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ABSTRACT

A parametric model of aural tuning of acoustic pianos is presented
in this paper. From a few parameters, a whole tessitura model
is obtained, that can be applied to any kind of pianos. Because
the tuning of piano is strongly linked to the inharmonicity of its
strings, a 2-parameter model for the inharmonicity coefficient along
the keyboard is introduced. Constrained by piano string design
considerations, its estimation requires only a few notes in the bass
range. Then, from tuning rules, we propose a 4-parameter model
for the fundamental frequency evolution on the whole tessitura,
taking into account the model of the inhamonicity coefficient. The
global model is applied to 5 different pianos (4 grand pianos and
1 upright piano) to control the quality of the tuning. Besides the
generation of tuning reference curves for non-professional tuners,
potential applications could include the parametrization of synthe-
sizers, or its use in transcription / source separation algorithm as a
physical constraint to increase robustness.

1. INTRODUCTION

One of the main factor that makes piano tuning so distinctive is the
inharmonic nature of piano tones [1]. For a perfectly soft string,
the spectrum of a note sound should be composed of purely har-
monic partials. In practice, because of the stiffness of the piano
wire, each partial is slightly sharper, and the higher the rank of the
partial, the sharper the partial. This phenomenon directly affects
the tuning because it constraints the tuner to stretch the intervals
in order to cancel or control beats. Moreover, psycho-acoustical
effects seem to be involved in the choice of the amount of stretch-
ing that is optimal according to the position in the tessitura [1]
[2]. Due to the variations in piano scale designs and tuners’ spe-
cific techniques, no single standard tuning rule can be established.
However, some studies (see [3], [4]) have tried to formalize these
rules used by tuners, to approximate aural tuning in a given range
of the piano, taking into account inharmonicity measurements.

The purpose of this paper is to simulate aural tuning on the
whole tessitura of a particular piano, based on the recordings of
only a few isolated notes. This problem can be seen as an inter-
polation of inharmonicity and fundamental frequency across the
whole tessitura, based on a limited set of initial data. In order to
get a robust method, we constrain the interpolation with prior in-
formation on piano string design and tuning rules. This model can
be used to generate tuning reference curves for non-professional
tuners, to parametrize piano synthesizers, or be included as a con-
straint in transcription / source separation algorithms.

In Section 2, physical assumptions used to model the piano
string vibration are given, and the relations between piano string

design and tuning are discussed. From this considerations, we pro-
pose in Section 3 a simple model with 2 parameters to represent
the evolution of the inharmonicity coefficient on the whole tessi-
tura. Then, in Section 4, we introduce a 4-parameter model based
on tuning rules to generate reference tuning curves, by taking into
account the inharmonicity model. We conclude (Section 5) with a
discussion on potential applications of such model. For the sake of
completeness, we describe in Appendix A the inharmonicity / fun-
damental frequency estimation algorithm that we used on single
note recordings to obtain the reference values.

2. PHYSICAL CONSIDERATIONS IN PIANO TUNING

2.1. Physical modelling of piano string

Solving the transverse wave equation for a plain stiff string with
fixed endpoints yields the following modal frequencies [1]:

fn = nF0

√
1 +Bn2, n ∈ N+ (1)

where n is the mode index or partial rank, B the inharmonicity
coefficient, and F0 the fundamental frequency of a flexible string
(with no stiffness). F0 is related to the speaking length of the string
L, the tension T and the linear mass µ according to:

F0 =
1

2L

√
T

µ
(2)

Note that F0 ≈ f1, but that strictly speaking this fundamental
frequency is not directly measured as one peak in the spectrum:
it is a global value of the tone that must theoretically be obtained
from the whole set of partials. The stiffness is taken into account
in B, with:

B =
π3Ed4

64 TL2
(3)

where E is the Young’s modulus and d the diameter of the plain
string. Note that this model is given for a string with fixed end-
points. It does not take into account the bridge coupling (with
finite admittance), which modifies the partial frequencies, mainly
in the low frequency domain [5], [6], [1], [7].

