
Automatic Extraction of Structured Web Data with
Domain Knowledge

Nora Derouiche, Bogdan Cautis, Talel Abdessalem

Télécom ParisTech - CNRS LTCI
Paris, France

firstname.lastname@telecom-paristech.fr

Abstract—We present in this paper a novel approach for
extracting structured data from the Web, whose goal is to
harvest real-world items from template-based HTML pages (the
structured Web). It illustrates a two-phase querying of the
Web, in which an intentional description of the data that is
targeted is first provided, in a flexible and widely applicable
manner. The extraction process leverages then both the input
description and the source structure. Our approach is domain-
independent, in the sense that it applies to any relation, either
flat or nested, describing real-world items. Extensive experiments
on five different domains and comparison with the main state of
the art extraction systems from literature illustrate its flexibility
and precision. We advocate via our technique that automatic
extraction and integration of complex structured data can be
done fast and effectively, when the redundancy of the Web meets
knowledge over the to-be-extracted data.

I. INTRODUCTION

We are witnessing in recent years a steady growth of
the structured Web, documents (Web pages) that are data-
centric, presenting structured content, complex objects. Such
schematized pages are mostly generated dynamically by means
of formatting templates over a database, possibly using user
input via forms (in hidden Web pages). In addition, there
is also strong recent development of the collaborative Web,
representing efforts to build rich repositories of user-genera-
ted structured content. Exploiting this significant and rapidly
increasing portion of the Web is one of the key challenges in
data management research today, and of foremost importance
in the larger effort to bring more semantics to the Web. In
short, its aim is to map as accurately as possible Web page
content to relational-style tables.

Extracting data from pages that (i) share a common sche-
ma for the information they exhibit, and (ii) share a common
template to encode this information, is significantly different
from the extraction tasks that apply to unstructured (textual)
Web pages. While the former harvest (part of) the exhibited
data mainly by relying on “placement” properties w.r.t. the
sources’ common features, the latter usually work by means
of textual patterns and require some initial bootstrapping phase
(e.g., positive instances).

A generic methodology for extracting structured data from
the Web, followed in most recent works, consists (in order)
of (a) the identification of the data rich regions within a
page, (b) the extraction of information, and (c) the semantic
interpretation of the extracted data. This methodology is well

adapted to scenarios where a complete mapping into tables of
the data rendered in HTML pages is required.

The techniques that apply to schematized Web sources are
generally called wrapper inference techniques, and have been
extensively studied in the literature recently, ranging from
supervised (hard-coded) wrappers to fully unsupervised ones.
At the end of the spectrum, there have been several propos-
als for automatically wrapping structured Web sources, such
as [1], [2], [3]. They are all illustrations of the aforementioned
methodology, in the sense that only the pages’ regularity is
exploited, be it at the level of HTML encoding or of the visual
rendering of pages. The extracted data is then used to populate
a relational-style table, a prior without any knowledge over
its content. Semantic criteria are taken into account only in
subsequent steps, e.g., for column labeling, and this final step
can be done either by manual labeling or even by automatic
post-processing (a non-trivial problem in its own, [4]).

In practice, this generic methodology suffers from two
significant shortcomings, which often limit the usability of the
collected data in real-life scenarios:
• only part of the resulting data may be of real interest for

a given user or application, hence considerable effort may
be spent on valueless information,

• with no insight over its content, data resulting from
the extraction process may mix values corresponding to
distinct attributes of the implicit schema, making the
subsequent labeling phase tedious and prone to failure.

These shortcomings seem however avoidable when one has
initial knowledge about the to-be-extracted data - in what could
be seen as targeted wrapping and extraction - and uses this
knowledge to guide the extraction process. For this natural
and conceptually simple setting, we propose in this paper the
ObjectRunner system for wrapping structured Web sources.

Our system is attacking the wrapping problem from the
angle of users looking for a certain kind of information
on the Web. It starts from an intentional description of the
targeted data, denoted Structured Objet Description (in short
SOD), which is provided by users in a minimal-effort and
flexible manner (e.g., provided via a query interface). The
interest of having such a description is twofold: it allows to
improve the accuracy of the extraction process (as shown in
our empirical evaluation), in many cases quite significantly,
and it makes this process more efficient and lightweight by
avoiding unnecessary computations.

To place the targeted extraction problem - the main focus of
this paper - in the more general context of the ObjectRunner
system, we give in Figure 1 a high level view of its architecture
(mostly self-explanatory). For start, information seekers ex-
press what could be called a “phase-one query”, in which they
are expected to specify by means of an SOD (to be formally
defined shortly) what must be obtained from Web pages. It
does not of course say how this data could be extracted.
In particular, the input query (SOD) says what atomic types
(i.e., simple entities) are involved in the intentional description
and how (e.g., occurrence constraints, nesting). For this, we
consider how the intentional description of the targeted data
can be formulated in a flexible and widely-applicable manner.
We also discuss how such a description can be made effective
with little burden on the user, by automatically exploiting rich
sources of raw information that are nowadays ubiquitous (for
instance, Wikipedia-based ontologies or Web-based textual
corpuses) as means to recognize atomic data of interest.
Other aspects illustrated in Figure 1, such as source selection
and pre-processing of extracted data (e.g., de-duplication),
integration and “phase-two” querying of the data, go beyond
the scope of this paper. For the purposes of this paper, we
simulate the step of finding relevant sources for a given SOD
by “computing with humans” in the Mechanical Turk platform
(more details on this in the experiments section).

To the best of our knowledge, our work is the first to
consider the challenges associated with the targeted extraction
setting - in which an intentional description of the data is
provided before the extraction phase - and to evaluate its
advantages in practice, over real-world data. Besides pre-
senting our approach for the extraction of complex objects
under the specification of domain knowledge and its empirical
evaluation, a goal of this paper is to advocate the potential of
this two-phase querying paradigm for the Web. Our extensive
experiments indicate that by (i) having an explicit target for
the extraction process, and (ii) using diverse and rich enough
sources, this approach turns out to be highly effective in
practice. They are made even more relevant by the fact we did
not manually select the sources that were tested, as these were
provided for each domain by independent users (Mechanical
Turk workers). In our view, these results hint that a fully
automatic solution for querying the structured, non-hidden
Web - including aspects such as source indexing and selection
- might be within reach, based on carefully designed heuristics
and the redundancy of the Web.

The rest of the paper is organized as follows. In the next
section we introduce the necessary terminology and some
technical background. In Section III we model the problem
and give a detailed description of the extraction procedure
in terms of composing parts and implementation approaches.
We also illustrate how it operates through several examples.
The experimental evaluation is presented in Section IV. In
Section V we discuss the most relevant related works and we
conclude in Section VI.

User

Type

Recognizers

Source S1

Source Sn

S
a

m
e

 d
o

m
a

in

SOD

Unlabeled Web Pages Labeled Web Pages

De-duplication

Page pre-processing

Wrapper Generation

Enrich

Sample

Pages

Annotation

All Pages

Extracted Data

Web Yago

Structured Data

And Text

Query Interface

Web

Corpus

Yago

Ontology

Fig. 1. Architecture of ObjectRunner

II. PRELIMINARIES

We introduce in this section the necessary terminology and
some technical background.

