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Abstract

Fitts’ law is an empirical rule of thumb which predicts the time it takes people, under time pressure, to reach with some
pointer a target of width W located at a distance D. It has been traditionally assumed that the predictor of movement time
must be some mathematical transform of the quotient of D/W, called the index of difficulty (ID) of the movement task. We
ask about the scale of measurement involved in this independent variable. We show that because there is no such thing as a
zero-difficulty movement, the IDs of the literature run on non-ratio scales of measurement. One notable consequence is
that, contrary to a widespread belief, the value of the y-intercept of Fitts’ law is uninterpretable. To improve the traditional
Fitts paradigm, we suggest grounding difficulty on relative target tolerance W/D, which has a physical zero, unlike relative
target distance D/W. If no one can explain what is meant by a zero-difficulty movement task, everyone can understand what
is meant by a target layout whose relative tolerance W/D is zero, and hence whose relative intolerance 1–W/D is 1 or 100%.
We use the data of Fitts’ famous tapping experiment to illustrate these points. Beyond the scale of measurement issue,
there is reason to doubt that task difficulty is the right object to try to measure in basic research on Fitts’ law, target layout
manipulations having never provided users of the traditional Fitts paradigm with satisfactory control over the variations of
the speed and accuracy of movements. We advocate the trade-off paradigm, a recently proposed alternative, which is
immune to this criticism.
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1. Introduction: Fitts’ law and the Difficulty of
Simple Aimed Movement

Fitts’ law is a well-known rule of thumb of experimental

psychology discovered by Fitts [1] half a century ago. Celebrated

as a remarkably robust empirical regularity, the law states the time

it takes people, under time pressure, to reach with some pointer a

target of width W located at a distance D. The duration of aimed

movement, Fitts’ law says, is linearly dependent on the difficulty of

the required movement, quantified by an index of difficulty (ID):

mT~k1zk2
:ID, ð1Þ

where mT denotes mean movement time, k1 and k2 standing for

adjustable constants (k2.0). The ID, which has received various

definitions in the literature, is always assumed to be dependent on

the ratio of target distance D and target width W:

ID~f (D=W ), ð2Þ

where f denotes a strictly increasing function.

Since Fitts [1] there has been agreement in the literature that

Fitts’ law is of the general form shown in Eqs. 1–2. Note that there

is more to these formulas than just a writing convention. The

established norm for the formulation of Fitts’ law reflects an

established norm for the experimental approach to the subject. In

what we will call the Fitts paradigm, experimenters measure

movement time, a random dependent variable, while systemati-

cally varying the target layout by manipulating target distance D

and target tolerance W. In other words, the index of difficulty over

which experimenters have control in the laboratory (Eq. 2) is

assumed to determine movement time (Eq. 1).

Thus in the classic Fitts paradigm causality is assumed to flow

from right to left across the equal signs of Eqs. 1 and 2. To make

this quite explicit, we might have written the above equations as

mTZk1zk2
:ID ð19Þ

IDZf (D=W ), ð29Þ

using the symbol Z to denote an asymmetrical causal relation.

The present paper focuses on the Fitts paradigm. However, it

will be recalled below that other approaches are possible. We will

mention two alternative paradigms. One is the well-known

Schmidt paradigm [2], which groups the variables of Eqs. 1 and

2 differently, yielding an asymmetrical (causal) dependency of

variable error upon the average speed of the movement. The other

is the trade-off paradigm recently explored by Guiard, Olafsdottir,

and Perrault [3], which construes Fitts’ law as a symmetrical

(mutual) trade-off between two random variables.
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Much of Fitts’ law literature rests on the so-called reciprocal task

protocol that Fitts himself introduced in his seminal 1954 paper. In the

reciprocal (or serial) protocol the participant’s task is to alternatively

reach two targets, trying to make as many hits as possible in a given

lapse of time. But an alternative option is the discrete-movement

protocol introduced by Fitts and Peterson [4], in which the participant

are to make single-shot movements. The discrete protocol is

conceptually simplest and, as noticed by Fitts and Peterson [4], it

allows more rigorous control over the variables of interest than is

possible with the reciprocal protocol. Whereas in the reciprocal

protocol mT is the time it takes not only to carry out a movement, but

also to evaluate the error inherited from the previous movement and

to prepare the next, in the discrete protocol mT measures the duration

of a pure movement-execution process. Furthermore the meaning of

the movement’s endpoint spread is interpretable more safely in the

discrete case, that variability being generated just by the execution of

the movement, whereas in the reciprocal case the spread also reflects,

to some unknown extent, the variability of the start point [4,5]. Below

it is the discrete protocol, more suitable for basic research

investigations, that will be considered by default.

The subject of the present paper is the measurement of the

difficulty of aimed movement within the framework of the Fitts

paradigm. This is a theoretical subject in the sense that it requires

the discussion of abstract concepts. However, we wish to make it

explicit from the outset that we will not depart from an agnostic

stance with regard to the explanation of Fitts’ law. Why Eq. 1

generally holds—a question for the substantive (causal, composi-

tional) theory, to use Meehl’ [6] terms—has been a permanent

concern in Fitts’ law research, and many proposals have been

published [1,2,7,8,9,10,11,12]. Had the substantive theory been the

subject of the present paper, we would have discussed the bridges

that link the quantities of Eqs. 1–2 to theoretical entities. But our

main subject is measurement, and so we will look in the opposite

direction. We will ask instead how these quantities, identified as

numbers, map downwards onto the physical, real-world quantities

that experimenters concretely manipulate and record in the

laboratory, rather than upwards onto theoretical entities.

Consider the fractional expression D/W of Eq. 2. This

mathematical expression stands simultaneously for two things that

empirical scientists, as distinct from pure mathematicians, need to

carefully distinguish—an abstract number and a concrete physical

variable. For a Fitts’ law experimenter, D/W does indeed denote a

number that varies from zero to infinity, but it also denotes a

variable to be manipulated in the laboratory. The problem, as we

will see in Section 4, is that the manipulation in question is

undoable in practice outside of a rather narrow range: D/W,3 or

so is impossible due to the saturation of movement speed, while

D/W.50 or so is impossible due to the saturation of movement

accuracy. Thus, the constraints that affect D/W qua a number and

D/W qua a physical variable are quite different, justifying the

numerical/physical distinction crucial to the next section.

2. Scales of Measurement: The True-Zero Issue

Using S.S. Stevens’ [13] words, measurement is the process of

assigning numerals to objects or events according to certain rules.

At issue in this article is the correspondence between the IDs of

Fitts’ law, which are numerical quantities, and the concrete

operational quantities they refer to.

A quick reminder of the main four levels of measurement

distinguished by Stevens’ classic theory of scale of measurement

[13] may be useful.

(1) The lowest level, designated as nominal (or categorical),

corresponds to the mere classification of objects that can be

sorted but not ranked. For example, in his 1954 study Fitts

used three different tasks. Task was a nominal variable, whose

modalities were stylus tapping, disc transfer, and pin transfer.

(2) Then comes the ordinal level of measurement (e.g., cool, warm,

and hot) where the variable has levels that obey a transitive-

asymmetry rule (if warm.cool and hot.warm, then

hot.cool), so that there is only one correct order. Notice

that up to this level inclusively nothing is being said about the

spacing of the various modalities or levels of the variable.

(3) The third level of measurement is that using an equal-interval

scale. One example is temperature on the Cu scale, where the

difference between 1u and 2u is the same as between 2u and

3u, 11u and 12u, etc. One has a unit and hence a metric, but

where the origin or zero of this metric falls is an arbitrary

convention (ice melting).

(4) The highest level of measurement is that involving a ratio scale.

