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ABSTRACT
In this paper, we introduce a modified lp norm blind source
separation criterion based on the source sparsity in the time-
frequency domain. We study the effect of making the spar-
sity constraint harder through the optimization process, mak-
ing the parameter p of the lp norm vary from 1 to nearly
0 according to a sigmoid function. The sigmoid introduces
a smooth lp norm variation which avoids the divergence of
the algorithm. We compared this algorithm to the regular l1
norm minimization and an ICA based one and we obtained
promising results.

1. INTRODUCTION

Robot audition consists in the aptitude of an humanoid to
understand its acoustic environment, separate and localize
sources, identify speakers and recognize their motions. This
complex task is one of the target points of the ROMEO project
[6]. This project aims to build an humanoid (ROMEO) to help
aged people in their everyday lives. Our task in this project
is focused on the source separation topic using a microphone
array (more than 2 sensors). Source separation is the most
important step for human-robot interaction: it allows latter
tasks like speakers identification, speech and motion recog-
nition and environmental sound analysis. In a blind source
separation task, the separation should be done from the re-
ceived microphone signals without prior knowledge of the
mixing process. The only knowledge is limited to the array
geometry.

The problem of blind source separation has been tackled
by many authors [4], and we present here some of the state-
of-the-art methods related to robot audition. Tamai et al. per-
formed sound source localization and separation in a real en-
vironment with delay and sum beamforming and frequency
band selection using three rings microphone array with 32
microphones [9]. Yamamoto et al. proposed a robot audi-
tion system for automatic speech recognition of simultaneous
speech where a source separation technique based on geo-
metric constraints was used as a preprocessing for the speech
recognition [12]. This system was implemented in the hu-
manoids SIG2 and Honda ASIMO (with a 8 sensors micro-
phone array), as a part of a more complete system for robot
audition named HARK [5]. Saruwatari et al. proposed a two-
stage blind source separation for a mixed binaural signals of
an humanoid. They combined a single-input multiple-output
model based on independent component analysis (ICA) and
a binary mask processing [8].

Blind source separation can be done in the time domain
or in the time-frequency domain. In the time domain, the
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source mixture is modeled as a convolutive mixture between
the sources and the impulse responses of the different paths
from the sources to the microphones. In this case, we have to
find a separation filter according to the considered separation
criterion. In the frequency domain, the convolutive mixture
is approximated by an instantaneous one, and the problem
becomes easier as we have to find a separation matrix in-
stead of a separation filter. But this has to be done for each
frequency bin which gives rise to the permutation and scale
problem. Another advantage of the time-frequency domain
is the sparsity of the signals in this domain. A signal is sparse
when it is zero or nearly zero in most of its samples.

In this article, we propose a separation criterion based
on the sparsity maximization of the estimated source, there-
fore the minimization of their lp norm. We compare this al-
gorithm to ICA and a l1minimization using an experimental
database for robot audition.

2. SIGNAL MODEL

Assume N sound sources s(t) = [s1 (t) , . . . ,sN (t)]T and an
array of M microphones with M > N. The outputs of the sen-
sors array are denoted by x(t) = [x1 (t) , . . . ,xM (t)]T , where
t is the time index. In a general case, the output signals in
the time domain are modeled as the sum of the convolution
between the sound sources and the impulse responses of the
different propagation paths between the sources and the sen-
sors, truncated at the length of L+1:

x(t) =
L

∑
l=0

h(l)s(t− l)+n(t) (1)

where h(l) is the lth impulse response matrix coefficient
and n(t) is a noise vector. In the frequency domain, when
the analysis window of the Short Time Fourier Transform
(STFT) is longer than the length of the mixing filter, the out-
put signals at the time-frequency bin ( f ,k) can be approxi-
mated as:

X( f ,k)'H( f )S( f ,k) (2)

where X (respectively S) is the STFT of {x(t)}1≤t≤T
(respectively {s(t)}1≤t≤T ) and H is the Fourier transform
of the mixing filters {h(l)}0≤l≤L. Our goal is to use an ap-
propriate criterion to find, for each frequency bin, a separa-
tion matrix W ( f ) that leads to an estimation of the original
sources:

Y ( f ,k) = W ( f )X( f ,k) (3)

This introduces a permutation problem: from one fre-
quency to the adjacent one, the order of the estimated sources
may be different. This can be solved by the method described
in [11] based on the signals correlation between two adjacent

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011  -  ISSN 2076-1465 1869



Figure 1: Blind source separation modules

frequencies. The sources in the time domain can be recov-
ered by making the inverse short time Fourier transform of
the estimated sources in the frequency domain, after solving
the permutation problem.