Schematized, data-rich pages are generally built by a script
that retrieves information from an underlying databases. For
the purpose of extraction, it is useful to differentiate between
two types of such pages. List pages encode a list of similar
records or objects, with both the high-level structure and
the individual records being formatted using the common
template. An example of list page is given in Figure 2(a), for
an amazon.com page displaying details about books. Singleton
pages focus on a single object (see the page of Figure 2(b))
and, while being structured, in general give a more detailed
description of the data. It is quite frequent to have both kinds
of pages appearing in the same Web site. The former serves
information in a distilled manner (e.g, our example page gives
the main description, such as title, author, etc), while the
latter complement the list pages by giving more details (e.g.,
shipping details).

For the purposes of wrapping, although dealing with the
same data and appearing in same Web site, the two kinds of
pages will be considered as representing distinct sources, given
that they rely on different templates and they encode data at
different granularities.

As part of the input for the extraction, we suppose that
the user has a number of structured Web sources, denoted
in the following {S1, . . . ,Sn}, where each represents a set of
HTML pages that describe real-world objects (e.g., concerts,
real-estate ads, books, etc). Our running example refers to
concert objects, which could be seen as relational (flat) tuples
formed by three atomic type values: artist, date, address. We
illustrate in Figure 3 three fragments of template-based pages
that describe such information.

We continue by defining the typing formalism, by which any
user can specify what data should be targeted and extracted
from HTML pages. We then describe the extraction problem.

(a) A fragment of a list page with three data records

(b) A segment of a detail page
Fig. 2. Structured pages from amazon.com

A. Types and object description

In short, Structured Object Descriptions allow users to de-
scribe nested relational data with multiplicity constraints [5],
starting from atomic types (not necessarily predefined). More
precisely, as building blocks for describing data, we assume a
set of entity (atomic) types, where each such type represents
an atomic piece of information, expressed as a string of tokens
(words). Each entity type ti is assumed to have an associated
recognizer ri which can be simply viewed as a regular expres-
sion or a dictionary of values. For most practical cases, we
distinguish three kinds of recognizers: (i) user-defined regu-
lar expressions, (ii) system predefined ones (e.g., addresses,
dates, phone numbers, etc), and (iii) open, dictionary-based
ones (called hereafter isInstanceOf recognizers). We discuss
possible recognizer choices, the ones we experimented with in
this paper and possible implementations in the next section.

Based on entity types, complex types can be defined in
recursive manner. A set type is a pair t = [{ti},mi] where {ti}
denotes a set of instances of type ti (atomic or not) and mi
denotes a multiplicity constraint that specifies restrictions on
the number of ti instances in t: n−m for at least n and at
most m, ∗ for zero or more, + for one or more, ? for zero
or one, 1 for exactly one. A tuple type denotes an unordered
collection of set or tuple types. A disjunction type denotes a
pair of mutually exclusive types.

A Structured Object Description (SOD) denotes any com-
plex type. In practice, these could be complemented by addi-
tional restrictions in the form of value, textual or disambigua-
tion rules1. For brevity, these details are omitted in the model
described here and in our experiments.

An instance of an entity type ti is any string that is valid
w.r.t the recognizer ri. Then, an instance of an SOD is
defined straightforwardly in a bottom-up manner, and can be
viewed as a finite tree whose internal nodes denote the use
of a complex type constructor. For example, concert objects
could be specified by an SOD as a tuple type composed of
three entity types: one for the address, one for the date and
one for the artist name. The first two entity types would
be associated to predefined recognizers (for addresses and
dates respectively), since this kind of information has easily
recognizable representation patterns, while the last one would
have an isInstanceOf recognizer. For most practical cases, the
three components can be given multiplicity 1.

B. The extraction problem

For a given SOD s and source Si, a template τ with respect
to s and Si describes how instances of s can be extracted from
Si pages. More precisely,
• for each set type t = [{ti},mi] appearing in s, τ defines a

separator string sept ; it denotes that consecutive instances
of ti will be separated by this string.

• for each tuple type t = {t1, . . . , tk}, τ defines a total order
over the collection of types and a sequence of k + 1
separator strings sept

1, . . . ,sept
k+1; this denotes that the k

instances of the k types forming t, in the specified order,
will be delimited by these separators.

We are now ready to describe the extraction problem we
consider. For a given input consisting of an SOD s and a set
of sources {S1, . . . ,Sn},

1) set up type recognizers for all the entity types in s,
2) for each source Si,

a) find and annotate entity type instances in pages,
b) select a sample set of pages,
c) infer a template τi(s,Si) based on the sample,
d) use τi to extract all the instances of s from Si,

We give in Figure 3(b) the extraction template that would be
inferred in our example.

C. Advantages of two-phases querying

As argued in Section I, existing unsupervised approaches
have significant drawbacks due to their genericity. We believe
that the alternative approach of two-phase querying can often
be more suitable in real life scenarios, offering several advan-
tages such as:

Avoiding to mix different types of information. By relying
on type recognizers to annotate input pages, we can improve

1For instance, these could allow one to say that a certain entity type has to
cover the entire textual content of an HTML node or a textual region delimited
by consecutive HTML tags. Or to require that two date types have to be in a
certain order relationship or that a particular address has to be in a certain
range of coordinates

<html><body>

<div>1 Coldplay </div>
<div>2 Saturday August 8, 2010 8:00pm </div>
<div>3

<a>Bowery Ballroom
Delancey St

<html><body>

<div>1 Madonna </div>
<div>2 Saturday May 29 7:00p </div>
<div>3

<a>The Town Hall
131 W 55th St
New York City
New York
10019

</div>

<div>1Muse</div>
<div>2 Friday June 19 7:00p</div>
<div>3

<a>B.B King Blues and Grill
4 Penn Plaza
New York City
New York
10001

</div>

<html><body>

<div>1 Metallica </div>
<div>2 Monday May 11, 8:00pm </div>
<div>3

<a> Madison Square Garden
237 West 42nd street
New York City
New York
10036

</div>

</body></html>

P1

Delancey St
New York City
New York
10002

</div>

</body></html>

</div>

</body></html>

P2

P3

(a) Sample pages

<html><body>
{<

<div type="Artist"> * </div>
<div type="Date"> * </div>
<div type="Address">

<a> *
 *
 *
 *
 *

</div>

>}
</html></body>

(b) The correct wrapper

Fig. 3. Running example

the extraction process, using semantics besides the structural
features of the data.

Extracting only useful data. The description of targeted
objects allows us to avoid the extraction of unnecessary data
and to preclude any filtering/labelling post-processing.

Stopping early the extraction process. During the process of
building the template, if the collection of pages is deemed no
longer relevant for the extraction, the wrapper inference can
be stopped.

