-consuming.

The theory developed here is still valid in the case of
a monochromatic pump, provided the coincidences are
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evaluated within a given time window and the pump
pulse energy Ep is replaced by the pump power multi-
plied by this time window.

It is quite straightforward to correct the results for
non-degenerate down conversion, provided the frequency
difference is small compared to the pump frequency.

It is also possible to use a non-Gaussian pump or tar-
get mode profile, by changing the functions Sp and O0 re-
spectively. If required, a second dimensionless parameter
must be introduced apart from α in order to characterize
the mode ellipticity. In this case, the 4D- to 3D-integral
reduction used in Eq. (50) is impossible due to the ab-
sence of cylindrical symmetry, making the computation
longer. Let us note that for such high-dimensions inte-
grals, a Monte-Carlo integration method could give faster
results.

6. Conclusion

In this paper, we have calculated the state of a photon
pair produced by a narrow-band spontaneous paramet-
ric down-conversion (SPDC) source with arbitrary pump
spatial and temporal profile, and arbitrary filtering con-
figuration.

When applied to Gaussian modes, our theory is consis-
tent with the most recently reported works where realistic
assumptions have been made. Within our assumptions,
no incompatibility is observed between a high coupled
brightness and a high conditional coupling efficiency, and
thus a high heralding ratio in the narrow-band limit. We
believe this result shows that SPDC sources are suitable
for narrow-band quantum information applications.

The theoretical predictions about the matching be-
tween the pump focusing parameter and the target mode
of down-conversion were found to be experimentally ac-
curate. Knowing the optimal pump focusing parameter
for a given target mode also defines which mode should
be enhanced by a cavity so as to maximize both the cou-
pled brightness and the conditional coupling efficiency.
In this way, we can obtain an absolute optimum for a
given crystal, which may be useful for designing cavity-
enhanced SPDC sources [51].

Once validated under the Gaussian assumptions, our
theoretical framework, which allows an extensive study
of the source through many degrees of freedom, may be
used to enable predicting the best performance for more
original source designs, including non-Gaussian or non-
fundamental Gaussian pump modes [52, 53], guided or
diffractive, single or multi-mode, with arbitrary nonlinear
susceptibility longitudinal distribution.

Acknowledgments

This work is a part of the project “embryonic Quan-
tum Network”, funded by the “Agence Nationale de la
Recherche”.

Appendix A: Filtering in the Schrödinger picture

In this appendix we describe the effect of spatial filters
on a single photon state. Generalization to the case of
photon pairs is made in Section 2 B.

1. “Localized” photonic states and pseudo-wavefunction

In this work, we use localized photonic states introduced
by L. Mandel [49]. Based on plane-wave states |1k〉 in
a quantization volume V , a state describing a photon
localized around r is defined by

|1r〉 =
∑

k

e−ik·r

√
V

|1k〉. (A1)

Then, a general photon state |ψ〉 =
∑

k
ψk|1k〉 can be

written as

|ψ〉 =

∫

V

d3
r ψ(r)|1r〉 (A2)

where ψ(r) is a spatial pseudo-wavefunction for which ψk

are the coefficients of its Fourier series expansion in the
quantization volume V . Such a wavefunction is only valid
provided the volume V in which the localization probabil-
ity P (V ), defined as follows, is evaluated is large enough
(each dimension much larger that the wavelength):

P (V ) =

∫

V

d3
r |〈1r|ψ〉|2 =

∫

V

d3
r |ψ(r)|2 (A3)

This probability is naturally equal to unity in the quan-
tization volume:

P (V) =

∫

V

d3
r |ψ(r)|2 = 〈ψ|ψ〉 =

∑

k

|ψk|2 = 1. (A4)

2. Spatial filtering

a. Principle

A spatial filter located on the propagation axis at z = z0
is modeled as the coupling in the plane z = z0 of the
down-converted field into a single spatial mode defined
by a function Oω,0(r). The index ω indicates that this
spatial mode can be frequency-dependent for a given fil-
ter.

Note that z0 may be in [−L/2, L/2]. As an example,
if the spatial filtering is done via an optical fiber, the
effective location of the filter is where the lens collection
system images the entrance of the fiber.

To evaluate its transmitted component, the down-
converted field initially described as a superposition of
plane waves is better expanded on a particular set of or-
thogonal modes {Oω,j(r)}, one of which (Oω,0(r)) being
the spatial mode selected by the considered filter.

If coupled to other modes, photons are supposed to be
lost. As for spectral filtering, this leads to a mixed state.

For instance, the fundamental mode can be the Gaus-
sian mode of the Laguerre-Gauss basis, suited to single-
mode fibers. Then Oω,j=0(r) describes a Gaussian beam
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of waist size equal to the field radius of a fiber mode.
If the image of the fiber entrance is located at z = z0,
Oω,j=0(ρ, z0) describes the Gaussian beam waist profile
corresponding to the fiber transverse mode.