3. PARAMETERIZED LP NORM ALGORITHM

3.1 Principle

We assume that the time-frequency representation of the
sources is the sparsest state to reach from the mixtures: we
look for a separation matrix W1 that leads to the sparsest es-
timated sources Y in every frequency bin. To measure the
sparsity of the signal Y, we use the lp norm2, with 0 < p≤ 1
and we propose the following loss function:

ψ (W) =
N

∑
i=1

∣∣∣∣∣ NT

∑
k=1
|Yi (k)|p

∣∣∣∣∣
1
p

(4)

As a separation criterion, we minimize the lp norm of the
estimated sources with respect to the separation matrix W,
under a unit norm constraints for W:

min
W

ψ (W ( f )) such that ‖W‖= 1 (5)

where ‖.‖ is any matrix norm. The l1 norm is the most
used sparsity measure thanks to its convexity. However, the
closer the parameter p to 0, the harder is the sparsity mea-
sure: the extreme example is the l0(x) norm which is the
number of the non-zero elements in the vector x. We have
no prior knowledge on the choice of the parameter p for the
blind source separation task. As we want to reach the spars-
est possible state of the estimated sources in the frequency
domain, we propose to make the sparsity constraint harder
through the iterations of the optimization process. The idea
is to decrease p from the less hard sparsity constraint p = 1 to
the hardest one p' 0. But changing the lp norm through the
iterations of the algorithm may lead to a divergence, so we
propose to decrease the parameter p according to a sigmoid
curve with a very small step change, so the convergence of
the algorithm may not be disturbed (cf. figure 2). The loss
function is then:

ψ̂ (W) =
N

∑
i=1

∣∣∣∣∣ NT

∑
k=1
|Yi (k)|p(t)

∣∣∣∣∣
1

p(t)

(6)

1From now on, we remove the frequency index f to make equations
clearer : W = W ( f ), Y = [Y( f ,k)]1≤k≤NT

of dimension N ×NT and
X = [X( f ,k)]1≤k≤NT

of dimension M×NT where NT is the number of the
temporal frames in the STFT.

2For 0 < p < 1, lp is a quasi-norm

Figure 2: The parameter p as a logistic function, p = p(t) =
1

1−exp(−L+ (t−1)2L
NbIter )

, L is the range of computation of the sig-

moid and NbIter = 500 is the iteration number

3.2 Proposed algorithm
To solve the constrained minimization of equation (5), we
use the natural gradient optimization method with coefficient
normalization. The natural gradient is a modified gradient
search method proposed by Amari et al. in 1996 [1]. The
standard gradient search direction is altered according to the
local Riemannien structure of the parameter space. This
guarantees the invariance of the natural gradient search di-
rection to the statistical relationship between the parameters
of the model and leads to a statistically efficient learning per-
formance [2].

The gradient update of the separation matrix W is given
by:

Wt+1 = Wt −µ∇̃ψ̂ (Wt) (7)

where

∇̃ψ̂ (W) = ∇ψ̂ (W)WT W (8)

is the natural gradient of the function ψ̂ (W) and t refers
to the iteration (or time for an adaptive processing) index.
From (7) and (8), and considering the unit norm constraint,
the update of the separation matrix W is:{

W̃t+1 = Wt −µ∇ψ̂ (Wt)WT
t Wt

Wt+1 = W̃t+1

‖W̃t+1‖
(9)

The differential of ψ̂ (W) is:

dψ̂ (W) = f (Y)dYT (10)

where f (Y) = p(t) |Y|p(t)−1 ◦ sign(Y) is a matrix
with the same size as Y in which the (i, j)th entry is
p(t) |Yi ( j)|p(t)−1 sign(Yi ( j)) . The symbol ◦ refers to the
Hadamard product (entrywise matrix product).