Enabling a self-validating process. Using semantic annota-
tions on the pages’ content, we can automatically estimate the
quality of the extraction (and of the corresponding wrapper)
by checking whether conflicting annotations appear on values
of the same attribute. To this end, we rely on an execution
loop which can variate certain parameters of the wrapping
algorithm.

Avoiding the loss of useful information. Relevant data that
should be selected in result objects may be considered “too
regular”, hence part of the page’s template, by techniques that
are oblivious to semantics. By consequence, useful data may
be missed. For instance, in the running example (Figure 3) the
text “New York” appears often, always in the same position
in pages, simply because there are many concerts taking place
in this city. However, if the text is recognized as denoting an
address, a component of concert objects, it will interpreted as
information that might be extracted.

Using applicable semantic annotations to discover new
(potential) annotations. Unavoidably, the use of dictionaries
(gazetteers) to annotate data yields incomplete annotations in
practice. But we can use current annotations to discover others
based on the extracted data, e.g., enriching in this way the
dictionaries.

III. THE EXTRACTION APPROACH

We describe in this section the main aspects of our extrac-
tion approach, in terms of composing parts and implementation
choices. We also illustrate how it operates through an example.
The underlying principle of ObjectRunner is that, given the

redundancy of Web data, solutions that are fast-performing, yet
are flexible enough and have high precision and satisfactory
recall, should be favored in most aspects of the system. Though
in practice this means that some sources may be handled in
unsatisfactory manner, the objects that are lost could very
likely be found in another source as well (even within the same
Web site) and, overall, the performance speed-up is deemed
much more important.

Broadly, the extraction process is done in two stages: (1)
automatic annotation, which consists in recognizing instances
of the input SOD’s entity types in page content, and (2) ex-
traction template construction, using the semantic annotations
from the previous stage and the regularity of pages.

We first discuss some pre-processing steps. Often, there are
many segments in Web pages that do not encode useful in-
formation, such as headers, scripts, styles, comments, images,
hidden tags, white spaces, tag properties, empty tags, etc. This
content can make the later processing slower and sometimes
might even affect the end results. Therefore, a pre-processing
cleaning step is usually performed on the HTML before the
extraction process can start. First, beyond page cleaning, we
apply to the collection of pages of each source a radical
simplification to their “central” segment, the one which likely
displays the main content of the page. For that, we exploit
the visual (rendering) information about the page. We rely on
an algorithm that performs page segmentation (in the style of
VIPS [6] and ViNTs [7]). In VIPS, each page is represented as
a “tree structure” of blocks. These blocks are delimited based
on : (i) the DOM tree of the page, and (ii) the separators
between them, using the horizontal and vertical lines of the
web pages. For all our sources, using a rendering engine for
the HTML pages, we applied the straightforward heuristic of
selecting as the best candidate segment the one described by
the largest and most central rectangle in the page. As block
sizes and even the block structure may vary from one page to
another, across all the pages of a given source, we identified
the best candidate block by its tag name, its path in the DOM
tree and its attribute names and values.

Second, since HTML documents are often not well-formed,
we use the open source software JTidy [8] to transform them
to XML documents. For instance, the simplified pages in our
example were obtained after such pre-processing steps from
the site http://upcoming.yahoo.com/.

A. Type recognizers

Importantly, type recognizers are never assumed to be
entirely precise nor complete by our algorithm. This is inherent
in the Web context, where different representation formats
might be used for even the most common types of data. We
only discuss here how isInstanceOf types are handled. Intu-
itively, these are types for which only a class name is provided,
without explicit means to recognize instances thereof. This
could be the case for the Artist entity type. When such a
type is required by the user, an important functionality of
ObjectRunner is that it should seamlessly construct on the fly
a dictionary-based recognizer for it. For this, we experimented
for this paper’s results two complementary ways, which also
follow the guideline of fast-performing, conceptually-simple
best-effort approaches.

The first alternative is the one of querying a knowledge base.
In our experiments, we used the YAGO ontology [9], a vaste
knowledge base built from Wikipedia and Wordnet (YAGO
has more than 2 million entities and 20 million facts). Despite
its richness, useful entity instances may not be found simply
by exploiting YAGO’s isInstanceOf relations. For example,
Metallica is not an instance of the Artist class. This is why
we look at a semantic neighborhood instead: e.g., Metallica
is an instance of the Band class, which is semantically close
to the Artist one. For our purposes, we adapted YAGO in
order to access such data with little overhead.

A second alternative is to look for instances of a given type
(specified by its name) directly on the Web. To support this
feature, we chose to apply Hearst patterns [10] on a corpus of
Web pages that is pre-processed for this purpose. These are
simple parameterized, textual, patterns like Artist such as X ,
or X is an Artist, by which one wants to find the values for
the X parameter in the text.

Regardless of how they are obtained, gazetteer instances
should be described by confidence values w.r.t. the type their
are associated to. While YAGO comes with its own confidence
values, for the second alternative of populating a gazetteer,
given a candidate instance i and type t, a confidence score
for each pair (i, t) is computed in ObjectRunner using the
Str-ICNorm-Thresh metric of [11]:

score(i, t) =
∑
p∈P

count(i, t, p)

max(count(i),count25)× count(t)
(1)

In this measure, count(i, t, p) is the number of hits for the pair
(i, t) in the corpus by the pattern p, count(i) is the number
of hits for the term i in the corpus, and count25 is the hit
count that occurs at the 25th percentile. Intuitively, if this pair
is extracted many times in the corpus, this redundancy gives
more confidence that the pair is correct.

Such rich sources of information (Wikipedia-based ontolo-
gies or large Web-based textual datasets such as ClueWeb2) are
nowadays ubiquitous and can be easily employed as means to
recognize atomic data, without the need to declare beforehand
predefined types of interest.

B. Annotation and page sample selection

No a prior assumptions are made on the source pages. They
may not be relevant for the input SODs, as they may even
not be structured (template-based). The setting of our entity
recognition sub-problem is the following: a certain number
(typically small in practice) of entity types t1, . . . , tn have
to be matched with a collection of pages (what we call a
source). If done naively, this step could dominate the extraction
costs, since we deal with a potentially large database of entity
instances. Our approach here starts from the observation that
only a subset of these pages have to be annotated, and from the
annotated ones only a further subset (approximately 20 pages)
are used as sample in the next stage, for template construction.
We use selectivity estimates, both at the level of types and at
the one of type instances, and look for entity matches in a
greedy manner, starting from types with likely few witness
pages and instances (see Algorithm 1).

Algorithm 1 annotatePages
1: input: parameters (e.g. sample size k), source Si, SOD s
2: sample set S := Si
3: order entity types in s by selectivity estimate (equation 2)
4: for all entity types t in s do
5: look for matches of t in S and annotate
6: compute score of each page
7: for S′ v S top annotated pages, make S := S′

8: end for
9: return sample as most annotated k pages in S

Annotation. Given multiple dictionaries, each with the
associated confidence scores (this could be seen as a large
disjunctive keyword query), the top pages with respect to an-
notations are selected and used as training sample to construct
the extraction template. The annotation is done by assigning an
attribute to the DOM node containing the text that matched the
given type. Multiple annotations may be assigned to a given
node.

