
Architecting end-to-end convergence

of Web and Telco services
Gerard Nicolas

Orange Labs
38, rue du general Leclerc

Issy-les-Moulineaux, 92794 France

gerard1.nicolas@orange.com

Karim Sbata
Orange Labs

38, rue du general Leclerc
Issy-les-Moulineaux, 92794 France
karim.sbata@orange.com

Elie Najm
Télécom ParisTech
46, rue Barrault

Paris, 75013 France

elie.najm@telecom-paristech.fr

ABSTRACT
Over the last few years, significant evolutions such as the mobile
phones’ enhanced Web-browsing capabilities and the technical
incursion of Web major players into the Telco world (e.g. Google,
Facebook) have reduced the gap between Telecom and Web
worlds. In this context, converging IMS or Internet Protocol
Multimedia Subsystem and Web service platforms has become a
key challenge that needs to be addressed by both Web and
telecom players. Several interesting solutions, illustrating different
convergence approaches, have been proposed so far.
Unfortunately, none of them has been able to provide an efficient
way to set up end-to-end converging services. Indeed, Web-based
applications are synchronous, as they rely on HTTP. On the other
hand, IMS services can be provided in both asynchronous and
synchronous modes. We define synchronous applications as
services in which each provided resource or piece of information
has to be explicitly requested by the consumer and asynchronous
applications as services that can notify their consumers anytime
they need. But recently, the W3C and the IETF have released new
standards (HTML5 and Websocket protocol), introducing
important evolutions in the Web paradigm. In particular, the
Websocket technology allows a native support for asynchronous
Web applications. Our proposal is a converging framework (called
WSE, standing for WebSocket Enabler) that takes advantage of
this new technology to achieve end-to-end service convergence.

Keywords
Web-Telco convergence, Websocket, IMS, SIP.

1. INTRODUCTION
Information Technology becomes pervasive in our everyday’s
life, in both our professional and personal activities.
Communication devices are widely spread and used by end-users
to access a growing number of services. These services are
provided by Web players through the Internet or by Telco
operators through the IP Multimedia Subsystem (IMS). Each of
these environments relies on specific protocols and architectures
that are not natively interoperable. Indeed, the IMS is a SIP-based
architecture that provides real-time and asynchronous services
whereas the Internet is HTTP-based and was initially conceived to
provide synchronous client-server services. But telco operators
want to take advantage of the Web openness in order to offer their

services to a higher number of users and Internet service providers
are interested by operator’s assets which are security, quality of
service and reliable transport infrastructure. This creates the need
for studying how these two worlds can be combined to offer new
services which benefit from their convergence.

Several studies tried to find a means to achieve this convergence,
either by enhancing end-user’s device application layer, or within
the network application layer or within the network infrastructure.
The most significant solutions that have been proposed rely on
protocol conversion gateways or client-based integrations (e.g.
Flash soft-phones for Web browsers). But no standard solution
has been defined yet, and all proposed approaches are proprietary
to their implementers. This raises the need to have a novel
solution relying on open standards. This study proposes a new
convergent architecture permitting unified protocol agnostic
access to Web-based and IMS-based services.

The following section (section 2) presents several significant
Web-IMS convergence solutions that have been proposed over the
last few years. Section 3 describes the technical and functional
aspects of our proposal and highlights its interest to all business
players involved in service provisioning. Section 4 analyses our
approach and points out its pros and cons.

2. RELATED WORK
Web and IMS convergence has been a hot topic during this last
five years. Several telecommunication actors have proposed
convergent solutions based on different approaches. These
approaches can be classified in three different categories: device
convergence, achieved by the user application layer; middleware
convergence, achieved by the back-end application layer; core
convergence, achieved by core network nodes. This classification
is used in the following subsections. In addition service
orchestration has been an important criteria to determine
interoperability between Web and Telco services.

2.1 Device Convergence
Convergence at device application layer aims to find one protocol
unifying access to all types of services. Two propositions are
presented hereunder.