Thus, the gradient of ψ̂ (W) is expressed as:

∇ψ̂ (W ( f )) = f (Y)XT (11)

From (8) and (11), the natural gradient of ψ̂ (Wt) is:

∇̃ψ̂ (Wt) = f (Yt)YT
t Wt (12)
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The update equation of Wt for a frequency bin f is then:

Wt+1 = Wt −µGtWt (13)

with Gt = f (Yt)YT
t .

The convergence of the natural gradient is conditioned
both by the initial coefficients W0 of the separation ma-
trix and the step size of the update and it is quite difficult
to choose the parameters that allow fast convergence with-
out risking divergence. Douglas and Gupta [3] proposed to
impose a scaling constraint to the separation matrix Wt to
maintain a constant gradient magnitude for the algorithm.
They assert that with this scaling and a fixed step size µ , the
algorithm has fast convergence and excellent performance in-
dependently of the magnitude of X and W0. Applying this
scaling constraint instead of the unit norm constraint, our up-
date function becomes:

Wt+1 = ctWt −µc2
t GtWt (14)

with ct = 1
1
N ∑

N
i=1 ∑

N
j=1

∣∣∣gi j
t

∣∣∣ and gi j
t = [Gt ]i j.

For the initialization of the separation matrix W0, we use
a whitening process. The whitening is an important prepro-
cessing in an overdetermined blind source separation algo-
rithm as it allows to focus the energy of the received signals
in the useful signal space. The separation matrix is initialized
as follow:

W0 =
√

D−1
M EH

:M

where DM is a matrix containing the first M rows and M
columns of the matrix D and E:M is the matrix containing
the first M columns of the matrix E. D and E are respec-
tively the diagonal matrix and the unitary matrix of the sin-
gular value decomposition of the autocorrelation matrix of
the received data X.

The proposed algorithm is summarized as follow:

Algorithm 1 Parameterized lp quasi-norm algorithm
1. Input: the output of the microphone array x =

[x(t1) , . . . ,x(tT )], the number of sources M and the op-
timization step µ

2. {X( f ,k)}1≤ f≤N f ,1≤k≤NT
= STFT(x)

3. for each frequency bin f ,
(a) initialize the separation matrix W0 ( f ) by a whiten-

ing process
(b) Y0 ( f , :) = W0 ( f )X( f )
(c) for each iteration t,

i. f (Yt ( f , :)) = p(t) |Yt ( f , :)|p(t)−1 ◦
sign(Yt ( f , :))

ii. Gt ( f ) = f (Yt ( f , :))YT
t ( f , :)

iii. ct ( f ) = 1
1
N ∑

N
i=1 ∑

N
j=1

∣∣∣gi j
t ( f )

∣∣∣
iv. Wt+1 ( f ) = ct ( f )Wt ( f ) −

µc2
t ( f )Gt ( f )Wt ( f )

v. Yt+1 ( f , :) = Wt+1 ( f )X( f )
4. Permutation problem solving
5. Output: the estimated sources y =

ISTFT
(
{Y ( f ,k)}1≤ f≤N f ,1≤k≤NK

)

Figure 3: The dummy
used to model the robot

Figure 4: The 16 sen-
sors microphone array

4. SIMULATIONS AND RESULTS

4.1 Experimental data

As we are in a robot audition context, we model the future
robot by a child size dummy (1m20) for the sound acqui-
sition process. We placed 16 sensors on the dummy head
(cf. figure 3 and 4 ). The geometry of this microphone ar-
ray is given by the figure 5. The output signals x(t) are the
convolutions of 8 pairs of speech sources by the impulse re-
sponses {h(l)}0≤l≤L measured from two angles of arrivals
in a moderately reverberant room which reverberation time
is RT30 = 300 ms (cf. figure 6). In this experiment, all the
16 microphones are used and we are in a noiseless environ-
ment. More details of the blind source separation algorithms
are given in table 1.