2.2. String set design influence on B

Piano strings are designed with the constraint to minimize the dis-
continuities in physical parameters variations [8], [9]. Three main
discontinuities appear along the keyboard: the bass break between
the bass and treble bridges, the transition between plain and wrapped
strings and the transitions between adjacent keys having different
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number of strings. The variations of B along the keyboard are
mainly affected by the bass break which results in two main trends:

On the treble bridge, from C8 note downwards, B is decreas-
ing because of the increase of L. Down to middle C (C4 note), the
values of B are roughly the same for all the pianos and B follows
a straight line in logarithmic scale [10]. This result is mainly due
to the fact that string design in this range is standardized since it is
not constrained by the limitation of the piano size.

To keep a reasonable size of the instrument, the bass bridge
design reduces the growth of L. Then the linear mass of the string
is increased in order to adjust the value of F0 according to equation
(2). Instead of increasing only the diameter d, which increases B
and decreases the breaking strength, the strings are wrapped. Thus,
on bass bridge, B is increasing from sharpest notes downwards.
Note that the number of keys associated to the bass bridge and the
design of their strings are specific for each piano.

2.3. Tuning influence on (F0,B)

Most of the parameters in equations (2) and (3) are fixed at the
string design. The only parameter the tuner can vary in order to
adjust F0 is the tension of the string T . In the same time, T affects
the value of the inharmonicity constant B. Consequently, F0 and
B are dependent on each other because of physical relations and
tuning considerations. In this paper, we assume that the relative
variation of T during the tuning (of an initially slightly detuned
piano) is small enough to consider that B remains constant.1 It
allows us to first extract a parametric model for B along the key-
board, and then to deduce tuning reference curves.

3. WHOLE TESSITURA MODEL FOR B

3.1. Parametric model

According to subsection 2.2,B should be modelled by two distinct
functions corresponding to the two bridges, and could present a
discontinuity at the bass break. In this paper we propose a “contin-
uous” additive model on the whole tessitura, discretized for m ∈
[21, 108], the midi note index from A0 to C8. We denote it by
Bθ(m), with θ the set of parameters.

Usually, the evolution of B along the keyboard is depicted in
logarithmic scale and presents two linear asymptotes. We denote
by bT (m) (resp. bB(m)) the Treble bridge (resp. the Bass bridge)
asymptote of logBθ(m). Each asymptote is parametrized by its
slope and its Y-intercept.

{
bT (m) = sT ·m+ yT

bB(m) = sB ·m+ yB
(4)

According to [10], bT (m) is similar for all the pianos so sT and
yT are fixed parameters. Then, the set of free (piano dependent)
parameters reduces to θ = {sB , yB}. Bθ(m) is set as the sum of
the contributions of these two curves (4) in the linear scale:

Bθ(m) = ebB(m) + ebT (m) (5)

It should be emphasized that this additivity does not arise from
physical considerations, but it is the simplest model that smoothes

1For instance, if a note is increased by a quarter tone (50 cents) during
the tuning, ∆F0

F0
' 2.9%. According to equations (2) and (3), ∆B

B
=

−2 · ∆F0
F0
' 5.9%.
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Figure 1: Model of B along the keyboard.

discontinuities between the bridges. Experimental data will show
that it actually describes well the variations of B in the transi-
tion region around the two bridges. An example of this model for
Bθ(m) is shown on Figure 1.

3.2. Parameter estimation

The results in this paper are obtained from single note recordings
of 3 separate databases: Iowa2 (1 grand piano), RWC [11] (3 grand
pianos) and MAPS3 (1 upright piano). For a given note indexm ∈
[21, 108], F ∗0 (m) and B∗(m) are the estimated values of F0(m)
and B(m) using the algorithm described in Appendix A.

We first estimate the fixed parameters {sT , yT } using the data
of all the pianos in the range C4-C8 (m ∈ [60, 108], the standard-
ized design range). These are obtained by a L1 linear regression
(to reduce the influence of potential outliers) on the average of the
estimated inharmonicity curves in logarithmic scale over the dif-
ferent pianos. We find sT ' 9.26 · 10−2 , yT ' −13.64. These
results are in accordance with estimates based on physical consid-
erations [10]: sT [10] ' 9.44 · 10−2 , yT [10] ' −13.68.