The result will be a type-annotated DOM tree. For instance, in
page p1 of our example, the first <div> tag contains an artist
name, so it will be annotated accordingly, as in <div type=
"Artist"> Metallica </div>. Annotations will also be
propagated upwards in the DOM tree to ancestors as long
as these nodes have only one child (i.e., on a linear path) or
all children have the same annotation.

Page sample selection. In this step, the top annotated
pages are selected for wrapper inference. We first associate
to each isInstanceOf type t a selectivity estimate, computed

2http://www.lemurproject.org/clueweb09.php.

as follows:
score(t) = ∑

i∈t
score(i, t)/t f (i), (2)

where i denotes each instance in the dictionary associated with
type t, described by its confidence score and a term frequency
t f (i) (from either the Web corpus or the ontology). We then
apply types in the annotation rounds in decreasing order of
their selectivity estimate.

After each annotation round, we continue the matching pro-
cess only on the “richest” pages. For that, we order the pages
by their minimum score with respect to the types that were
already processed, as min(score(page/t1), . . . ,score(page/tn))
and we select the pages having the highest score. The score
per page is computed as follows:

score(page/t j) = ∑
i′∈t j

score(i, t j)/t f (i) (3)

where i′ denotes each instance of t j in the page.
During this loop, we strive to minimize the number of

pages to be annotated at the next round. Moreover, the source
could be discarded if unsatisfactory annotation levels are
obtained. Once the top annotated pages are selected over
all isInstanceOf types, the predefined and regular expression
types are processed.

C. Wrapper generation

This is the core component of our algorithm for targeted ex-
traction. For each source Si, it outputs an extraction template τi
corresponding to the input SOD s. We adopt in ObjectRunner
an approach that is similar in style to the ExAlg algorithm
of [1].

A template is inferred from a sample of source pages based
on occurrence vectors for page tokens (words or HTML tags)
and equivalence classes defined by them. An equivalence
class denotes a set of tokens having the same frequency of
occurrences in each input page and a role that is deemed
unique among tokens. For example, the token <div> has three
occurrences in the two first pages and six occurrences in the
third page of our running example, and this would correspond
(initially) to the following vector of occurrences: < 3,3,6 >.
Such descriptions can be seen as equivalence classes for
tokens, and equivalence classes determine the structure that
is inferred from Web pages. Hence determining the roles
and distinguishing between different roles for tokens becomes
crucial in the inference of the implicit schema, and in [1] this
depended on two criteria: the position in the DOM tree of
the page and the position with respect to each equivalence
class that was found at the previous iteration. Consecutive
iterations refine the equivalence classes until a fix-point is
reached, while at each step the invalid classes are discarded
(following the guideline that information, i.e. classes, should
be properly ordered or nested).

How roles and equivalence classes are computed distin-
guishes our approach from [1]. First, we use annotations as
an additional criterion for distinguishing token roles. Second,
besides annotations, the SOD itself fulfills a double role during

the wrapper generation step, as it allows us to: (i) stop the
process as soon as we can conclude that the target SOD
cannot be met (this can occur, as the annotations alone do not
guarantee success), and (ii) accept approximate equivalence
classes outside the ones that might represent to-be-extracted
instances.

As annotations are used to further distinguish token roles,
we observe that it is the combination of equivalence class
structure and annotations that yields the best results. Algo-
rithm 2 sketches how token roles are differentiated.

Algorithm 2 diffTokens
1: differentiate roles using HTML features
2: repeat
3: repeat
4: find equivalence classes (EQs)
5: handle invalid EQs
6: if abort conditions are verified(∗) then
7: stop process
8: end if
9: differentiate roles using EQs + non-conflicting anno-

tations
10: until fixpoint
11: differentiate roles using EQs + conflicting annotations
12: until fixpoint

(∗) Details given in Section III-E.

First, roles of tokens are determined using the HTML format
of the page (line 1): tokens having the same value and the
same path in the DOM will have the same role. Then, more
refined roles of tokens are assigned in the loop, based on
appearance positions in equivalence classes (line 3-10). During
this loop, all invalid equivalence classes are discarded and the
process can be stopped if certain conditions are not verified
(Section III-E).

Using the annotations is an obvious strategy in our context
but, since these annotations are not complete and might even
be conflicting over the set of pages, this strategy needs
to be applied cautiously. We can distinguish two types of
annotations:
• Non-conflicting annotations. A token - identified by

its DOM position and its coordinates with respect to
the existing equivalence classes - has non-conflicting
annotations if each of its occurrences have the same
(unique) type annotation or no annotation at all.

• Conflicting annotations. A token has conflicting annota-
tions if different type annotations have been assigned to
its occurrences.

In the first case, tokens without conflicting annotations are
treated in the loop along with the other criteria (line 9). Once
all equivalences classes are computed in this way, we perform
one additional iteration to find new occurrence vectors and
equivalence classes. The entire process is then repeated until
a fix-point is reached (line 2-12).

Going back to our running example, if annotations are taken
into account, we can detect that the <div> tag occurrences

denoted < div >1, < div >2 and < div >3 have different
roles. By that, we can correctly determine how to extract
the three components of the input SOD. This would not
be possible if only the positions in the HTML tree and in
equivalence classes were taken into account, as the three
<div> occurrences would have the same role. This would
lead for instance to the following (incorrect for our purposes)
extraction result from page P1: (1) Metallica Monday May
11, 8:00pm, (2) Madison Square Garden, (3) 237 West 42nd
street, and (4) 10036.

For further illustration, there are other opportunities where
the annotations can improve the result of the extraction. As
a simple example, consider the Amazon.com fragment of the
list page in Figure 2(a), which shows three book records. A
book can have one or several authors, and they are represented
differently in HTML code. We detail below the corresponding
HTML for the author part of these books b1, b2 and b3:
b1: by <a>Jane Austen and Fiona Stafford
b2: by Hamilton Wright Mabie, Mary Hamilton Frey
b3: by <a>Abraham Verghese

Taking into account only the positions of tokens in equivalence
classes can result in extracting author names as values of
distinct fields of the template. But with the annotation inherited
by the tag we can determine that this field represents
author names and extract its content accordingly.

Finally, while annotations allow us to differentiate the roles
of tokens that are in the same position, for a given position, the
number of consecutive occurrences of tokens can vary from
one page to another. In our running example, the token <div>
had the same number of occurrences in each record, but this
is not always the case. When this happens, we chose to settle
on the minimal number of consecutive occurrences across
pages, and differentiate roles within this scope. Once this is
chosen, we deal with incomplete annotations by generalizing
the most frequent one if beyond a given threshold (0.7 in our
experiments).