Family Portal [4]: is an application that allows voice and video
calls between family members. It integrates Web 2.0 technologies
with IMS. This solution includes an innovative device called IMS
Smartdongle which allows a user to make phone call from any PC
by inserting the device into a USB port. This USB device contains
a SIM application, an authentication applet, a browser and a SIP
soft-phone. Thus calls can be made via a Web page in a browser
launched on a mobile phone.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam..

Copyright 2011 ACM 978-1-4503-0784-0/11/12...$10.00.

Flash solution [1]: to deliver personal communication services on
IMS or Web infrastructure two solutions where proposed based on
Flash proprietary technology. The first is client based where Web
client must be aware of callee’s IMS SIP URI and must be able to
play the role of a User Agent (UA). The second is based on a
Back-To-Back User Agent (B2BUA) that establishes a Flash
connection with the Web user and a SIP connection with the IMS
callee. These two solutions must manage signaling conversion
from any proprietary protocol on the Internet to SIP on IMS
network, as well as stream transcoding and Real-Time Messaging
Protocol (RTMP) to Real-Time Transport Protocol (RTP)/Real-
Time Transport Control Protocol (RTCP) conversion.

2.2 Application Convergence
This is known as the northbound convergence. Two initiatives
deal with the network application layer convergence: WIMS 2.0
and IMS 2.0.

WIMS 2.0: in this initiative, the IMS network is considered as the
base platform to construct convergence between Telecom and
Web 2.0 by exposing IMS capabilities through open Web
Application Programming Interfaces (APIs) following the
RESTful [16] approach. IMS sessions are modeled as resources
which are represented by URIs. As an example IMS session is
accessed by Web 2.0 through OpenAPIsRoot / IMPU / Service /

SessionID. It represents a session resource identification following
REST style of architecture [3].

IMS 2.0: this architecture enables the discovery and better control
of IMS and Web 2.0 resources. It is based on three network
entities: the service broker included in IMS network, it is
responsible for registering, orchestrating and hosting common
IMS 2.0 resources. The Web 2.0 gateway (logical interface) sits at
the border between IMS and Web 2.0 world. It acts as an
HTTP/SIP protocol converter and exposes IMS assets to Web 2.0
as REST URIs. Finally the resource database holds service
information, user types, permissions and user profile. By
combining IMS, Web 2.0 and third party service providers, a user
will require only one subscription to IMS world in order to benefit
from all services offered by those three actors [2].

2.3 Network Convergence
This is known as the southbound convergence and it puts
IMS/Web convergence at the core network level. An illustration
of this type of convergence is the WSC architecture (stands for
Web Session Controller) [5]. It is a border entity between IMS and
the Web.

The goal of this solution is to merge IMS and Web sessions within
the same hybrid application guaranteeing to the operator the
control of the service. WSC manages interactions with partner’s
Web application servers and has two functional elements. The
first is the Web Control Function (WCF) which performs
adaptation between IMS signaling and the Web. The second is the
Web Media Gateway (WMG) which manages interworking
between the two worlds. WSC offers to Web service providers the
possibility to monetize their services via IMS network charging
functionalities and allows blending Web content delivery with
IMS services such as presence, instant messaging and multimedia
telephony applications.

2.4 Service Orchestration
Several service orchestration languages exist today, however the
need to orchestrate Web and non-Web (Telco) services is not
handled by the most famous one WS-BPEL. For this purpose we
studied a high level orchestration language (Orc) which
orchestrates sites (services) implemented in any language

independently of their interfaces. Orc [12] uses simple
concurrency primitives. It is available for casual users who want
to try Orc in the browser, for Eclipse users who want to develop
Orc programs on their machine and for Command line users
(using orc.jar). So this language is implemented and runs now on
its 2.0.2 version.

3. OUR CONTRIBUTION
In this section, we describe our proposed solution that achieves
convergence between Web and IMS worlds by working on all of
the three convergence places thus performing core network,
device and network application layer convergence in the same
framework. In the following subsections (subsections 3.1 and 3.2)
we describe the business players and the involved technologies of
our proposal; then, in subsection 3.3 we detail the architecture of
the proposal. Finally subsection 3.4 presents a use case call flow.