Finally, each piano is studied independently to estimate the
particular parameters θ = {sB , yB} on a set of few notes M .
θ is estimated minimizing the L1 distance between B∗(m) and
Bθ(m):

θ∗ = argmin
θ

∑

m∈M
|B∗(m)−Bθ(m)| (6)

We present on Figure 2 the curves of Bθ(m) obtained for every
piano from a set of 3 quasi-equally spaced notes taken in the bass
range A0-D3 (m ∈ [21, 50]). The discontinuity of the bass break
is clearly observable for some pianos on the reference data curves
(for instance between C#2 (m = 37) and D2 (m = 38) notes for
the 2nd grand piano of the RWC database) and does not always
occur at the same keys. The global variations are well respected.
Note that some outliers are present (in the high treble range) in the
whole tessitura data curves. This problem is discussed in the ap-
pendix and is due to the fact that for sharpest notes the partials are
not in sufficient number to have a robust estimation of B. To eval-
uate the distance between the model and the whole tessitura data
those outliers have been manually removed before the computation
of the relative deviation between B∗(m) and Bθ(m). We present
on Figure 3 the histograms of the relative deviation computed in

2http://theremin.music.uiowa.edu
3http://www.tsi.telecom-paristech.fr/aao/en/

category/database/
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Figure 2: Superposition of the model Bθ(m) (estimated from 3
notes in the bass range) with the whole tessitura reference values
for 5 different pianos.
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Figure 3: Histogram of the relative deviation between B∗(m) and
Bθ(m) computed for all the pianos in the range C4-C8 (at the top)
and A0-B3 (at the bottom).

A0-B4 (m ∈ [21, 71]) and C4-C8 (m ∈ [72, 108]) ranges. In
C4-C8 range, the mean and the standard deviation are respectively
equal to −4.2 · 10−3 and 1.16 · 10−1. In A0-B4 range we have
respectively 4.6 · 10−3 and 1.57 · 10−1.

4. WHOLE TESSITURA MODEL FOR F0

4.1. Aural piano tuning principles

Every tuning begins by the tuning of the reference note, in most
cases the A4 at 440Hz. To do so, the tuner adjusts the tension
of the strings to cancel the beats produced by the difference of
frequency of the tuning fork (a quasi perfect sinusoid) and the first
partial of the note. Thus, f1(m = 69) = 440Hz.

From A4, the tuner builds the reference octave F3-F4 accord-
ing to the equal temperament in controlling (or counting) the beats
of different intervals (for instance between the 3rd partial of a ref-
erence note and the 2nd of its fifth) [12]. For high inharmonicity
pianos the frequency deviation between the first partial of the note
and the theoretical fundamental frequency given by the equal tem-
perament in this octave can be about ±8.6 cents (±0.5%) [3].

Finally, from this reference octave in the middle of the tes-
situra, each note is tuned step by step with the same procedure.
Because of the partial deviation due to the inharmonicity, the oc-
taves are stretched to more than a 2:1 frequency ratio. For a ref-
erence note of midi index m, f1(m + 12) > 2f1(m) because
f2(m) > 2f1(m). Moreover, the amount of stretching of the
octaves in the different parts of the keyboard is linked to psychoa-
coustic effects and tuner’s personal tastes. It is well known that the
piano sounds better in the bass range if the amount of stretching
is more important than in the treble range (even if the inharmonic-
ity effect is less important). This fact is linked to the underlying
choice of the type octave during the tuning [2]. For instance, in a
4:2 type octave, the 4th partial of the reference note is matched to
the 2nd partial of its octave. Depending on the position in the tes-
situra, the piano can be tuned according to different type octaves:
2:1, 4:2, 6:3, 8:4, ... or a compromise of two. This means that the
tuner may not be focused only on cancelling beats between a pair
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of partials, but that he controls an average beat generated by a few
partials of the two notes.

Here, we propose a 4-parameter model for synthesizing aural
tuning on a given piano. The steps may be a simplified version
of those done by a tuner but the global considerations (stretch-
ing inherent in the inharmonicity and the type octave choice) are
taken into account. We begin by the A4 reference note, setting
f1(m = 69) = 440Hz. Then, we introduce (Subsection 4.2) a 3-
parameter model to estimate the tuning of all the A keys from the
A4. In Subsection 4.3, we propose a model to tune all the notes
inside of a fixed octave interval (for instance A4-A5 previously de-
termined). Finally, in Section 4.4, we introduce 1 extra parameter
to take into account a global detuning and we present the results
for the 5 pianos. Note that the following expressions are estab-
lished for upper interval construction, but the same reasoning can
be applied for lower intervals.