That most-severely constrained kind of measurement enjoys all

the properties of the first three (i.e., its levels are sorted, ranked,

and equally spaced) but in addition it has the special property of

a non-arbitrary zero. The classic example is temperature as

measured on the absolute or Kelvin scale. Not only does the

Kelvin scale involve equal intervals, but its zero corresponds to

a physical stop—disappearance of vibratory motion at the

atomic level. More familiar examples are time duration and

spatial distance, of central relevance here.

With regard to scale of measurement, the dependent variable of

Fitts’ law, movement time, is not an issue. There is little risk saying

that mean movement time mT has a true zero and runs on a ratio

scale of measurement. In contrast, it has been unclear so far

whether or not this is also true of the quotient of D/W, the basic

predictor of movement time in the Fitts paradigm.

3. Quantifying Task Difficulty in Fitts’ law
Equations

3.1. Mathematical Models
A number of different definitions of the index of difficulty (ID)

have been proposed in the literature (for example, Plamondon &

Alimi [9] list a dozen formulas). Here are four well-known

instances:

ID~log2(2D=W ) Fitts 1954ð Þ ð3Þ

[1]

ID~log2(D=W ) Crossman 1956ð Þ ð4Þ

[14]

ID~log2(D=Wz1) MacKenzie 1992ð Þ ð5Þ

[15]

ID~(D=W )
1=2: Meyer et al: 1988ð Þ ð6Þ

[10]

Fitts [1] was the first to offer a clear quantitative index of the

difficulty of aimed movements. In his seminal 1954 paper, he

argued from information-theoretic considerations that the ID

should be computed as log2(2D/W). Since 1954 most psychologists

have been using Fitts’ definition of difficulty in Fitts’ law

[1]

[14]

[15]

[10]
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experiments [16], even though they have forgotten the binary digit

unit of his ID [17]. The Crossman variant shown in Eq. 4 was

derived from a control theory analysis [7,18]. MacKenzie

[15] offered ID = log2 (D/W+1) as an improvement over Fitts’

derivation of the ID from Theorem 17 of Shannon [19]. Currently

MacKenzie’s ID, known as the Shannon ID, is widely accepted in

the field of human-computer interaction (HCI), where most

research on Fitts’ law happens to have taken place over the last

three decades [20]. The ID of Eq. 6 was derived mathematically

by Meyer et al. [10] from an explanatory theory of Fitts’ law that

has been remarkably influential, the stochastic optimized sub-

movement model.

The above four equations define the ID as a strictly increasing

function of D/W (Eq. 2). Also invariant among these and other Fitts’

law equations is the assumption that movement time must vary linearly

with the ID (Eq. 1). Combining Eqs. 1 and 2, we may express the law as

mT~k1zk2
:f (D=W ) ð7Þ

with k2.0. But the composition of two strictly increasing functions

yields a strictly increasing function, and so Fitts’ law is a relation of the

form

mT~f (D=W ), The Fitts paradigm ð8Þ

where f denotes a strictly increasing function.

3.2. Experimental Paradigms
Eq. 8 makes it clear that Fitts’ law involves three basic

ingredients, a time measure mT and two length measures D and W.

The dependent variable mT is the mean of a random variable while

on the right-hand side of the equal sign D and W are determinist

quantities assumed to be manipulated by experimenters. But this is

one of several possibilities. Eq. 8 characterizes the most popular

paradigm inherited from Fitts, but as already noted we also have

the Schmidt paradigm [2], where mT and W swap their roles.

Movement time becomes a quasi-deterministic, experimentally

manipulated quantity while W, called ‘‘effective tolerance’’ by

Schmidt et al., is the standard deviation of a random variable,

movement amplitude. Using the same notation rule as above, the

Schmidt paradigm Fitts’ law is a relation of the form

sA~f (A=T), The Schmidt paradigm ð9Þ

where sA denotes variable error, or the standard deviation of

movement amplitude, while A and T denote the experimentally-

controlled spatial and temporal extents of the movement, both

quasi-deterministic variables. Here again f stands for a strictly

increasing function.

(In the discrete protocol, which uses a fixed identified start point

x0, movement amplitude A = xf2x0 and movement endpoint error

E = xf2D share the same standard deviation sA =sE, meaning

that either is a possible definition of variable error (VE). We prefer

the former definition VE =sA, with which relative variable error

takes the form of a regular coefficient of variation sA/mA. Note

that in the reciprocal protocol the equality sA =sE is not true.)

Another variation is the trade-off paradigm recently proposed by

Guiard et al. [3], which involves two random variables, one on

each side of the equal sign:

mA~f (sA=mA): The time=error trade-off paradigm ð10Þ

Eq. 10 assumes a symmetrical relation between two stochastic

quantities. Unlike Eqs. 8 and 9, this equation does not exhibit a

dependent variable on one side and a predictor on the other.

Rather, its two sides are assumed to trade for each other and hence

to predict each other, a relation which we might have noted

mTLJ(sA/mA).

Eqs. 8–10 identify three distinct paradigms of Fitts’ law research,

not just three ways of formulating Fitts’ law, but really three

different experimental approaches to the problem of simple aimed

movement. We see now that the task difficulty issue concerns not

Fitts’ law in general, but quite specifically the Fitts paradigm

summarized by Eq. 8. The task difficulty concept is involved in

neither the Schmidt paradigm, which considers variable error and

movement speed, nor the time/error trade-off paradigm, which

considers movement time and relative variable error.

In fact, awareness that the problem of simple aimed movement

can be tackled with the alternative approaches of Eqs. 9 and 10

helps realize that there is something subtly misleading in the

familiar assumption that the ID captures task difficulty. There is no

question that a lower ID demands less accuracy. This, however,

does not mean that the required movement should be less difficult.

Fitts task instructions asking participants to move as fast as they

can, given the tolerance, the net difficulty of the movement task

must be assumed to be constant across all ID values. Thus what the

traditional Fitts paradigm calls ‘‘task difficulty’’ only takes account

of the accuracy component of the movement task. It is useful to

bear in mind that a lower-ID task is in fact no less ‘difficult’—it just

requires of participants a different balance of effort between speed

and accuracy.

3.3. A Single Independent Variable in Fitts’ Law
Every known variation of Fitts’ law, including those delivered by

the non-standard paradigms of Eqs. 9 and 10, involves the three

basic measures singled out in Eqs. 8–10, namely, a time measure

(T or mT) and two length measures relating to movement

amplitude (D or mA) and movement endpoint variability (W or

sA). At this point one should realize that whenever a fractional

expression like D/W, A/T, or sA/mA appears in a Fitts’ law

formula, one faces uncertainty as to the number of physical variables

that the fractional expression is supposed to stand for, as recently

emphasized by Guiard [21].

Fitts’ law students, who are empirical scientists rather than pure

mathematicians, need to care about how the abstract symbols of

their models relate to the concrete variables they measure and

manipulate in the laboratory. Taking the example of Eq. 8, of

special interest in this article, they should be concerned that the

conventional mathematical notation D/W is ambiguous. D/W

may be taken to denote two numbers, the operands of a (doable)

division. In this reading of the equation, of the form mT = f (D,W),

two independent variables offer themselves for manipulation in the

laboratory, target distance and target tolerance, each of which has

the physical dimension of length. But alternatively D/W may be

taken to denote a single number, the quotient of the (done)

division. The equation being now of the form mT = f(QD/W), where

Q denotes a quotient, a single number is left on the right-hand side

of the equation. This is an invitation to manipulate a single

independent variable, namely relative target distance, which is

physically dimensionless. The two options are equally sensible, but

they logically cannot be hybridized [21].

Failure to recognize this has led to logical dead ends. For

example Meyer et al. [10] used the classic paradigm to try to

evaluate experimentally not only the effect of the ID, dependent on

the quotient of D/W, but also the effects of both the numerator D

and the denominator W. The problem with this analysis is that it

involved one too much experimental factor, as only two variables

can be independently manipulated on the right-hand side of Eq. 8:

Movement Difficulty Measurement
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either the quotient of D/W and scale (e.g., D but not W, or W but

not D) or, in an alternative approach, target distance D and target

width W, in which case one must forget about the quotient [21].