A projection at z = z0 into that single mode selects
the photon state component which is transmitted by the
filter. Once transmitted, the state is said to be in the
spatial mode characterized by the annihilation operator
ôω. Let us note that whether the spatial mode for z ≥ z0
continues to be that of a Gaussian beam (as for a cavity)
or is actually described by a guided propagation with a
constant transverse profile Oω,0(ρ, z0) and propagation
constant βω = n′(ω)ω/c like in a single mode fiber of
effective refractive index n′ [50] will not change the de-
scription:

Oω,j=0(ρ, z ≥ z0) = Oω,0(ρ, z0)e
iβω(z−z0). (A5)

In a quantization volume V = S × L, a field in the
mode Oω,j(r) will be said to be in the quantum state

|Oω,j〉 =
1√
L

∫

d3
rOω,j(r)|1r〉 (A6)

so that the states are normalized: 〈Oω,j |Oω,j′ 〉 =
δjj′ . Functions Oω,j(r) are only transversally nor-
malized:

∫

d2
ρO∗

ω,j′ (ρ, z)Oω,j(ρ, z) = δjj′ and
∫

V
d3

rO∗
ω,j′ (r)Oω,j(r) = L δjj′ .

b. Calculation of the transmitted field component

In a quantization volume containing a crystal before z =
z0 and a spatial filter at z0, a one-photon field in mode ℓ
is in the state

|1ℓ〉 =

∫

d3
r f(r)|1r〉 (A7)

=

∫

d3
r

(

Θ(z0−z)
eikℓ·r

√
V

+ Θ(z−z0)
∑

j

gj(ℓ)
Oωℓ,j(r)√

L

)

|1r〉 (A8)

where Θ(z) is Heaviside’s function and gj(ℓ) are deter-
mined by the boundary conditions at z = z0:

∑

j

gj(ℓ)
Oωℓ,j(ρ, z0)√

L
=
eiκ

′
ℓ·ρeik

′
z,ℓ·z0

√
V

. (A9)

Remark that the wavevector takes into account the
change of medium according to Snell-Descartes’ law of
refraction:

κ
′

κ
=

|k′| sin θ′
|k| sin θ = 1

k′z
kz

=
|k′| cos θ′

|k| cos θ
≈ n′

n
(A10)

where n′ is the refractive index of the medium in which
Oωℓ,j(r) describes the spatial mode and n the refractive
index in the crystal.

Using the orthonormality of functions {Oω,j(r)}, one
gets

gj(ℓ) =

∫

d2
ρO∗

ωℓ,j(ρ, z0)
eiκℓ·ρeik

′
z,ℓ·z0

√
V

√
L

=
1√
S
eik

′
z,ℓ·z0Ŏ∗

ωℓ,j(κℓ, z0) (A11)

where Ŏωℓ,j(κ, z0) is the Fourier transform of Oωℓ,j(ρ, z0)
and ∗ designates a complex conjugate.

Starting from an initial state |Ψ(t0)〉 =
∑

ℓ µℓ|1ℓ〉 lo-
calized at z < z0, the state becomes for z > z0

|Ψ(t1)〉 =
∑

j

∑

ℓ

µℓe
ik′

z,ℓ·z0
1√
S
Ŏ∗

ωℓ,j(κℓ, z0)|Oωℓ,j〉.

(A12)
Ignoring components of the state which are not within the
mode |Oωℓ,0〉 transmitted by the filter, the transmitted
one-photon state becomes:

|Ψ(t1)〉 =
∑

ℓ

µℓe
ik′

z,ℓ·z0
1√
S
Ŏ∗

ωℓ,0(κℓ, z0)|Oωℓ,0〉

⊕ ignored zero-photon terms. (A13)

The sign ⊕ means an incoherent sum, ie where no inter-
ference is possible between its terms (statistical mixture).

Note that if one of the functions {Oω,j(r)} describes
the spatial eigenmode of any other filter (e.g. a rectan-
gular waveguide), the result is still valid.

This method is extended to two-photon states in the
rest of the paper.

Appendix B: Examples of experimental data

Table 1 gives the experimental data corresponding to Fig.
9a (fp = 100 mm) and b (fp = 50 mm). The single count
probabilities have been obtained by dividing the counts
per second by the effective pump trigger rate (detector
dead time of 10 µs taken into account). The true coinci-
dence probability PAB was obtained by subtracting the
accidental and noise coincidence probabilities from the
total coincidence probability [46]. The dark count figures
on detector A and B were respectively PNA = 1.9×10−4

and PNB = 1.5 × 10−4 and the ratio Ω1/Ω2 = 1.14.
For each value of the focal length fi, three or more

data points are given, corresponding to different pump
power values.

In section 4, the value of Γ2|1 is derived using Eq. 57.
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