4.2. Octave interval tuning

4.2.1. Model

During the tuning of an upper octave interval, the cancellation of
the beats produced by the u-th partial of a reference note indexed
m− 12 and the v-th partial of its octave indexed m (u = 2v) can
be done by tuning F0(m) such as4:

F0(m) = F0(m− 12) · u
√

1 +B(m− 12)u2

v
√

1 +B(m)v2
(7)

The choice of the type octave is parametrized by introducing
the variable ρ ∈ N+, such as u = 2ρ and v = ρ. Usually the max-
imal value for ρ is 6 (it corresponds to a 12:6 type octave which
can sometimes occur in the low bass range of grand pianos). We
denote by ρϕ(m) the model of ρ on the whole tessitura given for a
set of parameter ϕ. Then,

F0(m) = 2 F0(m− 12)

√
1 +B(m− 12) · 4ρϕ(m)2

1 +B(m) · ρϕ(m)2
(8)

This model takes into account the cancellation of the beats pro-
duced by a single pair of partials. In practice, the deviation F0(m)

2F0(m−12)

should be a weighted sum of the contribution of two pairs of par-
tials, because the amount of stretching may result from a compro-
mise between two type octaves. An alternative model to take into
account this weighting is to allow non-integer values for ρϕ(m) ∈
[1,+∞[. For example, if the octave tuning of a note indexed m
is a compromise between a 2:1 and 4:2 type octaves, ρϕ(m) will
be in the interval [1, 2]. This model looses the physical meaning
(u = 2ρ and v = ρ are not anymore related to partial ranks), but
presents the advantage to be easily inverted to estimate ρϕ(m).
Note that this model for octave interval tuning could be general-
ized to other intervals tuning by considering the beats inherent in
the equal temperament. Indeed, in equal temperament only octave
intervals can have consonant partials.

4Note that F0 is defined as being the fundamental frequency for a per-
fectly soft string. In practice it is not present in the piano tone so the tuner
adjusts f1, the frequency of the first partial . F0 is used in the equations of
this section because it is more practical to manipulate. In the end, equation
(1) is applied to obtain f1(m) = F0(m)

√
1 +B(m).
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Figure 4: Superposition of ρ∗(m) averaged from 3 pianos, and the
model ρϕ(m). High and low stretching curves are respectively,
arbitrarily defined by ρϕ(m) + 1 and max(ρϕ(m)− 1, 1).

4.2.2. Estimation of ρϕ(m)

We choose to model ρϕ(m) as follows:

ρϕ(m) =
K

2
·
(
1− erf

(
m−m0

α

))
+ 1 (9)

with erf the error function. It expresses the fact that the amount
of stretching inherent in the type octave choice is decreasing from
the low bass range to the high treble range and that it is limited by
horizontal asymptotes at each extremity. The set of parameters is
then ϕ = {m0, α,K}. m0 is a parameter of translation along m.
α rules the slope of the decrease. K settles the value of the low
bass asymptote. Note that in (9) the high treble asymptote is set to
1 because it corresponds to the minimal type octave (2:1).

ρ∗(m) is estimated on the data F ∗0 (m) and B∗(m) by invert-
ing equation (8):

ρ∗(m) =

√
4F ∗0 (m− 12)2 − F ∗0 (m)2

F ∗0 (m)2B∗(m)− 16F ∗0 (m− 12)2B∗(m− 12)

(10)
Then, the set of parameters is estimated minimizing the L1 dis-
tance between ρϕ(m) and ρ∗(m) on a set M of notes.

ϕ = argmin
ϕ

∑

m∈M
|ρ∗(m)− ρϕ(m)| (11)

Finally, ρ∗(m) has been estimated for the 3 best tuned pianos
of the database (the selection criterion was that their tuning devi-
ation from equal temperament is following the global variations
of the Raylsback theoretical curve [1]), and averaged to obtain a
mean curve from different tuners.5 The parameter estimation gives
m0 ' 64 (the curve is centred on the middle octave), α ' 24, and
K ' 4.51 (in the low bass range, the tuning is a compromise
between 8:4 and 10:5 type octaves). The results are depicted on
Figure 4. Some values of ρ∗(m) are missing in the treble and the
bass range because we removed the outliers from the estimation
of B∗(m) and F ∗0 (m). Because F3-F4 (m ∈ [53, 65]) is the ref-
erence octave of the tuning, ρ∗(m) is not estimated on it. From

5In practice the estimation of ρ∗(m) could be done for each piano to
model their actual tuning. We choose here to obtain a reference stretch-
ing curve from well-tuned pianos in order to control the tuning of the 5
pianos in Subsection 4.4. In this case the application is not anymore the
interpolation of the tuning on the whole tessitura of each piano.
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ρϕ(m) defined as a mean stretching model, we define arbitrarily a
high stretching model by ρϕ(m) + 1 and a low stretching model
by max(ρϕ(m) − 1, 1). The low stretching model is saturated to
1 in the treble range because ρ ∈ [1,+∞[.