Enriching the dictionaries. The discovery of new instances
during the extraction phase from the Web pages also enables
us to enrich our dictionaries. In this regard, we associate con-
fidence score before adding them in the dictionaries based on
confidence score from the wrapper generation step, extracted
instances (I) and existing instances (D):

score(c) = f (wrapper score(c),
∑
D∩I

score(i,c)

count(I)
) (4)

This formula gives more weight either to instances obtained
by a good wrapper (in short, one built with no or very few
conflicting annotations) or to those which have a significant
overlap with the set of existing values in dictionaries. More-
over, we can update the scores on existing dictionary values
after each source is processed.

D. The output template

The input of the template construction step is a hierarchy
of valid equivalence classes {EQ1, . . . ,EQn} computed by

Algorithm 2. Recall that a valid equivalence class is ordered
and any two classes are either nested or non-overlapping. Also
recall that each class is described by separators: for instance,
a tuple type of size k will have a sequence of k+1 separator
strings. Then, the corresponding template τ can be represented
as a similar tree structure, which can be obtained from the
hierarchy of classes by replacing each class by its separators
and the type annotations on them. We call this the annotated
template tree.

tuple-levelset-level

merge

Input SOD Canonical SOD

Fig. 4. Bottom-up matching of the SOD.

EQjEQj

EQiEQi

t
2
t
2

t
1
t
1

t
31
t
31

t
32
t
32

Fig. 5. Annotated template tree.

As an example, consider the template tree in Figure 5,
which should match the input SOD s shown in the left part of
Figure 4, which is composed of (i) two tuple types {t1,{}, t3}
and {t31, t32}, and (ii) a set type {t2} with arbitrary multiplicity.
The root of the template tree covers the entire page, the
first level of the tree corresponds to an equivalence class
EQi described by separator strings and annotations for atomic
types t1, t31, and t32, and the subtree from the second level
corresponds to a class EQ j and is annotated by the atomic
type t2. Each level of the template tree represents a sequence
of ordered equivalence classes, and nesting is introduced by
the set types.

Given the SOD, we want to decide at this point what should
be extracted from the pages. So the task at hand is to identify
in the template tree the region(s) (subtrees) that match the
targeted SOD. Only these will be extracted. For that, for
presentation simplification, we first assume a preliminary step
which transforms the input SOD into a canonical form, which
essentially groups in the same tuple type all the atomic types
that have the same multiplicity. Recall that an SOD can be
formed by unordered tuple types and set types and that leaves
correspond to atomic types.

In short, to put an SOD in its canonical form, any tuple
node will receive as direct children all the atomic-type nodes
that are reachable from it only via tuple nodes (no set nodes).
We illustrate in the rest of Figure 4 this transformation towards
the canonical form: {t31, t32} will be combined with {t1,{} , t3}
and replaced by a new tuple {t1,{} , t31, t32}, as shown in the
canonical SOD in Figure 4.

Matching step. We then do the matching of the canon-
ical SOD with the template tree bottom-up, by a dynamic
programming approach which starting from the leaf classes
bearing type annotations, tries to identify a sub-hierarchy that
matches the entire SOD.

We start with the SOD’s nodes at depth 1 (parents of leaves),
which can correspond to either a tuple-level or a set-level.
In the simplest case, if the SOD has a flat structure then
its tree will have one tuple-level containing all the atomic
types as leaves. These atomic types of the SOD should match
separators that (i) belong to the same equivalence class, and
(ii) have annotations for these types. In the case of a nested
structure, matchings of lower levels are combined.

Over our example, at the end, the separators around the
atomic types {t1, t31, t32} should appear in the same equiva-
lence class and the ones for the set type {t2} should appear
in separate class, nested in the former class.

E. Stopping early the wrapper generation

Having an intentional description of the data to be extracted
allows us also to stop the wrapper generation process, when
one can understand that it will not yield satisfactory results.
We describe in this section how this is done in our system.
We can distinguished two phases where the generation process
could be stopped.

During the annotation phase. The source could be dis-
carded if unsatisfactory annotation levels are obtained. We
have seen previously that for a given SOD, we select a
sample of pages that has a satisfactory rate of annotations.
Our condition for stopping relies on a threshold and works at
the finer granularity of visual blocks in pages. Since different
blocks usually represent different contexts in a page, it is safe
to distinguish annotations appearing in distinct blocks, even
if they represent the same atomic type. For each block, we
check if the following condition holds:

k

∑
i=1

no. o f annotations in block
k

> α

where k is the size of the sample and α is a threshold (50%
in our experiments).

After each annotation round, if we obtain at least one block
that satisfies the given condition, we continue the matching
process for the remaining types. Otherwise the process is
stopped.

During the wrapper generation phase. Recall that the
wrapper inference is mainly based on the discovery of equiv-
alence classes and their matching with the specified SOD. We
have seen in the previous section that the process for wrapper
generation is iterative and it alternates finding EQs, handling
invalid EQs and differentiating token roles. At each iteration,
the process can be stopped if we can conclude that the current
equivalence classes cannot lead to a class hierarchy on which
the SOD would match (see Algorithm 2).

For that, after the step of constructing equivalence classes
and handling the invalid ones, we consider the template
tree corresponding the current (not necessarily final) class

hierarchy. We found that, on this tree, the following property
should always be verified in a potentially successful wrap-
per generation process: there must exist at least one partial
matching of the SOD into the current template tree. In a
partial matching, part of the SOD matches (as described in the
matching step for template construction, Section III-D), while
for each of the missing parts, for each atomic type in them,
there is still some untreated token annotated by that type (this
token might serve as image for a complete match later on).
We test this condition in incremental manner, keeping track of
the current partial matchings and their possible completions to
a full matching.

IV. EXPERIMENTAL EVALUATION

We present in this section the experimental results for
our targeted extraction algorithm. We focus mainly on the
precision of extraction, comparing our results with those of the
two publicly available prototypes for wrapping structured Web
sources, ExAlg and RoadRunner. Regarding time performance,
we mention that once the necessary recognizers are in place,
the wrapping time of our algorithm ranged from 4 to 9
seconds. Once the wrapper is constructed, the time required to
extract the data was negligible for all the tested sources. The
experiments were conducted on a workstation equipped with
a 2.8 GHz CPU and 3GB of RAM.

A. Datasets

The experiments were performed over five different do-
mains: concerts, albums, books, publications and cars.

To avoid bias towards certain source characteristics, we
strived to use in our experiments a selection of Web sources
that is both relevant and as objective as possible. This is
why, as a mean to simulate the step of automatic retrieval of
most relevant sources for each domain, we used the Amazon’s
Mechanical Turk platform. For all domains, except the one
of publications, we asked ten workers to give us a ranked
list of ten browsable Web sources (as opposed to sources
behind query forms) for records from that domain. We then
took the top ten sources appearing in the lists provided by
the workers. An exception was made for concerts, which
had fewer responses and gave us a top five of sources3.
For scientific publications, for which we considered that the
Mechanical Turk approach may be less adequate, we used
instead the complete list of sources cited in the experiments
of [12]. Finally, to the sources chosen in this way, we also
added the ones used in the TurboSyncer [13] wrapping system,
on books, albums and cars respectively.4

Then, the datasets for which we report the extraction results
are those which passed the rendering-based simplification step
discussed in the beginning of Section III. Without going into
further detail on this preliminary step, we mention that in more

3The detailed answers from Mechanical Turk are available on our project
page http://perso.telecom-paristech.fr/∼derouich/datasets/

4We were unable to obtain the prototype implementation or the detailed
results per source from the authors of [13].