3.1 Business Players
As known, any technical work has a business goal and is
conducted in the context of a business model. Our proposal is
about an offer of services involving multiple players pursuing
different business goals. The players are: the consumer, the
retailer, the broker, the connectivity and third party provider.
Figure 1 illustrates business relationships between these players.

Figure 1. Business players

The consumer of a service is the end user who has access to the
service and directly benefits from its delivery. He/she can be the
service subscriber, or act in the context of a subscription by some
other entity (an individual, a household, or a company).
Depending on the provided service, the consumer can also act
without the context of any subscription.

The retailer is the entity that provides the service directly to the
consumer. It can be the broker or one of its partners.

The broker is the entity that provides a single entry point to
consumers, allowing them to access IMS, Web-Based, or
orchestrated services. It has also the usual broker’s role which is
to provide stakeholders with information that enables them to find
other stakeholders and services. The broker in our system can be a
Telco or an Internet player.

The third party provider provides service logic or/and content to
retailers or other third party providers. Offered services can
originate from either IMS Application Servers, or Web
Application Servers, or can be orchestrations of the above
(performed by the orchestrator residing in the Websocket Enabler
introduced in subsection 3.3). Thus, telecom and Internet players
are also potential third party providers.

Content is transported by a physical network which is the union of
both operator and World Wide Web networks. Thus IMS and Web
infrastructures play the role of connectivity providers.

3.2 Involved Technologies
This section describes the technological context of our solution.
Technologies involved in this work are divided into two
categories: client-access technologies and service back-end
technologies.

The technologies involved on client-side are mainly Websocket
protocol which enables full-duplex communication between a user
agent running untrusted code in a controlled environment and a
remote host[6] and HTML5. The latter is a new version of
browser’s Markup language which is characterized by new media
tags, a better organization of the code itself and some other
improvements. But the most important add-ons are the number of
JavaScript APIs that help Web application creation and mainly the
Websocket API. It plays the role of an interface between the
browser that runs HTML5 and Internet transport protocols.
Back-end technologies are mainly IMS services and Web service
platforms. They are provided through the IMS network or third
party Internet players. The IP Multimedia Subsystem (IMS) is an
architectural framework for delivering Internet Protocol (IP)
multimedia services. It was originally designed by the wireless
standards body 3GPP as a part of the vision for evolving mobile
networks beyond GSM. The IMS core is divided into 3 main
layers: common IP core, common service capabilities and service
layer. It is characterized by the usage of the SIP protocol for
signaling and control functions.

Back-end services can be provided also by Web service platforms
Web back-end services are synchronous and can be REST or
SOAP [14] based. REST architectural style represents the Web as
a group of resources (services) identified by URIs and accessed by
HTTP predefined methods. These services are lightweight and
easy to build. SOAP based Web services are known as Service
Oriented Architecture (SOA) components which are widely
deployed in enterprise computer networks. SOAP Web services
are rigid, allowing to type check the adherence of services to pre-
established contracts.

3.3 The proposed architecture
This subsection deals with the architectural aspect of our proposed
solution for Web/Telco convergence. The central part of the
solution is an entity called the Websocket Enabler (WSE). We
first describe the environment of the WSE, i.e., the entities that
interact with it. Then we turn to the presentation of the internal
structure and components of the WSE.

3.3.1 The WSE technical environment
WSE is the central part of the proposed solution. It is in
interaction with an environment composed of: the end-user’s Web
browser, the ID proxy, the retailer’s Web application and the
service connectors.

3.3.1.1 Service connectors
The WSE is interfaced with service providers through service
connectors. A service connector is a gateway that interfaces a
service (or a set of services) with the WSE IN and OUT
connectors (explained later). The main objective of these
connectors is to facilitate the integration of back-end service
providers.

3.3.1.2 End-user client
End-users connect to the WSE by accessing the retailer’s site
through Websocket-compliant Web browsers. Currently, most of
the Web browsers are compliant (Microsoft Internet Explorer just
released a new HTML5 version which supports Websocket
through a plug-in).

3.3.1.3 The retailer’s Web application
The retailer’s Web application is the entry point for the end-user.
Through specific user journeys, it provides the end-user with the
possibility to establish a WSE session.