4.3. Model for semitone tuning in a given octave interval

Once the octave intervals are built according to equation (8), the
whole tessitura is interpolated semitone by semitone. If there was
no stretching, the semitones would be equally spaced by the ratio
of 12
√
2 given by the equal temperament. In practice, the frequency

ratio between 2 adjacent notes is a little higher than 12
√
2. We

model this deviation as follows:

f1(m+ 1) = f1(m) 12
√

2 + ε(m+ 1) (12)

with ε � 1. As a first order model, we assume that ε varies lin-
early with B. This dependence underlines the fact that the higher
B, the higher the deviation should be. Thus,

ε(m+ 1) = λ ·B(m+ 1) (13)

λ is estimated in the given octave interval and takes into account
the stretching related to the type octave through the previous esti-
mation of f1(m+ 12). Recursively we have:

f1(m+ 12) = f1(m)

12∏

p=1

12
√

2 + λ ·B(m+ p)

By taking the logarithm, and developing at the first order, λ can be
estimated by:

λ =
24 log

(
f1(m+ 12)/2f1(m)

)

12∑
p=1

B(m+ p)

(14)

4.4. Global detuning and results

Once the tuning has been estimated on the whole tessitura, the real
piano tuning can present a slight global detuning compared to the
model f1(m). The detuning or deviation of each note from the
equal temperament (ET) is given in cents by:

d1(m) = 1200 log2

f1(m)

F0ET(m)
(15)

with
F0ET(m) = 440 · 2(m−69)/12 (16)

We introduce the global detuning through the 4th parameter dg ,
which is estimated by minimizing the L1 distance, on the refer-
ence octave F3-F4 (m ∈ [53, 65]) between d∗1(m), the detuning
estimated on data, and d1(m) + dg the detuning of the model:

dg = argmin
dg

65∑

m=53

∣∣d∗1(m)− (d1(m) + dg)
∣∣ (17)

Finally, Figure 5 shows the deviation from ET of the estimated
models for the 3 amounts of stretching (mean, low and high) ap-
plied to the 5 pianos. Comparing the curves of the model and the
data, we can see that RWC2 and RWC3 piano seem well-tuned.
On the contrary, the tuning of RWC1 piano is not stretched in the
bass range and the tuning of Iowa and MAPS pianos should be a
little more streched in the treble range, according to our model.
Further research and discussions with piano tuners will investigate
whether this discrepancy is indeed due to an inappropriate tuning,
or a limitation of our model.
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Figure 5: Superposition of the deviation from ET of the model
f1(m), with the whole tessitura data for 5 pianos. f1(m) is com-
puted for the 3 models of ρϕ(m) depicted on the figure 4 and cor-
responding to a mean, low and high octave stretching.
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5. CONCLUSIONS

We presented in this paper a model composed of a few parameters
for aural tuning on the whole piano tessitura. The parameters can
be learned from the estimation of the inharmonicity coefficient and
the fundamental frequency of a few single note recordings. For the
inharmonicity coefficient, 3 notes in the bass range are sufficient
to obtain a good interpolation on the whole tessitura. For the fun-
damental frequency, a few more notes are needed on the whole
tessitura. The model takes into account physical considerations of
the piano string scale design and piano tuning rules used by tuners.

It is intended to be useful for controlling the tuning of a given
piano (as shown in Subsection 4.4) or for parametrizing the tuning
of physically-based piano synthesizers. Following the steps pro-
posed in this paper it could be possible to generate an inharmonic-
ity curve specific to a given piano (or to set the inharmonicity co-
efficient of each note if the design of the target piano is perfectly
known), choose the amount of stretching on the whole tessitura
and an eventual global detuning to automatically generate an ap-
propriate tuning.

The next step of this work is to include this model as con-
straints in multipitch (such as [17]) or automatic transcription al-
gorithms of piano music. Instead of searching for 88 independent
values of the inharmonicity coefficient and of the fundamental fre-
quency, it strongly constraints the estimation to only 6 parameters,
which should result in increased robustness.
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A. APPENDIX: (F0,B) ESTIMATION ON SINGLE NOTES

The problem of estimating (F0,B) on single piano note recordings
has been dealt with by several authors, amongst these: [13], [14],
[15], [4]. Each of these algorithms could potentially be used for
the estimation of the reference data used by the tuning model pre-
sented in the body of the article. However, the algorithm below
comprises a new preprocessing stage of adaptive noise level esti-
mation, which avoids most of potential outliers during the partial
selection. Satisfactory results are usually obtained up to the C6
note.

Algorithm: The main idea is to perform a linear regression on
an alternative version of the inharmonicity law (1):

f2
n

n2
= F 2

0 + F 2
0B · n2 (18)

This equation is linear according to n2. If we collect the fn fre-
quencies in the spectrum S(f) and we know their rank n, we just
have to do a linear regression to obtain F0 and B. We use Least
Absolute Deviation Regression (LADR) to discard outliers (phan-
tom partials or partials affected by strong bridge coupling inhar-
monicity). The main steps of the algorithm are presented on Fig-
ure 6. The input is the magnitude spectrum S(f) computed with
zero padding on 216 frequency bins from a 500ms window in the
decay part of the sound. The first step is a noise level NL(f) es-
timation of the magnitude spectrum. This preprocessing stage al-
lows the separation of spectral peaks related to partials from noise.
Then, the partials above the noise level corresponding to transverse

Figure 6: Estimation of (F0,B). Algorithm scheme.

modes of vibration are picked up by an iterative process, estimat-
ing intermediate (F0, B) values at each step.

Noise level estimation: We assume that the noise is an addi-
tive colored noise, i.e. generated by a filtered white gaussian noise
[16]. In a given narrow band, if the filters have a quasi flat fre-
quency response the noise can be considered as white gaussian,
and its spectral magnitude follows a Rayleigh distribution:

pX(x;σ) =
x

σ2
e−x

2/(2σ2) (19)

In this pre-processing stage, we want to estimate the noise dis-
tribution in each band without removing the partials. To do so, a
good estimator for σ is the median med = σ

√
ln(4). Indeed, in a

given narrow band there are much less bins corresponding to par-
tials than bins corresponding to noise, so partials have a reduced
influence in the estimate of the noise median. The tradeoff sits in
the choice of the bandwidth: the bands have to be narrow enough
so that the white noise approximation holds, but wide enough so
that most of the bins correspond to noise. We chose a 300Hz me-
dian filtering on the magnitude spectrum S(f) to estimate σ(f).
Finally, we define the noise level in each band NL(f) as the mag-
nitude such that the cumulative distribution function is equal to a
given threshold T , set to T = 0.9999. With this choice of T ,
only 6 bins corresponding to noise on average (out of 216) should
be above the noise level. The cumulative density function of a
Rayleigh distribution is given by:

cX(x;σ) = 1− e−x2/(2σ2) (20)

Partial selection: The fn are extracted in the same time as
their rank n by an iterative process. We begin with an approxi-
mative value of F0 = F0ini given by equal temperament (the pro-
cessed note is supposed to be known) and with Bini = 0, for the
search of the first three partials. Then, for each iteration we per-
form LADR according to equation (18) to estimate an intermediate
(F ′0, B

′) couple which will help in selecting the next partial. Each
fn frequency partial is searched in the range nF ′0

√
1 +B′n2 +

[−F0ini
5
, F0ini

5
]. The width of the search interval is set empirically.

Once no partial is found above the noise level the algorithm termi-
nates. The last iteration is presented on Figure 7.

Influence of the dynamics: In practice, for a given note,
sound spectra can significantly vary according to dynamics. For
forte dynamics, a lot of “phantom” partials can appear in the spec-
trum (non-linear coupling of transverse waves with longitudinal
waves), be picked during the partial selection and corrupt the lin-
ear regression. Another limitation can appear in piano dynamics:
for sharp notes (from C6 to C8) the transverse mode partials are
too weak and not in sufficient number to correctly process the se-
lection and the regression steps.
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Figure 7: Partial selection and LADR at the last iteration of the
algorithm.
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