TABLE I
EXTRACTION RESULTS

Attributes Objects

Domains Sites Optional Ac Ap Ai No Oc Op Oi

1. zvents (detail) yes 4/4 0/4 0/4 50 50 0 0
2. Concerts zvents (list) yes 4/4 0/4 0/4 150 150 0 0
3. upcoming.yahoo (detail) yes 4/4 0/4 0/4 50 50 0 0
4. upcoming.yahoo (list) yes 3/4 0/4 1/4 250 0 0 250
5. eventful (datail) yes 1/4 2/4 1/4 50 0 0 50
6. eventful (list) no 3/4 0/4 0/4 500 500 0 0
7. eventorb (detail) yes 4/4 0/4 0/4 50 50 0 0
8. eventorb (list) yes 4/4 0/4 0/4 289 289 0 0
9. bandsintown (detail) yes 4/4 0/4 0/4 50 50 0 0

10. amazon yes 4/4 0/4 0/4 600 600 0 0
11. Albums 101cd no 1/4 2/4 0/4 1000 0 1000 0
12. towerrecords yes 4/4 0/4 0/4 1250 1250 0 0
13. walmart yes 3/4 1/4 0/4 2300 0 2300 0
14. cdunivers yes 4/4 0/4 0/4 1700 1700 0 0
15. hmv yes 4/4 0/4 0/4 600 600 0 0
16. play no 3/4 0/4 0/4 1000 1000 0 0
17. sanity yes 4/4 0/4 0/4 2000 2000 0 0
18. secondspin yes 4/4 0/4 0/4 2500 2500 0 0
19. emusic (discarded)

20. amazon yes 4/4 0/4 0/4 600 600 0 0
21. Books bn yes 4/4 0/4 0/4 500 500 0 0
22. buy no 3/4 0/4 0/4 1300 1300 0 0
23. abebooks no 3/4 0/4 0/4 500 500 0 0
24. walmart yes 3/4 0/4 1/4 2300 0 0 2300
25. abc yes 4/4 0/4 0/4 651 651 0 0
26. bookdepository yes 4/4 0/4 0/4 1000 1000 0 0
27. booksamillion yes 4/4 0/4 0/4 1000 1000 0 0
28. bookstore no 2/4 0/4 1/4 730 0 0 730
29. powells no 3/3 0/3 0/3 1000 1000 0 0

30. acm 3/3 0/3 0/3 1000 1000 0 0
31. Publications dblp 3/3 0/3 0/3 500 500 0 0
32. cambridge 3/3 0/3 0/3 230 230 0 0
33. citebase 3/3 0/3 0/3 500 500 0 0
34. citeseer 1/3 2/3 0/3 500 0 500 0
35. DivaPortal 3/3 0/3 0/3 500 500 0 0
36. GoogleScholar 1/3 0/3 2/3 500 0 0 500
37. elseivier 3/3 0/3 0/3 983 983 0 0
38. IngentaConnect 2/3 0/3 1/3 500 0 0 500
39. IowaState 0/3 0/3 3/3 481 0 0 481

40. amazoncars 2/2 0/2 0/2 54 54 0 0
41. Cars automotive 0/2 2/2 0/2 750 0 750 0
42. cars 2/2 0/2 0/2 500 500 0 0
43. carmax 2/2 0/2 0/2 500 500 0 0
44. autonation 2/2 0/2 0/2 500 500 0 0
45. carsshop 2/2 0/2 0/2 500 500 0 0
46. carsdirect 0/2 2/2 0/2 1500 0 1500 0
47. usedcars 2/2 0/2 0/2 1250 1250 0 0
48. autoweb 2/2 0/2 0/2 250 250 0 0
49. autotrader 2/2 0/2 0/2 393 393 0 0

than 80% of the cases our heuristic reduces away the non-
significant segments of the pages.

Dictionary completeness. In practice, we often cannot hope
to have a complete dictionary for isInstanceOf types (e.g., for
book or album titles). Regarding this aspect, the main goal in
our experiments was to show that, when dictionaries ensure
a reasonable covering of the pages content, the extraction
algorithm performs well. To this end, when necessary, we
completed each dictionary in order to have at least 20% of the
instances from a given sources (we also report in the Appendix
A of the extended version [14] the experimental results for
10% dictionary coverage).

For each source, we randomly selected roughly 50 pages.
As the sources we selected propose in general list pages on the
surface, we focused mainly on such pages. In order to illustrate
that our techniques performs well on both types of pages, for
the concert domain, we collected also singleton pages from
each source. The pages selected for each source are produced
by the same template, but we stress that one of the advantages
of our approach is that we can detect when a source is not
relevant or not structured enough and we can discard it without
producing low-quality results.

For each domain, the respective sources were matched with
SODs as follows:

1) Concerts. A concert object is described by a two-level
tree structure. At the first level, it is composed of (i)
three entity (leaf) types, artist and date, and (ii) a tuple
type denoted location. The latter is in turn composed of
two entity types, address and theater name. The address
is considered optional.

2) Albums. An album object is described as a tuple com-
posed of four entity types: title, artist, price and date.
The date is considered optional.

3) Books. A book object is described by a two-level tree
structure. At the first level, we have a tuple composed
of three entity types: title, price, date, and one set type,
authors. The latter denotes a set of instances of the entity
type author. The date is considered optional.

4) Publications. A publication object is described by a
two-level tree structure. At the first level, we have a
tuple composed of two entity types: title, date, and one
set type, authors. The latter denotes a set of instances of
the entity type author. The date is considered optional.

5) Cars. A car object is described by a tuple type composed
of two entity types: car brand and price.

B. Results

The extraction results are summarized in Table I. We report
there on the precision of the template construction step -
i.e., how many components (entity types) of the SOD were
correctly identified in the pages’ structure - based on a sample
of the top 20 annotated pages. For each source we checked
whether the optional attribute was present or not in the source
(we mark this in the table as well). We then quantify precision
using the golden standard test5. We classify results as follows:

Correct attributes (Ac) and objects (Oc). An attribute is
classified as correct if the extracted values for it are correct.
An object is classified as correct if all the extracted attributes
are corrects.

Partially correct attributes (Ap) and objects (Op). An
attribute is classified as partially correct if: (i) the values for
two or several attributes are extracted together (as instances of
the same field in the template) and they are displayed in this
manner in pages (for example, a book title and the author name
may be appear in text as an atomic piece of information), or
(ii) values corresponding to the same entity type of the SOD
are extracted as instances of separate fields (this can occur
in the case of list pages). An object is classified as partially
correct if the extracted attributes are only corrects or partially
correct.