3.3.1.4 Client JavaScript libraries
To interact with the WSE, the retailer should include a set of
JavaScript libraries that allow for different client accesses to the
retailer site. The first one is an authentication script provided by
the ID proxy that allows the network operator to authenticate the
end-user. It provides the Web browser with a user token that
should be used to connect to the WSE. Once the user is
authenticated by the operator, a set of JavaScript libraries are
included in the Web page. The first one is the wse.js which is
provided by WSE and has three functionalities: Websocket
initialization and life-cycle, module loading and message handling
(in/out). This library is mandatory regardless of the used services.
In addition to this main library, each time a service is included to
the WSE session, a corresponding library is loaded. For example,
for SIP-based services like Presence, the browser loads the sip.js
module. The Web application can then register the user to SIP or
IMS servers and exchange SIP messages with them.

3.3.2 The WSE components
The WSE is defined as the operator’s access interface to Internet
domain at transport and application layers. It has several
functionalities, like for instance handling Websocket connections
to browsers. This is mainly done at transport layer. In addition it
manages services logic at application layer and also connection to
operator’s data bases as well as interconnections with application
servers where the value added services reside. This node groups
five components as illustrated in Figure 2.

Figure 2. WSE architecture

3.3.2.1 The WSE connection manager
It is the server that communicates with browsers in order to
establish Websocket connections. It maintains Websocket session
and terminates it when it reaches timeout. In addition it supervises
Web user authentication in operator’s network. The HTML5
technology enhances the server’s ability to manage a high number
of Websocket connections with a minimal cost. This is because
Websocket discharge the servers compared to HTTP where a large
header must be analyzed to process a request from the client.

3.3.2.2 The WSE Mediator
Its main role is to manage message routing between the service
provider and the client, routing which is based on service identity.
For services that request access to operator’s data bases, access
rules are defined in this same component. Also, the operator or
retailer can propose to its client service alternatives in cases where
a specific service usage is overloaded.

3.3.2.3 The service orchestrator
Its role is to orchestrate services composition in order to provide a
novel value added service as a response to end-users’ need. We
use Orc [12] as an orchestration language. As Orc is a high layer
orchestration language that can manage synchronous and
asynchronous services independently of their implementations, it
allowed us to orchestrate sites where a site is defined as a single
service (Web or Telecom) developed in any language.

The orchestrator is composed of three functional entities: the first
is the Orc Service Definition (OSD) where services compositions
are defined using Orc expressions. The second is the Composite
Services Definitions Repository (CSDR) where defined Orc
compositions (Orc code) are stored. The third is the Orchestration
Engine (OE) which executes Orc scripts.

Orchestration functionality can be hosted on any machine
independently from Internet service providers and network

operators. In our approach, we choose to make the orchestrator a
functional entity of the WSE and hosted by the broker, as it
manages also the identity of the end-user.

3.3.2.4 The connector IN
It is a REST/JSON [15] interface between the cloud of service
connectors and the consumers. It receives all services’ data
pushed to end-users as a response to a request (synchronous
mode) or as soon as data is available (asynchronous mode). On
reception, the IN connector will forward the data to the
orchestrator or to WSE mediator component depending on
whether it is a composed or basic service. The network operator
can use this component to control data load tunneled to
Websocket Enabler and to have a more global idea of the
percentage of composed services.

3.3.2.5 The connector OUT
Like the Connector IN, the Connector OUT is also a REST/JSON
interface but its role is to receive clients’ requests and data and
send them to services. This component will aggregate data sent
from WSE. In addition, it manages process IDs in order to instruct
the IN connector to which process received data must be assigned.
This enhances operator’s control on data traffic.