Since so far most authors of the literature have assumed Fitts’

law to be the dependency of mT upon the quotient QD/W, a correct

tacit assumption [21], from now on this paper will assume that the

expression D/W of Eq. 8 does indeed stand for a single number

and refers to a single physical quantity. In the Fitts paradigm of

Eq. 8, the experimental variable expressed by the quotient of D/W

is relative target distance, that is, target distance expressed in units of—

or scaled to—target tolerance. In the Schmidt paradigm of Eq. 9,

the quotient of A/T measures the average speed of the movement. In

the tradeoff paradigm of Eq. 10, the quotient of sA/mA measures

the movement’s relative variable error. The equations being

recognized to display a single number on their right-hand side,

we may say that, in general, Fitts’ law is a relation of the form

y~f (x), ð11Þ

where f denotes some strictly increasing function representing

either an asymmetric determination relation as in Eqs. 8 and 9, or

a mutual influence relation as in Eq. 10.

The merit of Eq. 11, which flatly ignores all the specifics of Fitts’

law, is to make it explicit that Fitts’ law equations, no matter the

paradigm, involve no more than one physical measure on each side

of the equal sign. This is the case of Eq. 8, which characterizes the

Fitts paradigm on which we focus below. The issue being the

metric of difficulty, we will ask how one number, the quotient of

D/W, maps onto a certain dimensionless physical quantity, which

we call relative target distance.

4. Manipulating Task Difficulty in the Real World

Our purpose in this section is to show that the range over which

the ID can be manipulated in actual practice by experimenters is

very narrow, and to explain why.

4.1. Geometrical Limits of Target-Tolerance Manipulation
An ID is not just a number, it is a measure in the sense that it

involves both a numerical and a physical continuum. A certain

mathematically transformed quotient, the ID, serves to quantify a

certain relational property of the target layout.

The ingredients from which IDs are computed are two simple

collinear lengths, D and W. Compare the difficulty of a Fitts task

with the temperature of a piece of matter, a classic example of

metrology. Temperature is both a numerical quantity and a

physical quantity and to ask about the metric of temperature is to

ask how the former maps onto the latter, but notice that it is rather

hard to represent rigorously the physical facet of temperature.

Inquiring into the metric of task difficulty is easier because the

correspondence one must examine is between a numerical

continuum and a geometrical continuum easy to represent

graphically.

To begin with, consider the permitted ranges of variation of the

two basic lengths D and W. The very simple aiming task which has

served since Fitts to establish Fitts’ law is strictly one-dimensional,

the dimension being typically spatial. (The continuum need not be

spatial, however, as noted by Fitts [1] (his Footnote 4); for

example, Fitts’ law is known to hold with isometric force [20], and

it could be studied along the continuum of musical pitch [21].) The

task is to move some pointer (e.g., a screen cursor) in as little time

as possible from a fixed start point x0 to a specified target interval

delimited by a minimum and a maximum, as shown in Figure 1.

The pointer must reach a final position xf such that xmin#xf#xmax.

On the continuum the three points x0, xmin, and xmax determine

two lengths, which the literature conventionally defines as the

distance D from the start point to target center and target width

W. Task difficulty is manipulated by varying the arrangement of

the three points along the continuum. It is intuitively obvious that,

all other things being constant, aiming difficulty will increase as D

is increased and/or W decreased.

Let us ask about the boundaries of the manipulation of D and

W. Figure 2 shows that, no matter the value of D, experimenters

may reduce W as much as they like, down to W = 0, where xmax

and xmin merge. Although the zero-tolerance case cannot be

realized exactly in the laboratory, it can be very nearly approached,

as was the case for example in the Schmidt et al. study [2].

Suppose that on a screen display the three points are marked along

the x axis with three 1-pixel thick vertical lines. The zero-tolerance

condition will obtain when the xmin and the xmax lines appear at

the same abscissa. In such a case the tolerance W = xmax2xmin will

be exactly zero pixel, although the real tolerance will be in fact

slightly above zero, actually equal to pixel size. Thus it is fair to say

that target tolerance in the Fitts paradigm has a true zero—i.e., a

physical zero that is both well defined conceptually and

approachable in practice.

In contrast, experimenters cannot reduce D down to zero. Since

in the paradigm target distance serves to specify the desired

amplitude of the movement, the case D = 0 makes no sense in

principle, simply because a zero-amplitude movement is not a

movement. In fact, as visible in Figure 3, any aimed-movement

task with D#KW is problematic because the task requirement (to

reiterate, that xf be such that xmin#xf#xmax) would be satisfied

from the outset, allowing participants to legitimately ask why they

should move at all.

The above definition of an aiming task might be judged

incomplete. Experimenters often add to their task instructions the

special recommendation to aim to target center (to our knowledge

this procedural detail is quite common in Fitts’ law experimen-

tation, but it is an informal detail that most authors omit to

mention in their reports). This means that a target layout with

D,W/2 might possibly make sense, geometrically. But this is of

little importance because, for reasons which we will see in the next

section, that case is of no utility whatsoever in practice. It may be

firmly concluded that target distance D, unlike target tolerance W,

cannot be cancelled out in the Fitts paradigm of Eq. 8.

Since in Fitts’ law the predictor of mT is a dimensionless

quotient, it is useful to reformulate the above in terms of relative

quantities. For the discrete movement protocol, the practicable

range of relative target distance D/W is ]K;+‘[ and the range of

relative target tolerance W/D is ]0;2[. We will see in Section 5.1

that with the reciprocal protocol the range of W/D is even smaller,

being halved.

Any relative layout of the three points that serve to specify a

Fitts task is uniquely specified, independently of scale, by either D/

W or W/D. Note that from now on we will use by default the latter

description, if only because the range is more convenient.

Figure 1. The two basic collinear lengths of the Fitts paradigm.
doi:10.1371/journal.pone.0024389.g001
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4.2. Human Performance Constraints
Thus far we have considered the range of difficulty that is

geometrically available in the Fitts paradigm. But the performance

limitations of people further impose their tough constraints on

experimenters, who in practice investigate only a small subset of

this range.

Table 1 shows the minima and the maxima of relative target

tolerance W/D reported in a sample of Fitts’ law studies,

separating the discrete and the reciprocal protocol. The values

are similar in the two groups. In either protocol, experimenters use

but a small portion of the geometrically available range of relative

tolerance, the common practice being to manipulate relative target

tolerance from about W/D = 0.02 or 2% to about 1/3 or 33%.

Figure 4 illustrates graphically, in the discrete-movement case,

the approximate location and extent of the subset of W/D values

that is commonly used in Fitts’ law experimentation. Two facts

which to our knowledge have escaped attention so far are clearly

visible. First, the range covers hardly 20% of what is geometrically

doable in the laboratory. Second, it is located at the extreme right

of the geometrical available range, nearly touching the absolute

zero of relative tolerance.

It is easy to understand in light of performance data why in Fitts’

law experimentation the value of relative tolerance W/D can be

neither much less than 2% nor much more than 1/3. Consider the

2% minimum first. Figure 5 uses the data of Fitts and Peterson [4]

to illustrate the well-know fact that the frequency of target misses

increases at a positively accelerated rate as task difficulty is raised.

The fact is problematic since the Fitts paradigm requires by

construction a constant error rate—a fixed 4%, according to

MacKenzie [15]. Given the concave-up curvature of error curves,

best modeled by power functions, the closer an experimenter

ventures to the zero of tolerance that stands at the extreme right of

Figure 5, the stronger the likely violation of instructions regarding

error rates.