Figure 5: The geometry of the microphone array

Sampling frequency 16kHz
Analysis window Hanning

Analysis window length 2048
Shift length 1024

µ 0.2
Direction of arrivals 0/90° and 0°/30°

Signals length 5s
Iteration number 500

Table 1: Implementation characteristics of the blind source
separation algorithms
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Figure 6: The position of the sound sources and the micro-
phone array in the reverberant room

4.2 Evaluation results
We evaluate the source separation algorithm by the Signal-
to-Interference Ratio (SIR) using the BSS-eval toolbox [10].
The SIR is given by:

SIR = 10log10

∥∥ytarget
∥∥2∥∥einter f
∥∥2 (15)

where the estimated source signal y j is decomposed as
y j = ytarget + einter f + enoise + earti f , ytarget is a version of y j
modified by an allowed distortion and einter f is the part of y j
perceived as coming from other unwanted sources {si}i6= j.
We compare the parameterized lp quasi-norm algorithm to
the minimization of the l1 norm and the scaled natural gradi-
ent based ICA algorithm in [3]. The minimization of the l1
norm is basically the same algorithm than the one presented
in section 3 with a fixed parameter p = 1.

Figures 7 and 8 show the SIR results for the 3 algorithms
in the first and second positions of the sources and for 8
source pairs. The parameterized lp quasi-norm algorithm,
named lp-param in the results figures, has good results and is
comparable to the ICA algorithm and better in some cases.

Figure 9 shows the sparsity curves of the estimated
sources through the iterations measured by the Gini index
which is a good sparsity measure for speech [7]. The Gini
index is bounded by 0 and 1: the closer the index is to 1, the
sparser is the signal. We notice that the sparsity of the es-
timated sources grows through the iterations and converges
quickly to its optimal value (in less than 50 iterations in this
context). As the source pairs used for the separation are dif-
ferent, we should not expect a correlation between the SIR
results and the value of the Gini index for a pair of sources.
For different pairs of sources, the value of the Gini index of
the estimated sources is closely related to the Gini index of
the original sources and not to the separation performance.

One question to ask is how evolves the algorithm with
a fixed parameter p < 1 comparing to a parameterized one.
Figures 10 and 11 show some results in the case of a fixed
p < 1. For each value of p, we run the lp norm algorithm
with the specified number of iteration. Figure 10 is the SIR

Figure 7: SIR of the blind source separation algorithms for
the first position 0°/90° (SPi refers to the ith Source Pair)

Figure 8: SIR of the blind source separation algorithms for
the second position 0°/30° (SPi refers to the ith Source Pair)

of a pair of source in the first position and it shows that the
best SIR is obtained for p = 0.3, better than the SIR with the
parameterized lp quasi-norm algorithm. The same observa-
tion can be made for the figure 11, which represents the SIR
for a pair of sources in the second position for p < 1. In this
case, the best SIR is obtained in this case is for p = 0.9.

If we bypass the stability issues that can occur for a fixed
p < 1, we can obtain better results than the parameterized lp
quasi-norm algorithm, l1 and ICA for an optimal value of p.
The main problem in this case is the choice of this optimal
value of p. The parameterized lp quasi-norm is then a good
solution if we want to harder the sparsity constraint without
making an heuristic choice of the parameter p.

5. CONCLUSION

We propose a new blind source separation algorithm based
on the minimization of a parameterized lp norm (a quasi-
norm if 0 < p < 1). We introduced a decrease of the parame-
ter p according to a sigmoid function which makes the spar-
sity constraint harder through the iterations. The decrease
according to a sigmoid allows us to avoid the divergence of
the algorithm when changing the lp norm from an iteration
to another. The results show that the proposed algorithm has
good performance comparing to the minimization of the l1
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Figure 9: The Gini index of the estimated sources through
the iterations in the first recording situation

Figure 10: SIR for SP1 in the first position (0°/90°) with p
varying from 0.1 to 1 (same p through the iterations)

norm and ICA.
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