Incorrect attributes Ai and objects Oi. An attribute is clas-
sified as incorrect if the extracted values are incorrect, i.e., they
represent a mix of values corresponding to distinct attributes
of the implicit schema. An object is classified incorrect if there
exists at least one incorrect extracted attribute.

For both attributes and objects, we show in Table I the
proportion of correct, partially-correct or incorrect results.

5We extracted manually objects from each page for comparison.

We use two precision measures to evaluate the quality of
extraction: (i) the precision for correctness (Pc), and (ii) the
precision for partially-correctness (Pp), defined as follows:

Pc =
Oc

No
and Pp =

Oc +Op

No
,

where Oc denotes the total number of correctly extracted
objects, Op denotes the number of partially correct extracted
objects, and No is the total number of objects in the source.
(Note that, in our setting, the recall is equal to the precision
for correctness, since the number of existing objects equals
the number of extracted objects - correct, partially-correct and
incorrect.)

Automatic variation of parameters. Given the SOD and the
annotations on the pages’ content, we were able to automat-
ically estimate the quality of the extraction, by considering
the conflicting annotations appearing on values of the same
attribute. When necessary, we variate the parameters of the
wrapping algorithm and re-execute it. For instance, by variat-
ing the support (minimal number of pages in which a token
should appear, between 3 and 5 pages in our experiments), we
managed to improve significantly the precision on publication
sources (further details can be found in the Appendix B of the
extended version [14]).

1) Sample selection vs. random selection: We analyzed the
difference in extraction precision depending on how is selected
the sample of pages on which the wrapper is built. For that,
we compared the results obtained using the selection approach
described previously with the ones of a baseline approach that
selects the sample in random manner. The results for the two
approaches are summarized in Table II. They support the fact
that a careful selection of the sample, depending on the target
SOD, can significantly improve the end results.

TABLE II
PRECISION DEPENDING ON HOW THE SAMPLE OF PAGES IS SELECTED:

RANDOM VS. SOD-BASED. (%)

Sample selection Random selection

Domains Pc Pp Pc Pp

Concerts 86.10 86.10 61.78 61.78
Albums 74.52 100 69.88 95
Books 68.37 68.37 56.36 62

Publications 65.21 74 65.21 65.21
Cars 75.79 100 75.79 100

2) Comparison with state-of-the-art approaches: We com-
pared the results of ObjectRunner (OR) with two of the most
cited and closely related works, namely ExAlg 6 [1] (EA) and
RoadRunner 7 [2] (RR). (Unfortunately, a prototype of another
state-of-the-art approach, DEPTA [3], is no longer available for
comparison). We report in Table III and Figure 6 the robustness
of our extraction approach, in terms of precision, compared
with the ones of the two existing algorithms.

6The prototype used here was obtained from its authors.
7A prototype implementation is publicly available at

http://www.dia.uniroma3.it/db/roadRunner.

In Table III we report on both precision values for each
domain and source. One can note that ObjectRunner out-
performs RoadRunner by a significant margin (roughly about
60%) in all five domains. We found that RoadRunner fails
mostly on list pages, where most extracted objects are partially
correct (listed values corresponding to the same attributed of
the SOD are extracted separately). Surprisingly, RoadRunner
fails to handle list pages that are “too regular”, when the
number of records in the input pages is constant (this is the
case in our sources for books and publications, about 50%
partially correct). We observe that, overall, ExAlg outperforms
RoadRunner, but for many of the sources the former extracts
several attributes together. The precision results on the two
state-of-the-art system may seem surprisingly low, especially
compared with the ones reported by their authors. But one
should keep in mind here that this occurs in the context
of targeted extraction, where only a (small) fraction of the
information displayed in pages is of interest and is accounted
for in the precision results.

TABLE III
PERFORMANCE RESULTS (%)

OR EA RR

Domains Pc Pp Pc Pp Pc Pp

Concerts 86.10 86.10 45.17 45.17 6.95 72
Albums 74.52 100 69.88 95 17.37 82
Books 68.37 68.37 50.10 62 0 50,10

Publications 65.21 74 34.83 56 0 52.39
Cars 75.79 100 75.79 100 15.28 72

For a clearer view, in Figure 6, we provide two facets
for extraction quality: (i) the rate of correct, partially correct
and incorrect objects that were extracted (depending on the
accuracy of the template that was inferred for each source),
and (ii) the fraction of sources that were incompletely handled
(i.e., with partially correct or incorrect attributes). By the
latter, we compare the three algorithms by their ability to
handle a source correctly. We observe that in all the three
domains OR outperforms EA and RR. Indeed, there are
roughly 20% incompletely handled sources for three of the
domains (concerts, albums and books), 40% for publications
and 10% for cars.

These results are rather encouraging since, in our view, it
is far more important to be able to handle correctly at least
some sources from a given domain than to handle most or all
sources in fair but incomplete (partially) manner. For example,
as Web data tends to be very redundant, the concerts one
can find in the yellowpages.com site (a source that was
initially candidate for our tests) are precisely the ones from
zvents.com.

V. RELATED WORK

The existing works in data extraction from structured Web
pages can be classified according to their automation degree:
manual, supervised, semi-supervised and unsupervised (for a
survey, see [15]). The manual approaches extract only the data

that the user marks explicitly, using either wrapper program-
ming languages, such as the ones proposed in [16], or visual
platforms to construct extraction programs, like Lixto [17].
Supervised approaches use learning techniques, called wrapper
induction, to learn extraction rules from a set of manually
labeled pages (as in WIEN [18], Stalker [19]). A significant
drawback of these approaches is that they cannot scale to a
large number of sites due to significant manual labeling efforts.
Semi-supervised (e.g., OLERA [20], Thresher [21]) arrive
to reduce human intervention by acquiring a rough example
from the user. Some semi-supervised approaches (such as
IEPAD [22]) do not require labeled pages, but find extraction
patterns according to extraction rules chosen by the user.

Unsupervised approaches (automatic extraction systems)
identify the to-be-extracted data using the regularity of the
pages. One important issue is how to distinguish the role of
each page component (token), which could be either a piece
of data or a component in the encoding template. Some, as
a simplifying assumption, consider that every HTML tag is
generated by the template (as in DeLa [23], DEPTA [3]),
which is often not the case in practice. RoadRunner [2]
and G-STM [24], which use an approach based on grammar
inference and schema matching also assume that every HTML
tag is generated by the template, but other string tokens
could be considered as part of the template as well. However,
G-STM [24] integrates more robust method to detect lists
with ability to handle nested lists. In comparison, ExAlg [1]
makes more flexible assumptions, as the template token are
those corresponding to frequently occurring equivalence class.
Moreover, it has the most general approach, as it can handle
optional and alternative parts of pages. TurboSyncer [13] is an
integration system which can incorporate many sources and
uses existing extraction results to better calibrate future ex-
tractions. Other works explore the mutual benefit of annotation
and extraction, learning wrappers based on labeled pages [25],
[12] or domain knowledge for query result records [26].

The key advantage of wrapper induction techniques is that
they extract only the data that the user is interested in. Due
to manual labeling, the matching problem is significantly
simpler. The advantage of automatic extraction is that it is
applicable at large scale, the tradeoff being that it may extract
a large amount of unwanted data. Our approach aims to obtain
the best of both works, by exploiting both the structure and
user-provided semantics in the automatic wrapper generation
process.

Most research works in information extraction from unstruc-
tured source focus on extracting semantic relations between
entities for a set of patterns of interest. This is usually done by
predefined relation types (as in DIPRE [27], KnowItAll [28]),
or by discovering relations automatically (TextRunner [29]).
Other systems in this area, like Yago [9] and DBpedia [30],
extract relation by rule-based harvesting of facts from semi-
structured sources such as Wikipedia.

A preliminary version of the ObjectRunner system, focused
on aspects such as the specification of SODs, the dictionary
build-up and the interrogation interface, was demonstrated

OR EA RR OR EA RR OR EA RR OR EA RR OR EA RR
0

0,2

0,4

0,6

0,8

1

1,2

OR: ObjectRunner EA: ExAlg RR: RoadRunner

Correct SODs Partially SODs Incorrects SODs

Extraction algorithms

O
bj

ec
ts

 c
la

ss
ifi

ca
tio

n
ra

te

BooksAlbumsConcerts Publications Cars

(a) Objects classification

OR EA RR OR EA RR OR EA RR OR EA RR OR EA RR
0

0,2

0,4

0,6

0,8

1

1,2

OR: ObjectRunner EA: ExAlg RR: RoadRunner
Extraction algorithms

R
at

e
of

 in
co

m
pl

et
ly

 m
an

ag
ed

 s
ou

rc
es

BooksAlbumsConcerts Publications Cars

(b) Incompletely managed sources

Fig. 6. ObjectRunner comparison

recently in [31].

VI. CONCLUSION

This paper proposes an alternative approach to automatic
information extraction and integration from structured Web
pages. To the best of our knowledge, it is the first to advocate
and evaluate the advantages of a two-phase querying of the
Web, in which an intentional description of the target data
is provided before the extraction phase. More precisely, the
user specifies a Structured Object Description, which models
the objects that should be harvested from HTML pages. This
process is domain-independent, in the sense that it applies
to any relation, either flat or nested, describing real-world
items. Also, it does not require any manual labeling or training
examples. The interest of having a specified extraction target is
twofold: (i) the quality of the extracted data can be improved,
and (ii) unnecessary processing is avoided.

We validate through extensive experiments the quality of
extraction results, by comparison with two of the most refer-
enced systems for automatic wrapper inference. By leveraging
both the input description (for five different domains) and
the source structure, our system harvests more real-world
items, with fewer errors. Our results are rendered even more
relevant by the fact we did not manually select the sources
that were tested. These were provided to us by independent
users (Mechanical Turk workers), as the most relevant ones
for each domain.

Besides the extraction tasks, there are other exciting
research problems we are currently investigating in the
ObjectRunner system. We are currently studying techniques
for discovering, processing and indexing structured Web sour-
ces (they were simulated by Mechanical Turk tasks for the
purposes of this paper). Also, given an input SOD, we would
like to be able to automatically select the most relevant and
data rich sources. We are also considering the possibility of
specifying atomic types by giving only some (few) instances.
These will then be used by the system to interact with YAGO
and to find the more appropriate concepts and instances (in
the style of Google sets).

REFERENCES

[1] A. Arasu and H. Garcia-Molina, “Extracting structured data from web pages,” in
SIGMOD Conference, 2003.

[2] V. Crescenzi, G. Mecca, and P. Merialdo, “RoadRunner: Towards automatic data
extraction from large web sites,” in VLDB, 2001.

[3] Y. Zhai and B. Liu, “Web data extraction based on partial tree alignment,” in WWW,
2005.

[4] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotating and searching web tables
using entities, types and relationships,” PVLDB, vol. 3, no. 1, 2010.

[5] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley,
1995.

[6] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Extracting content structure for web
pages based on visual representation,” in APWeb, 2003.

[7] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully automatic wrapper
generation for search engines,” ser. WWW, 2005.

[8] JTidy, http://jtidy.sourceforge.net.
[9] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowl-

edge,” in WWW, 2007.
[10] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” in

COLING, 1992.
[11] L. McDowell and M. J. Cafarella, “Ontology-driven, unsupervised instance popu-

lation,” J. Web Sem., 2008.
[12] P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and M. Tommasi, “Automatic

wrapper induction from hidden-web sources with domain knowledge,” in WIDM,
2008.

[13] S.-L. Chuang, K. C.-C. Chang, and C. Zhai, “Context-aware wrapping: Synchro-
nized data extraction,” in VLDB, 2007.

[14] http://biblio.telecom-paristech.fr/cgi-bin/download.cgi?id=11912.
[15] M. Kayed and K. F. Shaalan, “A survey of web information extraction systems,”

IEEE TKDE, 2006.
[16] S. Soderland, “Learning information extraction rules for semi-structured and free

text,” Machine Learning, 1999.
[17] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca, “The Lixto data

extraction project - back and forth between theory and practice,” in PODS, 2004.
[18] N. Kushmerick, D. S. Weld, and R. B. Doorenbos, “Wrapper induction for

information extraction,” in IJCAI, 1997.
[19] I. Muslea, S. Minton, and C. A. Knoblock, “A hierarchical approach to wrapper

induction,” in Agents, 1999.
[20] C.-H. Chang and S.-C. Kuo, “OLERA: Semisupervised web-data extraction with

visual support,” IEEE Intelligent Systems, 2004.
[21] A. Hogue and D. R. Karger, “Thresher: automating the unwrapping of semantic

content from the world wide web,” in WWW, 2005.
[22] C.-H. Chang and S.-C. Lui, “IEPAD: information extraction based on pattern

discovery,” in WWW, 2001.
[23] J. Wang and F. H. Lochovsky, “Data extraction and label assignment for web

databases,” in WWW, 2003.
[24] N. Jindal and B. Liu, “A generalized tree matching algorithm considering nested

lists for web data extraction,” in SDM, 2010.
[25] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma, “Simultaneous record detection

and attribute labeling in web data extraction,” in KDD, 2006.
[26] W. Su, J. Wang, and F. H. Lochovsky, “Ode: Ontology-assisted data extraction,”

ACM Trans. Database Syst., 2009.
[27] S. Brin, “Extracting patterns and relations from the world wide web,” in WebDB,

1998.
[28] M. J. Cafarella, D. Downey, S. Soderland, and O. Etzioni, “KnowItNow: fast,

scalable information extraction from the web,” in HLT Conference, 2005.
[29] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, “Open

information extraction from the web,” in IJCAI, 2007.
[30] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives,

“DBpedia: A nucleus for a web of open data,” in ISWC/ASWC, 2007.
[31] T. Abdessalem, B. Cautis, and N. Derouiche, “ObjectRunner: Lightweight, targeted

extraction and querying of structured web data,” PVLDB, vol. 3, no. 2, 2010.