3.4 Enhanced Address Book: an illustrative
use case
An illustrative use case showing how our proposed architecture
can provide converging services and orchestrate them efficiently

is detailed in [8]. The main idea of this use case is to allow Web
application providers to offer to their end-users an access to an
enhanced address book through their Web sites. This enhanced
address book consists of a list of contacts whose information cards
can be enriched with location and presence information when
available. Figure 3 and Figure 4 show the call flow of the use
case.

sd Enhanced Address Book a

End-user

«Retailer»

somesocialwebsite.com

«Broker»

WSE Framework

«Broker»

ID Proxy

opt Authentication process

[The user is not logged in yet]

:eab.js

:wse.js

get the hosting page ()

«HTTP»

Load the authentication script ()

«HTTP»

:token (Ciphered User Token)

load the WSE main script ()

«HTTP»

load the Enhanced Address Book script ()

«HTTP»

Figure 3. EAB call flow (loading the hosting page)

sd Enhanced Address Book b

Third party Service Providers

«Broker»

WSE Framework

End-user

«Broker»

Location

connector

«Broker»

Presence

connector

«Third party S...

Presence (IMS)

«Third party S...

Location (IMS)

«Third party SP»

Address Book (Internet)

«Broker»

Address Book

connector

loop for each item of the contact list

[The contact has subscribed to the same IDP]

:initStatus

:initStatus

:contactl ist

:contactl ist

wse.connect (token, [wse, eab])

«JSON over Websocket»

decipher (token): userid

create EAB orchestration instance (userid): processid

initService (userid, processid)

«REST (JSON)»
get the contact l ist (userid)

«REST or SOAP»

initService (userid, processid)

«REST (JSON)»
Subscribe (userid, contactid): SubscribeStatus

«SIP»

initService (userid, processid)

«REST (JSON)» Subscribe (userid, contactid): SubscribeStatus

«SIP»

:connectStatus()

«JSON over Websocket»

:publish (eab, contactl ist)

«JSON over Websocket»

:eab.init (contactl ist)
Notify (userid, contactid, presenceInfo)

«SIP»

publish (userid, processid, contactid, presenceInfo): publishStatus

«REST (JSON)»

publish (eab, contactid, presenceInfo)

«JSON over Websocket»

eab.manageUpdate (contactid, presenceInfo)

Notify (userid, contactid, locationInfo)

«SIP»

publish (userid, processid, contactid, locationInfo): publishStatus

«REST (JSON)»

publish (eab, contactid, locationInfo)

«JSON over Websocket»

eab.manageUpdate (contactid, locationInfo)

Figure 4. EAB call flow (Presence and Location updates)

4. DISCUSSION AND OPEN ISSUES
Our approach for Web-IMS convergence has some advantages
presented hereunder.

4.1 Websocket advantages for interactive

Web applications
This concerns the Internet part of our architecture which is
between Web clients or browsers and the WSE. In the context of
interactive converging services (mainly asynchronous), the
Websocket technology provides 500:1 even 1000:1 reduction of
traffic overhead and 3:1 reduction in latency compared to HTTP-
based solutions [9].

Indeed, Websocket application servers do not need to wait for a
Web client request in order to send new available data in a reply
format. This is because of the full-duplex TCP connection which
is established between client and server allowing each player to
send data when it deems necessary.

Moreover, the uniqueness of the Websocket connection during the
service session and the reduction of the overhead will decrease the
computing resources needed by the Web servers to process the
exchanged application data.

Finally, the latency reduction enhances the end-user experience by
increasing its interactivity.

All these advantages make Websocket a reliable transport means
for the Web, to provide a more efficient Web-Telco converging
services support.

4.2 Simpler connections
Connectors can be developed and managed by the corresponding
service provider, thus discharging the retailer. The protocol/data
format conversion between service provider and retailer can be
developed in any language. Hence, a cooperative model is
established for providing services to end-users, and the WSE
architecture is alleviated from the task of dealing with complex
connectors tasks.

4.3 Standard technologies
In order to support asynchronous Web applications, we based our
architecture on Websocket. This technology is a W3C and IETF
standard, natively supported by most browsers, unlike other
solutions which are proprietary and need specific plug-ins to run
(e.g. Adobe Flash technology). All parties, end-users, retailers and
services providers benefit from this advantage, as standard
solutions make the implementation easier and native solutions do
not need additional steps from the end-user.

4.4 Convergent orchestration
In the global context of service architectures, orchestration is a
key functionality and the efficiency of its implementation impacts
significantly the performance of the service platform. In the
particular context of convergent services, these architectures
should rely on an agnostic orchestration able to manage the
composition of synchronous Web-oriented services with
asynchronous Telco services (IMS or SIP–based). This is the
reason why we define in our approach an orchestration entity
based on a service agnostic orchestration language Orc, as
described in section 3.3. This entity is able to manage the
composition of services regardless of their type.

4.5 Operator centric approach
The Websocket Enabler, if managed by the Telecom operator,
allows for enhanced system security by using operator’s
authentication mechanisms to access services. In addition quality
of service is ensured by operator’s network and by Websocket
technology in the Internet part of the connection.

4.6 Open issues
We have not yet covered in our approach all the problems that
may arise when orchestrating SIP-based and Web-based services.
A good assessment of these problems is given in [13]. On another
issue, our approach is dependant on the Websocket standard
which is known to have some security holes which are currently
being addressed by the standardization bodies. Scalability need to
be addressed as brokers are unique entry points for the converged
flows and an appropriate load balancing solution should be
devised. The commercial success of the proposed architecture is
also dependant on the establishment of appropriate partnerships,
between the retailers, the brokers and the third party providers.

5. CONCLUSION AND PROSPECTS
We propose a convergent architecture based on Websocket that
provides access to Web and telecom services seamlessly. In our
proposal, the Websocket technology ensures a southbound or core
network convergence. In addition, the agnostic orchestration
functionality based on service connectors and the service logic
components ensures application layer convergence. Device
application layer convergence is guaranteed by JavaScript
libraries loaded into the browser (wse.js and sip.js modules).
Hence we achieved Web-Telco southbound, northbound and
device application layer convergence.

Because Websocket is an important player in our solution we will
follow closely its standardization since this technology is still in a
maturation phase where some security issues [10] are currently
treated.

After defining the overall architecture, our next objective is to
define an efficient agnostic orchestration framework processing
synchronous and asynchronous services equally. To this end we
undertook a deep study of the Orc orchestration language
semantics and we began to design and develop a composite
service that will be orchestrated by Orc. This allows assessing this
technology.

Concerning the ongoing standardization effort on the HTML5, we
support the enhancement of Websocket to encompass real-time
audio and video in full-duplex mode [7]. This added feature will
allow further integration of multimedia services and their delivery
through Web browsers.

6. ACKNOWLEDGMENTS
This work is supported by SERVERY [11] an European project of
the Celtic initiative, whose goal is to enable a service Marketplace
that bridges the Internet and Telco worlds by merging the
flexibility and openness of the former with the trustworthiness and
reliability of the latter.

7. REFERENCES
[1] Verdot, V., Boussard, M., Bouche, N., Shanmugalingam, S.,

and Fournigault, L., ‘The Bridging of two worlds: a Web-
IMS Communication Solution.’ EuroIMSA, 2009,
Cambridge, UK, July 13 – 15, 2009.

[2] Jain, M., Prokopi, M., ‘ The IMS 2.0 Service Architecture.’
NGMAST, 2008, Cardiff, UK, September 16-19, 2008.

[3] Lozano, D., Galindo, L.A., García, L. ‘WIMS 2.0:
converging IMS and Web 2.0. Designing REST APIs for the
exposure of session-based IMS capabilities’. International
Conference and Exhibition on Next Generation Mobile
Applications, Services and Technologies. Cardiff, Wales,
UK, September 6-19, 2008.

[4] Thuan, D., Jonvik, T., Jorstad, I., ‘Family Portal: combining
IMS and the Web’, ICIN, Berlin, 11-14 October 2010.

[5] Forestier Husson, F., Zakhama, N., ‘Web Session Controller:
an opportunity for IMS/Web convergence ‘, ICIN, 2008.

[6] The Websocket protocol, February 25, 2011,
http://tools.ietf.org/html/draft-ietf-hybi-
theWebsocketprotocol-06

[7] RTC Web Workshop, October 6, 2010, http://rtc-
Web.alvestrand.com

[8] Enhanced Address Book Use Case, http://personalapis-
test.orange.fr/eab/

[9] Lubbers, P., Greco, F., ‘HTML5 Websockets: A Quantum
Leap in Scalability for the Web’.
Http://Websocket.org/quantum.html, Kaazing Corporation.

[10] