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Abstract
We present a two stage blind source separation (BSS) algorithm
for robot audition. The algorithm is based on a beamforming
preprocessing and a BSS algorithm using a sparsity separation
criterion. Before the BSS step, we filter the sensors outputs
by beamforming filters to reduce the reverberation and the en-
vironmental noise. As we are in a robot audition context, the
manifold of the sensor array in this case is hard to model, so we
use pre-measured Head Related Transfer Functions (HRTFs) to
estimate the beamforming filters. In this article, we show the
good performance of this method as compared to a single stage
BSS only method.
Index Terms: blind source separation, beamforming, robot au-
dition

1. Introduction
Robot audition consists in the aptitude of an humanoid to under-
stand its acoustic environment, separate and localize sources,
identify speakers and recognize their emotions. This complex
task is one of the target points of the ROMEO project [1]. This
project aims to build an humanoid (ROMEO) to help aged peo-
ple in their everyday lives. In this project, we focus on blind
source separation (BSS) using a microphone array (more than
2 sensors). In a blind source separation task, the separation
should be done from the received microphone signals without
prior knowledge of the mixing process. The only knowledge is
limited to the array geometry. Source separation is the most im-
portant step for human-robot interaction: it allows latter tasks
like speakers identification, speech and motion recognition and
environmental sound analysis.

Blind source separation problem has been tackled several
times [2] and one of the main challenges remains to have good
BSS performance in a high reverberant environments. One way
to handle the reverberation problem is beamforming. Beam-
forming consists in estimating a spatial filter that operates on
the outputs of a microphone array in order to form a beam with
a desired directivity pattern [3]. It is useful for many purposes,
particularly in enhancing a desired signal from its measurement
corrupted by noise, competing sources and reverberation [3].
Beamforming can be fixed or adaptive. A fixed beamforming,
contrarily to the adaptive one, does not depend on the sensors
data, the beamformer is built for a set of fixed desired directions.
In this article, we propose a two stage blind source separation
technique where a fixed beamforming is used as a preprocess-
ing. However, in a beamforming task, we need to know the
manifold of the sensor array, which is sometimes hard to model

This work is funded by the Ile-de-France region, the General Di-
rectorate for Competitiveness, Industry and Services (DGCIS) and the
City of Paris, as a part of the ROMEO project.

for the robot audition case. To overcome the problem of the ar-
ray geometry modeling and take into account the influence of
the robot’s head on the received signals, we propose to use the
Head Related Transfer Functions (HRTFs) of the robot’s head
to build the fixed beamformer.

Wang et al. propose to use a beamforming preprocessing
where the steering directions are the direction of arrivals of
the sources [4]. This suppose that the direction of arrival are
known a priori. The authors evaluate their method in a deter-
mined case (2 and 4 sources) with a circular microphone array.
Saruwatari et al. present a combined Independent Component
Analysis (ICA) and beamforming method: first they perform a
subband ICA and estimate the direction of arrivals (DOA) of
the sources using the directivity patterns, second they use the
estimated DOA to build a null beamforming, and third they in-
tegrate the subband ICA and the null beamforming by select-
ing the most suitable separation matrix in each frequency [5].
In this article, we propose to use a fixed beamforming prepro-
cessing with fixed steering directions, independently from the
direction of arrival of the sources, and we compare this prepro-
cessing method to the Wang et al. one. We are interested in
studying the effect of the beamforming as a preprocessing tool
so we are not going to include the algorithm of [5] in our eval-
uation (the authors of [5] use the beamforming as a separation
method alternatively with ICA). We present promising results
using two different fixed beamformers as preprocessing and a
sparsity based BSS algorithm.

2. Signal model
Assume N sound sources s (t) = [s1 (t) , . . . , sN (t)]T and
an array of M microphones. The outputs of the sensors array
are denoted by x (t) = [x1 (t) , . . . , xM (t)]T , where t is the
time index and M ≥ N . In a general case, the output signals
in the time domain are modeled as the sum of the convolution
between the sound sources and the impulse responses of the
different propagation paths between the sources and the sensors,
truncated at the length of L+ 1:

x (t) =
L∑

l=0

h (l) s (t− l) + n (t) (1)

where h (l) is the lth impulse response matrix coefficient
and n (t) is a noise vector. In the frequency domain, when the
analysis window of the Short Time Fourier Transform (STFT)
is longer than the length of the mixing filter, the output signals
at the time-frequency bin (f, k) can be approximated as:

X (f, k) � H (f)S (f, k) (2)

where X (respectively S) is the STFT of {x (t)}1≤t≤T (re-

spectively {s (t)}1≤t≤T ) and H is the Fourier transform of the
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mixing filters {h (l)}0≤l≤L. Our goal is to find, for each fre-

quency bin, a separation matrixF (f) that leads to an estimation
of the original sources:

Y (f, k) = F (f)X (f, k) (3)

This introduces the well known permutation and scaling
problems: from one frequency to the adjacent one, the order
and the scale of the estimated sources may be different. The
permutation problem can be solved by the method described in
[6] based on the signals correlation between two adjacent fre-
quencies. The scale problem is solved by the method proposed
in [7]. The sources in the time domain can be recovered by
taking the inverse short time Fourier transform of the estimated
sources in the frequency domain, after solving the permutation
problem.

3. Combined beamforming and BSS
algorithm

We present here a two step blind separation algorithm based on
a fixed beamforming preprocessing (cf. figure 1).

3.1. Beamforming pre-processing

We consider {B (f)}
1≤f≤Nf

2
a set of fixed beamforming filters

of size K ×M , where Nf is the length of the Fourier analysis
window and K is the number of the desired beams, K ≥ N .
Those filters are calculated beforehand (cf. section 4). The out-
puts of the beamformers at each frequency f are:

Z (f, k) = B (f)X (f, k) (4)

The role on the beamformer is essentially to reduce the
reverberation (and consequently, equation 2 is better satisfied
leading to improved BSS quality) and the interferences coming
from space directions other than the looked up ones.

3.2. Blind source separation

The blind source separation step consists in estimating a sep-
aration matrix W (f) that leads to separated sources at each
frequency bin f . The separation matrix is estimated from the
beamformers outputs Z (f, k), the estimated sources are then
written as:

Y (f, k) = W (f)Z (f, k) (5)

The separation matrix W (f) is estimated using a sparsity
criterion. We assume that the STFT of the sources are the spars-
est state to reach and we use the l1 norm minimization criterion:

min
W

N∑

i=1

NT∑

k=1

|Yi (f, k)| such that ‖W‖ = 1 (6)

where Yi (f, k) is the (f, k)th
bin of the ith source and ‖.‖

is any matrix norm. The update equation of W (f) using the
natural gradient descent technique [8] is:

Wt+1 = Wt − μ∇ψ (Wt)W
T
t Wt (7)

where ψ (W) =
∑N

i=1

∑NT
k=1 |Yi (f, k)|, ∇ψ (W) is the

gradient of ψ (W) and t refers to the iteration (or time for an
adaptive processing) index. The final separation matrix F is:

F (f) = W (f)B (f) (8)

4. Fixed beamforming with HRTFs
In the case of robot audition, the geometry of the microphone
array is fixed once for all. Once the array geometry is fixed and
the desired steering direction is determined (by a localization
technique or arbitrarily), the fixed beamformer takes full ad-
vantage of these spatial information to design the desired beam
pattern. Thus, the desired characteristics of the beam pattern
(the beamwidth, the amplitude of the sidelobes and the position
of nulls) are obtained for all scenarii and calculated only once.

To design a fixed beamformer that will achieve the desired
beam pattern (according to a desired direction response), the
least-square (LS) technique is used [3]. In the case of robot au-
dition, the microphone are often fixed in the head of the robot
and it is generally hard to know exactly the manifold of the
microphone array (cf. figure 5). Besides, the phase and magni-
tude response models of the steering vectors do not take into
account the influence of the head on the surrounding acous-
tic fields. So we propose to use the Head Related Transfer
Functions (HRTFs) as steering vectors {a (f, θ)}θ∈Θ, where
Θ = {θ1, . . . , θNS} is a group of NS a priori chosen steering
directions (cf. figure 2). The HRTFs characterize how the signal
emitted from a specific direction is received at a sensor fixed in
a head. It takes into account the geometry and the manifold of
the head, and thus of the microphone array. Let hm (f, θ) be
the HRTF at frequency f from the emission point located at θ
to themth sensor. The steering vector is then:

a (f, θ) = [h1 (f, θ) , . . . , hM (f, θ)]T (9)

Given equation (9), one can express the normalized LS beam-
former for a desired direction θi as [3]:

b (f, θi) =
R−1

aa (f)a (f, θi)

aH (f, θi)R
−1
aa (f)a (f, θi)

(10)

where R−1
aa (f) = 1

NS

∑
θ∈Θ a (f, θ)aH (f, θ). Given K

desired steering directions θ1, . . . , θK , the beamforming matrix
B (f) is:

B (f) = [b (f, θ1) , . . . ,b (f, θK)]T (11)

Figure 2: Example of a beam pattern using HRTFs for θi = 50°
(in dB)
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Figure 1: The processing scheme of the combined beamforming-BSS algorithm

4.1. Beamforming with known DOA

If the direction-of-arrivals (DOAs) of the sources are known a
priori, mainly by a source localization method, the beamform-
ing filters are estimated using this spatial information of the
sources location (cf. figure 3). Therefore, the desired directions
are the DOAs of the sources and we select the corresponding
HRTFs to build the desired response vectors a (f, θ).

Figure 3: Beamforming with known DOAs

4.2. Beamforming with fixed DOA

Estimating the DOAs of the sources is time consuming and not
always accurate in the reverberant environments. As an alterna-
tive solution, we propose to buildK fixed beams with arbitrary
desired directions, and then chose the N beamformer outputs
with the highest energy, corresponding to the beams that are the
closest to the sources (we suppose that the energy of the sources
are quite close). TheK directions are chosen in such a way they
cover all useful space directions (cf. figure 4).

In general, the sources may have a big difference in their
energy levels and the source that has the highest energy could
be detected more than once by different beams. So the selection
of the outputs with the highest energy is done in such a way that
they are not correlated, i.e. their coherence is below a certain
threshold fixed a priori.

5. Experiments and results
5.1. Experimental database

To evaluate the proposed BSS techniques, we built two databases:
a HRTFs database and a speech database. We recorded the
HRTF database in the anechoïc room of Telecom ParisTech (cf.
figure 5). As we are in a robot audition context, we model the
future robot by a child size dummy (1m20) for the sound ac-
quisition process, with 16 sensors fixed in its head (cf. figure 5).
We measured 504 HRTF for each microphone as follow:

Figure 4: Beamforming with fixed steering directions

Figure 5: The dummy in the anechoïc room (left) and the mi-
crophone array of 16 sensors (right)

• 72 azimuth angles from 0° to 355° with a 5° step

• 7 elevation angles: -40°, -27°, 0°, 20°, 45°, 60° and 90°

The HRTFs were measured by a Golay codes process [9] at a
sampling frequency of 48 KHz downsampled to 16 KHz. The
HRTF database is available for download1.

We also recorded, with the same dummy, a reverberant speech
database to evaluate and compare the proposed methods. The
test signals were recorded in a moderately reverberant room
which reverberation time is RT30 = 300 ms (cf. figure ??). The
output signals x (t) are the convolutions of 10 pairs of speech
sources (male and female speaking french and English) by the
impulse responses {h (l)}0≤l≤L measured from two angles of
arrivals. We used 3 different pairs of DOAs on the horizontal
plan (the reference is the head of Theo where the elevation =0°):
0°/-30°, 0°/27° and 0°/90°.

The characteristics of the signals and the BSS algorithms
are summarized in table 1.

1http://www.tsi.telecom-paristech.fr/aao/?p=
347
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Sampling frequency 16 KHz

Analysis window Hanning

Analysis window length 2048

Shift length 1024

μ 0.2

Signals length 5s

Number of iterations 500

Table 1: Parameters of the blind source separation algorithms

5.2. Results and discussion

We evaluate the proposed two stage algorithm by the Signal-
to-Interference Ratio (SIR) and the Signal-to-Distortion Ratio
(SDR) calculated using the BSS-eval toolbox [10]. The follow-
ing results are the mean SIR (cf. figure 6) and the mean SDR
(cf. figure 7) of 10 pairs of source separation cases from dif-
ferent directions of arrivals. The algorithms that we evaluate in
this section are:

• Sparsity based BSS algorithm (BSS)

• Two stage algorithm with know DOAs (K-DOA+ BSS)

• Two stage algorithm with fixed DOAs: 7 beams from -90
to 90 with a step of 30° (F-DOA[30°]+ BSS)

• Two stage algorithm with fixed DOAs: 13 beams from
-90 to 90 with a step of 15° (F-DOA[15°]+ BSS)

Figure 6: SIR comparison with different direction-of-arrivals
(DOA)

The results show an improvement of the SIR when the beam-
forming preprocessing is used. The SDR is considerably im-
proved in the case of known DOAs, as no distortions are intro-
duced by a difference between the fixed steering direction and
the real DOA. Some errors may occur in the selection of the
beams with the highest energy in the case of the fixed DOAs
beamforming, especially in the low frequencies and this may
affect the SDR and SIR performance. But as the results show,
we still have good performance with the fixed DOA beamform-
ing preprocessing. We also have a gain in the processing time
as we do not have to estimate the DOAs in each separation case.

6. Conclusion
In this article, we present a two stage blind source separation
algorithm for robot audition. This algorithm is based on a fixed
beamforming preprocessing, with known or fixed DOAs and a

Figure 7: SDR comparison with different direction-of-arrivals
(DOA)

BSS algorithm exploiting the sparsity of the sources in the time-
frequency domain. The beamforming preprocessing improves
the separation performance as it reduces the reverberation and
noise effects. The maximum gain is obtained when the sources
DOAs are known. However, we propose also a beamforming
preprocessing with fixed DOAs that has good performance and
do not use an estimation of the DOAs, which represent a gain in
the processing time.
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