Why, on the other hand, experimenters typically refrain from

investigating W/D.1/3 can also be explained in terms of

performance constraints (Figure 6). Since the Fitts paradigm

requires participants to move as fast as possible for a given level of

geometrical difficulty, every reduction in the accuracy demand

entails an increase in the speed demand—the ‘‘easier’’ the task

according to the ID criterion, the harder it actually is in terms of its

mechanical energy cost [3,39]. But the speed of an arm movement

has an upper limit and therefore were task difficulty indefinitely

reduced, sooner or later experimenters would face a speed-

saturation effect. This effect can be anticipated in the example of

Figure 6, where all curves, best modeled by logarithmic functions,

exhibit highly consistent concave-down curvature. Recalling that

the kinetic-energy cost of movements must increase with the

square of their speed, it is not too risky to predict, by extrapolating

the curves to the left, a leveling off of average movement speed

somewhere beyond W/D = 1/3. Fitts’ law is undoubtedly doomed

to failure in the region situated on the left of the commonly

investigated range. At a given scale level, at the point where the

average speed of the movement saturates, becoming insensitive to

any further increase of relative tolerance, out of necessity

movement time will become insensitive to task difficulty (i.e., mA

remaining about equal to D, a constant, the ceiling effect on mA/mT

implies a floor effect on mT).

In sum, if the task geometry allows relative target tolerance W/

D to be manipulated in the ]0;2[ range, in practice the range

experimenters can use is actually much narrower. Due to accuracy

limitations, relative target tolerance W/D cannot be investigated

much below 2%. Due to speed limitations, W/D cannot be

investigated much above 1/3.

5. The Metric of Task Difficulty

5.1. The Mapping of Numerical IDs onto the Task
Geometry

Figure 7 shows how the four IDs of Eqs. 3–6 (upper panel) map

onto the quotient from which they are computed, expressed both

as relative target tolerance W/D and relative target distance D/W

(middle panel), as well as onto the task geometry (lower panel).

Illustrated is the whole geometrically available range of difficulty.

As visible in the lower panel, the leftmost limit is W/D = 2, where

the target begins to absorb the start point (no task, we argued, can

be easier than that); the rightmost limit is W/D = 0, where the

tolerance zeroes out (no task can be more difficult than that); right

in the middle we have D = W.

We may now address the question crucial to our scale of

measurement enquiry. What happens to the physical quantity of

interest at the point where its numerical measure becomes zero? In

the case of absolute temperature, physicists have a firm rationale

for assuming that zero Kelvin corresponds to absolute freezing—at

that limit atoms are assumed to no longer vibrate. Unfortunately,

the picture is much less satisfying when it comes to the zero of task

difficulty.

Numerically speaking, two of our four IDs, the Shannon ID (Eq.

5) and the Meyer et al. ID (Eq. 6), never zero out, as this would

demand an infinite value of W/D. For example, were W 100 times

larger than D in a Fitts’ task, a rather absurd supposition, these two

IDs would be 0.014 and 0.005, respectively.

The other two IDs do zero out, but not at the location where we

would like them to. Figure 7 shows that the Fitts ID (Eq. 3) reaches

its zero at the leftmost point where the target begins to absorb the

start point (xmin = x0). This, as we said, may be viewed as a

geometrical limit of practicability of the paradigm but it is

emphatically not a zero of difficulty. To call this point a zero of

difficulty would be to confuse the disappearance of the object of

interest—the aiming task—with the cancelling out of the object’s

attribute that we want to measure—its difficulty. To use the

absolute temperature comparison again, a piece of matter is not

supposed to disappear at the point where its atoms will cease to

vibrate.

Finally, the Crossman ID (Eq. 4) zeroes out at D/W = 1,

obviously not a zero of difficulty.

Figure 2. The true zero of tolerance.
doi:10.1371/journal.pone.0024389.g002

Figure 3. The geometrical minimum of target distance D = KW.
doi:10.1371/journal.pone.0024389.g003
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In fact Figure 7 makes it clear that the Fitts paradigm of Eq. 8

simply does not allow the definition of a true, non-arbitrary zero of

relative target distance D/W. The quotient of D/W, the basic

predictor or movement time in the paradigm, therefore runs on a

non-ratio (equal-interval) scale of measurement. And that

conclusion extends of course to all IDs, as no mathematical

transform of a given physical quantity can provide that quantity

with a physical zero, if it lacks one.

At the rightmost limit of Figure 7 the quotient of D/W as well as

the IDs that are computed from it become infinite, but at that

point we do have a certain physical quantity that zeroes out, and

this is target tolerance W. While it is impossible in the laboratory

to realize D = 0 with W.0, hence D/W = 0, the lower panel of the

figure shows that it is perfectly possible to very closely approach

W = 0 with D.0, hence W/D = 0. Relative target tolerance W/D

has a true physical zero, a feature that the whole variety of IDs

proposed in the literature fail to exploit.

In Figure 7 the approximate practical minimum of difficulty W/

D = 1/3 is marked by a dotted line: all the task conditions that are

actually investigated in Fitts’ law experimentation fall on the right

of that line. Figure 8 offers a zoomed-in view of this all-important

region of the continuum of relative tolerance, focusing on the

2%–33% range. Within the short range of relative tolerance that

experimenters can manipulate, the four IDs respond rather

similarly to variations of the task geometry, even though there is

more curvature with the power ID of Meyer et al. than with the

three logarithmic IDs. While in the preceding figure, which

considered the complete range of geometrically permissible

tolerances, we had distinctively different curves, now it is apparent

that within the narrow interval that can be investigated all

candidate IDs correlate rather strongly with one another. If the

correlation is obviously r = +1 between the Crossman and the Fitts

IDs, which vary in parallel, the lowest correlation, obtained

between the Crossman or the Fitts ID and the Meyer ID, is no less

than r = +.98. This helps understand why it is generally hard to

decide, in the presence of more or less noisy data, which model fits

best.

5.2. Arbitrariness of the y-Intercept of Fitts’ Law
We have reached the conclusion that the ID, the predictor of

Fitts’ law in the standard Fitts paradigm, runs on a non-ratio

(equal-interval) scale of measurement. This observation casts light

Table 1. Minima and maxima of relative tolerance in a sample of Fitts’ law studies (*).

Relative target tolerance W/D % utilization of geometrically

Discrete protocol MIN MAX available range W/D = ]0;2[

Fitts & Peterson (1964) [4] 0.010 0.333 16.1%

Kerr & Langolf (1977) [22] 0.013 0.250 11.9%

Jagacinski & Monk (1985) – Joystick [23] 0.040 0.376 16.8%

Jagacinski & Monk (1985) – Helmet [23] 0.053 0.499 22.3%

MacKenzie et al. (1987) [24] 0.011 0.333 16.1%

Andres & Hartung (1989) [25] 0.043 0.500 22.9%

Mohagheghi & Anson (2001) [26] 0.028 1.489 73.0%

Median 0.028 0.376 16.8%

Relative target tolerance W/D % utilization of geometrically

Reciprocal protocol MIN MAX available range W/D = ]0;1[

Billon et al. (2000) [27] 0.023 0.300 27.7%

Bootsma et al. (1998) [28] 0.017 0.250 23.3%

Davis et al. (2008) [29] 0.016 1.000 98.4%

Drury (1975) [30] 0.037 0.333 29.6%

Fitts (1954) – tapping [1] 0.016 1.000 98.4%

Fitts (1954) – disc transfer [1] 0.002 0.125 12.3%

Fitts (1954) – pin transfer [1] 0.002 0.125 12.3%

Glencross & Barrett (1983) [31] 0.021 1.000 97.9%

Hoffmann & Sheik (1991) [32] 0.021 1.000 97.9%

Kerr (1973)[33] 0.014 0.167 15.3%

Kerr (1978) [34] 0.008 0.300 29.2%

Langolf et al. (1976) [35] 0.018 1.000 98.2%

MacKenzie (1991) [36] 0.016 1.000 98.4%

MacKenzie & Isokoski (2008) [37] 0.063 0.063 0.0%

Maruf et al. (1999) [38] 0.061 0.667 60.6%

Median 0.017 0.333 29.6%

Median both protocols 0.017 0.355

(*)Note. The rightmost column presents for each study the percentage of utilization of the geometrically-available range of relative tolerance, which is not the same for
the discrete and the reciprocal protocol (see Section 5.1).

doi:10.1371/journal.pone.0024389.t001
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on a recurrent debate of the literature about the interpretation of

the y-intercept of Fitts’ law, the coefficient k1 of Eq. 1.

Ever since Fitts, the appearance of non-zero y-intercepts in the

plot of Fitts’ law data has been a controversial topic among users of

the Fitts paradigm. To explain positive intercepts, researchers have

for example pointed to the time it takes to tap in place [40] or to

press a mouse button [15], to dwell time [41], to an unavoidable

delay in the psychomotor system [41], to uncontrollable muscle

activity in the beginning or end of a movement [15], and to

modeling errors such as failure to use the Shannon formulation of

the ID or recourse to a nominal, rather than effective, measure of

W [15,42], or to unidentified methodological flaws [43].

But negative y-intercepts have also been found countless times in

the literature, e.g., [4,5,44,45,46]. Of course negative intercepts in

Fitts’ law plots look problematic because movement time cannot

conceivably be less than zero. Today the issue is still unsettled, and

Soukoreff and MacKenzie (2004) [43] seem to have summarized a

widespread opinion when writing that ‘‘a small intercept is a useful

check that one’s experimental methodology is sound’’ (p. 785).

One important fact that seems to have been overlooked so far is

that the y-intercept of a linear regression—i.e., the value taken by y

at the abscissa x = 0, estimated through leftward extrapolation

from a necessarily finite test range—is interpretable only to the

extent that x = 0 marks an identified physical limit. Since it is

impossible in the Fitts paradigm to define a physical zero of

difficulty, one has no rationale for expecting the y-intercept, the k1

of Eq. 1, to take any particular value. We have seen in Figure 7

that some IDs have numerical zeros that fall at arbitrary levels of

difficulty (e.g., the Fitts and the Crossman ID). Others do not even

have a numerical zero (e.g., the Shannon and the Meyer et al. ID),

meaning the y-intercept in this case is just a graphical artifact of

linear regression. In either case the y-intercept might perhaps serve

for comparison purposes to characterize the elevation of a Fitts’

law curve, given a certain ID range, but its empirically determined

value is uninterpretable in the absolute (in order to characterize

curve elevation a simple average of all mT values over one’s test

range presumably delivers a safer statistic than the k1 of Eq. 1

because it saves the inference of an extrapolation.). Thus the above

analysis suggests that the old intercept debate of the literature has

revolved about a moot point.

6. Grounding Task Difficulty on Relative Target
Tolerance

6.1. Why Distinguish W/D from D/W?
Fitts’ law has been formulated almost invariably in the literature

as the dependency of mT upon the quotient of D/W. It is

interesting to recall that the special relevance of that quotient had

been noticed by Woodworth (1899) [47], half a century before

Fitts. However, it was the inverse expression W/D—the Weber

fraction, as he called it—that Woodworth called attention to. Why

we carefully distinguish W/D from D/W in the present paper

requires an explanation.

Mathematically speaking the distinction between the fractional

expression D/W and its reciprocal W/D is idle. For example no

matter whether the Fitts ID of Eq. 3 is noted as log(2D/W) or

2log(W/2D) as these are just two different writings of the same

thing. Experimental psychologists, however, do not face pure

mathematics tasks. Fitts’ law students do resort to mathematical

modeling, but what is most important to them are physical

variables. As empirical scientists, they need to care about both the

abstract quantities of their formal models and the variables they

concretely measure and manipulate in the laboratory, and so they

need to care about the correspondence between the former and

the latter.

There is indeed reason to distinguish D/W vs. W/D in the

context of an experimental study of Fitts’ law. Here are some

arguments.

(i) Semantics. The two writings denote obviously different

quantities of the real world. As already noted, the quotient

of D/W provides a relative measure of target distance (i.e., D

Figure 4. The geometrically available range of relative
tolerance and the subset that is actually investigated in the
Fitts paradigm of Eq. 8, using the discrete protocol. The x
continuum of Figures 1–3 is now oriented vertically, with the target
interval shown as a thickened segment. W is made to decrease from left
to right for a constant value of D, meaning that difficulty increases from
left to right. The region of relative tolerance that is not used, and
presumably not usable, is hatched.
doi:10.1371/journal.pone.0024389.g004

Figure 5. The error rate data reported by Fitts and Peterson [4],
who manipulated relative tolerance in the range 1%#W/
D#33.3%. The curves shown are power functions, whose fit is best
for the three scale levels. The vertical dotted lines show the
approximate location of the median maximum and median minimum
of relative tolerance of Table 1. Notice that this figure and the next
show only half the geometrically permissible range of W/D.
doi:10.1371/journal.pone.0024389.g005

Movement Difficulty Measurement

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e24389



scaled to W), whereas the inverse number provides a relative

measure of target tolerance (i.e., W scaled to D). Whether the

measures be defined relatively or in the absolute, target

distance is the variable experimenters use to control

movement amplitude, whereas target tolerance is the

variable they use to control the spread of movement

endpoints.

(ii) Metric. As shown in the preceding section, relative target

distance D/W runs on a non-ratio (equal-interval) scale, with

an arbitrary zero, whereas relative target tolerance W/D

runs on a ratio scale, with a physical stop.

(iii) Error. Users of the Fitts paradigm generally agree that Fitts’

law amounts to a speed-accuracy trade-off, the bottom line

idea being that the left- and right-hand sides of Eq. 8 convey

information about performance speed and accuracy,

respectively. So the expression D/W is supposed to measure

accuracy in some way. But any measure of accuracy,

whether absolute or relative, should involve error as a

component, and so the right-hand side of our equations

should be based on a measure of target tolerance (i.e.,

permitted variable error) rather than a measure of target

distance (i.e., recommended amplitude). The manipulation

of D/W is an experimental technique of forcing the quotient

of mA/sA to vary. Thus if Eq. 8 explicitly describes a

dependency of mT upon task difficulty, a deterministic

attribute of the target layout, what the equation describes

ultimately is a dependency of mT upon accuracy, a stochastic

attribute of the movements. Adopting the latter understand-

ing of the law, it is more satisfactory to ground (in)accuracy

on the coefficient of variation of amplitude sA/mA rather

than its inverse mA/sA, if only for a metrical reason: for any

random variable x defined in the ]0;+‘[ interval, the

coefficient of variation sx/mx has a zero at the limit where,

the variability vanishing out, the random variable turns

deterministic; whereas the inverse quotient mx/sx cannot

have a zero because a positive quantity cannot have zero

magnitude on average with a non-zero standard deviation.

6.2. Difficulty as Relative Target Intolerance
Without leaving the Fitts paradigm of Eq. 8, let us switch from

relative distance to relative tolerance. This means taking the

reciprocal of the fractional expression and rewriting Fitts’ law as

mT~f (W=D), Relative-tolerance interpretation of Fitts0 law ð12Þ

where f now denotes some strictly decreasing function. We have seen

in Table 1 that in the laboratory relative target tolerance W/D

varies, roughly speaking, from 0.02 up to 1/3. The fact that

experimenters cannot sensibly use target layouts such that W/

D.1/3 or so, due to the speed saturation effect (Figure 6), means

that W is always smaller than D, and hence W/D always smaller

than 1. Thus it is convenient to express W/D (and of course not D/

W), as a percentage. For example, considering the first row of

Table 1, we may say that Fitts and Peterson varied relative target

tolerance from 1% to 33.3%.

The target is 100% tolerant when W = D. This case being out of

reach in practice, relative tolerance will always fall within the

range from 0% (a true physical stop) to 100%. An interesting next

step to obtain a measure of task difficulty is to convert relative

target tolerance W/D into relative target intolerance 12W/D,

along the lines of Meehl [6] (whose goal, in a different context, was

to quantify the degree of empirical corroboration of risky

numerical predictions from substantive theories). Without having

to sacrifice the convenient 0–100% range of variation, we now

face a clear definition of task difficulty. The higher the relative

Figure 6. Average movement speed computed in the data of Kerr and Langolf [22], who manipulated relative tolerance in the range
0.013#W/D#0.25. The curves are best modeled as logarithmic functions.
doi:10.1371/journal.pone.0024389.g006
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target intolerance 12W/D in the Fitts paradigm, the more difficult

the movement task. With this new independent variable, Fitts’ law

becomes a relation of the form

mT ~f (1{W=D), Relative-intolerance interpretation of Fitts0 law ð13Þ

where f now denotes some strictly increasing function. That

relative target intolerance zeroes out at W/D = 1 is an assumption,

and so our zero of relative intolerance is arbitrary. However, the

upper limit of our new measure of difficulty, total relative

intolerance (12W/D = 1, or 100%), is indeed a physical stop—

since W/D cannot be less than zero, a task with 12W/D.1 is

impossible.

Figure 9, which considers both the discrete and the reciprocal

protocols, uses the metaphor of graduated rulers. Shown are our three

candidate yardsticks, with their different graduation systems. Notice

that the only difference between the two protocols with respect to

difficulty measurement is that W/D.1 is geometrically possible with

the discrete but not the reciprocal protocol. With the reciprocal

protocol W/D.1 would imply target overlap, and a participant could

permanently satisfy the task requirement without moving, by simply

positioning the pointer somewhere in the overlap interval.

Figure 7. The mapping of the IDs of Eqs. 3–6 (upper panel) as well as the raw quotients of D/W and W/D (middle panel) onto the
concrete geometry of a discrete aiming task (lower panel). The vertical dotted line shows the approximate location of the upper limit of
relative tolerance.
doi:10.1371/journal.pone.0024389.g007
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7. An Illustration with Fitts’ (1954) Data

This section takes the example of Fitts’ (1954) [1] famous stylus-

tapping data to give some sense of what it means to move from the

familiar ID-based analysis of Eq. 8 to the tolerance- and

intolerance-based analysis of Eqs. 12 and 13. The data of this

elegant experiment of Fitts, which he tabulated in detail, has been

often used as a benchmark, e.g. in [15].

Fitts ran his famous stylus-tapping experiment twice, on two

consecutive days. On Day 1 his participants used a light, 1-oz

(28gr) stylus, and on Day 2 they used a heavier 1-lb (454gr) stylus.

The two sets of numerical data, which Fitts tabulated in his Table 1

(p. 264), are nearly identical, but it has been a tradition in the

literature to discuss the data of the light-stylus experiment. We

follow this tradition here.

Fitts reported mean movement time estimates, on average over

16 participants, for each of 16 combination of D and W. Our

analysis below separates the different levels of D, which we take as

an estimate of scale [21].

Figure 10 plots Fitts’ data in keeping with Eq. 8, assuming that

the basic predictor of mT is relative target distance D/W. Panel A

uses the raw quotient of D/W, and Panel B shows that the four

plots become nicely linear once the x axis has been transformed

logarithmically. MacKenzie [15] has shown that the Shannon

ID = log2(D/W+1) provides a slightly better fit of this data, and

Meyer et al. [10] have noted that a power transform of D/W does

yet a little better, but we must leave these observations aside to

focus on the metrical issue.

The point that must be made about Figure 10B, a familiar plot

of Fitts’ law, is that it lacks a physical anchor on its x axis. The Fitts

ID = log2(2D/W) zeroes out at D/W = K, but we have seen that

this case cannot be realized, not even approached in the

laboratory, the practical minimum of D/W for the reciprocal

protocol being 1 (Figure 9). The fact that three of the four y-

intercepts turn out to be negative in Fitts’ data does not matter as

these estimates are uninterpretable (Section 5.2). But there is

reason to bother that with this traditional ID-based depiction of

Fitts’ law one cannot respond to Soukoreff and MacKenzie’s [43]

above-quoted concern: the y-intercepts values Fitts obtained

cannot help to check the soundness of his methodology.

Figure 11 shows an alternative plot of Fitts’ data, based on

Equation 13, where the predictor of mT is relative target

intolerance. Relative to Figure 10, two novelties are noteworthy.

One is that the abscissa 12W/D = 1 corresponds to a well-

defined physical maximum of intolerance (W = 0 with D.0, hence

W/D = 0, hence 12W/D = 1), meaning that rightward extrapo-

lation to this limit delivers an interpretable estimate of curve

elevation, unlike the traditional y-intercept of Fitts’ law. Modeling

the data with a polynomial y = ax2+bx+c, and noticing that if x = 1,

then y = a+b+c, it is easy to see that the sum of the three adjustable

coefficients a+b+c provides an estimate of movement time for a

100% intolerant target. Whereas in Figure 10 no one could explain

what is meant by performance at the zero-difficulty level, what is

meant in Figure 11 by performance at the 100% level of

intolerance is quite clear.

The four estimates, 470 ms, 587 ms, 679 ms, and 837 ms for

D = 5, 10, 20, and 40 cm, respectively, look quite sensible. These

values suggest that scale, the paradigm’s other independent

variable [19], exerted a strong monotonic effect on movement

time—the shorter the movement, the better the performance—

indicating that this particular task of Fitts had a scale optimum

located below 5 cm. However, the four estimates should be taken

with caution. As usual in the Fitts paradigm, Fitts’ error rates

increased with the ID. A further concern is that in Fitts’ easiest

condition W/D = 1 the error rate was exactly 0%, and so one may

doubt that his participants fully exploited the huge amount of

tolerance made available to them in this extreme task condition.

The point we want to make is that these values, unlike the y-

intercepts of traditional Fitts’ law equations, are in principle

interpretable in the absolute.

The other noteworthy difference is that the extent of

extrapolation required in Figure 11 to reach the (physically

meaningful) 100% intolerance limit is far shorter than was

required in Figure 10 to reach the (physically meaningless) zero

of difficulty. This is because experimentation with the Fitts

paradigm of Eq. 8, whether using the discrete or the reciprocal

protocol, typically includes difficulty maxima that fall in practice in

the vicinity of the zero-tolerance, or 100%-intolerance case

(Table 1). A shorter extrapolation extent means a saving of

inferential risk.

8. Discussion

8.1. Numbers and Physical Quantities
From our experience of discussing these issues we anticipate that

some readers will be tempted to shrug off our claim that IDs are

based on D/W and that because the zero of this measure is

arbitrary then the Fitts paradigm has a problem. A mathematically

inclined mind is likely to feel that relative target distance D/W and

relative target tolerance W/D are just two different wordings of the

same thing. Such a feeling, we believe, is a mistake.

The care to not confuse the numerical and the physical facets of

difficulty is a necessity in any inquiry about measurement along

the lines of S.S. Stevens [13]. It is a direct reflection of the realist

postulate indispensable not just to the theory of scales of

measurement [48], but to empirical science in general [49]: our

equations describe the real world, which exists independently of

them. As suggested in Figure 12, Fitts’ law taken in the sense of Eq.

8 is a dependency of a time measure upon a task-difficulty measure

(horizontal arrows). From the moment these entities and that

dependency are recognized to exist in the real world, it becomes

important to carefully check, as we have tried to do in the

Figure 8. How the four IDs of Eqs. 3–6 vary in the experimen-
tally practicable range of relative tolerance.
doi:10.1371/journal.pone.0024389.g008
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foregoing, the correspondence between the numerical quantities of

our modeling equations and physically defined quantities (vertical

arrows in the figure).

The fact that the numerical vs. physical distinction has

remained essentially foreign to Fitts’ law research seems surprising.

Since Woodworth (1899) [47]—for whom Fechner’s (1860)

Elements of Psychophysics was a model to imitate—the task faced

by students of simple aimed movement has been similar to that

faced by psychophysicists. Both fields have endeavored to simplify

their research problem (perception, movement) to the extreme,

down to the point where independent variables become raw

physical variables. But while psychophysics has substantially

contributed to the theory of measurement [13,48], Fitts’ law

research seems to have remained essentially unconcerned about

measurement issues.

This is why perhaps special attention is required on the part of

the reader. It may be useful to recall that it is generally unsafe to

discard distinctions which, however clear-cut, have been judged

unnecessary so far. As noted by Meehl [6], ‘‘one should initially

disaggregate, leaving open the possibility of reaggregation if the

subdivision turns out not to matter; whereas, if one begins by

aggregation, one may be throwing away important information

that is not recapturable’’ (p. 394).

Back to the example of Fitts’ data, one cannot appreciate the

difference between Figure 10 and Figure 11 unless one bears in

mind that each of the two axes of a Fitts’ law plot represents

simultaneously something numerical and something physical.

Focusing on the x axis of Figure 10B, it is undeniable, numerically

speaking, that Fitts had a zero of difficulty in his experiment simply

because log2(2D/W) = 0 only requires 2D = W. But the case

2D = W does not exist in the real world (Figure 9). Therefore,

we argued, the zero of Fitts’ ID is a numerical speculation.

In fact the relevance of most of the distinctions we made in the

present paper depends on this fundamental numerical vs. physical

distinction, to which in our view the study of Fitts’ law has paid

insufficient attention. If one is content with an exclusively

numerical understanding of the law, then there is no need to

make the following four distinctions.

(1) Relative tolerance W/D vs. relative distance D/W. These are

strictly equivalent quantities in mathematical formulas. We

have just objected that in the physical world these designate

different variables, with different scales of measurement.

(2) One quotient vs. two operands. As far as standard mathematical

calculations are concerned, it is convenient to leave it

undetermined whether a fractional expression n/d denotes

the two operands of the (doable) division of numerator n by

denominator d or, alternatively, the quotient q, the result of

the specified operation (done). In Eq. 12 the fractional

notation W/D may refer to either a single number, the

quotient of W/D, or two numbers, the operands W and D.

What one faces here is uncertainty about how many real-world

variables the Fitts’ law formula is supposed to model [21].

From the moment one cares about how the physical meaning

of the model’s numerical variables, such uncertainty must be

removed. This was done above with the explicit statement of

Eq. 11 that Fitts’ law is of the form y = f(x), meaning that the

independent variable of a Fitts’ law equation is a single

quotient and that that quotient refers to a single quantity of

the physical world, relative and dimensionless.

(3) Symmetrical vs. asymmetrical relation. The traditional approach

to Fitts’ law has generally contented itself with equation

models of the form y = f(x) where the direction of causality is

left unspecified, the formula y = f(x) being assumed to be

readily convertible into the equivalent formula x = f21(y). In

the laboratory, however, things are less fluid. Whether Fitts’

law, empirically speaking, may survive a permutation of

dependent and independent variables is an open question.

Figure 9. Candidate yardsticks for the measurement of movement difficulty in the Fitts paradigm. The experimentally practicable region
of difficulty is marked on the edge of each graduated ruler.
doi:10.1371/journal.pone.0024389.g009
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The Schmidt paradigm of Eq. 9 has been reporter to yield a

linear relation between sA and average movement speed mA/

mT [2]. This empirical result is simply incompatible with the

received logarithmic formulation of Fitts’ law.

(4) Task variables vs. movement variables. The Fitts’ law literature has

generally ignored the fact that target distance D and

movement amplitude A are very different physical quantities.

For example, Fitts [1] defined his ID as a function of A/W

(rather than D/W), thus ignoring the fact that if tolerance W,

a characteristic of the target layout, was under his direct

control, amplitude A was not, being a characteristic of the

behavior of his participants. Likewise, authors have not cared

much about the difference between target tolerance W and

the spread of movement endpoints sA, as revealed by the

frequent notation We to refer to ‘‘effective’’ or ‘‘subjective’’

width. With such a notation it is quite unclear whether We

denotes a deterministic characteristic of the target layout or a

stochastic characteristic of the movement. That begins to

matter when one wants to know what the symbols of

mathematical models stand for in reality.

8.2. Fitts’ Law in the Face of Platt’s [50] Strong Inference
Challenge

It is traditional to cite Fitts’ law as an exemplary achievement of

experimental psychology [16,51,52], but one may wonder whether

that tradition has done Fitts’ law research much service. In science,

criticisms are more useful than congratulations.

In the subtitle of a widely cited paper on what he called strong

inference, Platt (1964) [50] pointed out that ‘‘certain systematic

methods of scientific thinking may produce much more rapid

progress than others’’. Just recalling that research can only hope to

prove the falsity of hypotheses [53] and that the most heuristic

strategy is to test sets of mutually exclusive hypotheses [54], Platt

argued that the spectacular progress rates of highly successful fields

like molecular biology or high-energy physics is mostly due to a

high degree of intolerance to everything that is conceptually or

empirically inconsistent. ‘‘We measure, we define, we compute, we

Figure 10. The ID-based description of Fitts’ data, separating
the four scale levels. Above: mT as a function of relative target
distance specified by the raw quotient of D/W. Below: mT as a function
of the Fitts ID = log2(2D/W). The y-intercept of each model equation is
marked at ID = 0.
doi:10.1371/journal.pone.0024389.g010

Figure 11. The intolerance-based description of Fitts’ (1954) data. Shown at the extreme right of the plot, for each scale level, is the estimate
of mT at the physical limit of 100% intolerance.
doi:10.1371/journal.pone.0024389.g011
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analyze, but we do not exclude’’ (p. 352). It is useful to ask to what

extent Fitts’ law research has been intolerant to inconsistencies.

After the pioneering study of Card, English, and Burr (1978)

[55], Fitts’ law has become a highly topical research subject in the

field of human-computer interaction (HCI), quite probably

because target acquisition, since the advent of the mouse in the

early nineteen eighties, has been the fundamental building block of

graphical user interfaces [20]. HCI researchers and basic

experimental psychologists have used the same methodology,

resorting to the Fitts paradigm of Eq. 8. Yet the two communities

have persistently disagreed on the mathematical formulation of

Fitts’ law. While the Shannon version of Fitts’ law (Eq. 5), in the

wake of MacKenzie (1992) [15], has been unanimously accepted

in HCI, psychologists have continued to hold tight to the Fitts

version of the law (Eq. 3). But pluralism seems undesirable in

empirical science. To paraphrase Platt [50], ‘‘a failure to agree for

30 years is public advertisement of a failure to disprove’’ (p. 351).

We have seen that over the usual range of task difficulties the

Fitts and the Shannon IDs correlate very strongly with each other

(r = +.98, see Figure 8). Arguing that the Fitts vs. Shannon ID issue

is of great theoretical import, Soukoreff and MacKenzie [56]

conceded that it is quite hard to settle empirically. In fact one may

wonder whether the issue is empirically decidable at all within the

conventional paradigm, if only because no information can be

drawn from the elevation of a Fitts’ law curve, for lack of a physical

zero on the x axis.

The Fitts’ law literature has also tolerated for two decades an

overt inconsistency between its favorite substantive theoretical

explanation and its favorite mathematical description of the law.

In both the HCI and the experimental psychology communities

the most widely received explanation of Fitts’ law has been the

stochastic optimized sub-movement theory of Meyer et al. [10].

The Meyer et al. [10] approach and the Fitts-MacKenzie

information-theoretic approach are not mutually incompatible,

as the former construes the movement as a stochastic process

whose detailed mechanisms unfold in time whereas the latter treats

that complexity as a black box, trying to predict performance

directly from the properties of target layouts [54]. But the problem

is that Meyer et al. claimed that their theory predicts a power

relation while both communities have never ceased to assume that

Fitts’ law is logarithmic.

Again, there is no guarantee that the logarithmic vs. power issue

is empirically decidable with the traditional Fitts paradigm. The

power ID of Eq. 6, which strongly correlates with the logarithmic

IDs of Eq. 3 or 5, begins to behave in a distinctive way in the

region of lowest tolerance, for W/D,10% or so (Figure 8) and so

the highest levels of difficulty would seem crucial. But unfortu-

nately this is the region of tolerance where participants are most

unable to comply with the accuracy instructions transmitted to

them via the target layout (Figure 5).

The adjustment for errors obviously cannot help, quite the

contrary, because with that adjustment the range of difficulty will

inevitably shrink: in the presence of inflated error rates for higher

IDs, this adjustment will result in the leftward shift of abscissas,

meaning the Fitts’ law plot will lose its data points in the crucial

upper region of difficulty. The fact is, nearly a quarter century

after Meyer et al.’s (1988) [10] proposal it is still unclear whether

Fitts’ law, as assessed in the conventional Fitts paradigm, is a

power or a logarithmic law.

We believe that it is not Fitts’ law in and of itself that suffers a

measurement problem, but rather the particular version of the law

that rests on the Fitts paradigm of Eq. 8, which construes the law

as a dependency of movement time upon task difficulty. Obviously

the Schmidt paradigm of Eq. 9 is immune to the criticism. Its

dependent variable, variable error sA, and its independent

variable, average movement speed A/T, both have a physical

zero. Immune too is the tradeoff paradigm of Eq. 10, which states

the law as a relation between mean movement time mT and

relative variable error sA/mA, two stochastic quantities that have a

zero in the physical world.

Thus our analysis raises doubts about the strength of the

traditional Fitts paradigm for studying Fitts’ law. The weakness

which we have focused on above is the failure to provide difficulty

with a physically zero, meaning under-constraining empirical data.

As a tentative solution to this problem, we proposed an alternative

definition of difficulty based on relative target intolerance 12W/

D, rather than relative target distance D/W. But this may not

suffice, as the paradigm suffers from another constitutional

weakness. Not only does the Fitts paradigm measure its object in

a questionable manner, one may doubt it measures the right thing.

To progress in the understanding of the tradeoff of movement

speed and accuracy, one should ask whether task difficulty is the

right quantity to consider. The Fitts paradigm heavily relies on the

technical assumption that task difficulty, well captured by the

quotient of W/D, controls performance accuracy, well captured by

the coefficient of variation sA/mA. But that assumption has been

repeatedly challenged in the literature. It is notorious that target-

layout manipulations have generally provided experimenters with

mediocre control over movement accuracy, and hence movement

speed. The gradual inflation of target misses as relative tolerance is

reduced means that W/D overestimates sA/mA more and more. In

the opposite direction, near the supposedly easy end of the range,

we have the problem that error rate is often exactly 0%, as for

example in Fitts (1954) data, in which case W/D probably

underestimates sA/mA. Obviously, were experimenters very strict

about participant compliance with their error instructions, the

range of relative tolerance in the Fitts paradigm would be just a

small fraction of that which has been usually investigated.

For decades the response to this concern has been the so-called

adjustment for errors procedure [14,15,42]. All nominal values of

ID of the experiment are recalculated in light of performance data

so as to obtain an effective ID based on the statistics mA and sA in

lieu of the geometrical measures D and W. However sensible, the

procedure complicates the Fitts paradigm with auxiliary assump-

tions and in a sense undermines it. For example, to compute

effective widths from observed distributions of endpoints, MacK-

enzie [15] suggested a method based on information theoretic

concepts, but that method presupposes Gaussian distributions.

Unfortunately the Fitts’ law literature reports consistent departures

from normality in distributions of movement endpoints, with both

Figure 12. Numerical vs. physical quantities in the Fitts
paradigm of Eq. 8.
doi:10.1371/journal.pone.0024389.g012
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the kurtosis and the skewness varying with the ID [57,58]. Thus

the adjustment for errors, meant to correct a shortcoming of the

paradigm, is liable to introduce extra noise in the data.

Platt [50] pointed out that the widespread habit of attaching

proper names to theories and methods tends to slow down

scientific progress because disagreement becomes a conflict

between persons, rather than ideas. The paradigm we are

discussing is a legacy of Paul M. Fitts, a prestigious figure of

psychology. But an experimental tool whose efficiency has proved

doubtful should not be salvaged at any cost.

In our view the traditional Fitts paradigm is quite valuable in

applied research, notably HCI and ergonomics, where experi-

menters often need to predict pointing performance from the

geometry of interfaces. When the researcher’s problem is to

optimize target acquisition with various input devices and various

interaction techniques, the quantitative characterization of the

difficulty of a target arrangement is certainly a necessity, justifying

the Fitts paradigm. In such contexts we feel the measurement of

relative intolerance 12W/D has promise.

But we believe that the basic research front should investigate

other directions. Rather than resort to post-hoc corrections to

offset errors resulting from a shortcoming of the paradigm, it

seems sensible to look for other experimental approaches where

the mismatch between what experimenters prescribe to their

participants and what they obtain from them does not arise in the

first place. The important step is to get rid of the hardly tenable

assumption that it is possible to control the accuracy of movement

by means of task geometry manipulations.

This step is taken in the trade-off paradigm of Eq. 10, which

uses a two-line instead of a three-line display, thus prescribing

movement scale mA but not relative variable error sA/mA. This

feature exploits the fact that if W is a notoriously unreliable

controller of sA, D controls mA fairly reliably [14,15,42], as

reported again in [3]. Scale being specified, the participants’ task is

to concurrently minimize two quantities, movement time mT and

relative variable error sA/mA. The crucial manipulation, orthog-

onal to the manipulation of scale, then consists of verbal

instructions that encourage the participants to modulate their

speed/accuracy imbalance over as large a range as possible, from

attempts to move as fast as possible to attempts to move as

accurately as possible. Notice that this instructional variable,

which does not participate in the statement of Fitts’ law, is just

ordinal.

Exploiting a simple limited-resource model consonant with

Norman and Bobrow’s [59,60] and using the trade-off paradigm,

Guiard et al. [3] obtained data suggestive of a square-root

relationship, with individual r2 values ranging from .89 to .97

despite the flexibility reduction entailed by the sacrifice of one

adjustable coefficient [61]:

mT~q: sA=mA

� �{1=2
: ð14Þ

Rewriting Eq. 14 as a constant product

mT
:
ffiffiffiffiffiffiffiffiffiffiffiffi
sA=mA

q
~q, ð15Þ

the authors argued that q, the single free coefficient of Eq. 14, can

be taken as an estimate of the amount of resources invested by the

participant in the movement task. As the emphasis is gradually

shifted from maximal speed to maximal accuracy, the quantity q is

essentially conserved; what varies systematically is the quotient of

mT/(sA/mA)K, which they argued is interpretable as a quantitative

estimate of the strategic imbalance.

One of the reasons why this candidate version of Fitts’ law

seems worthy of consideration is that it is based on a direct

estimation of the speed and accuracy of simple aimed movements.

Task difficulty having disappeared from the scene, the scale of

measurement and the validity problems which, we suggested,

jeopardize the traditional approach to Fitts’ law are avoided.
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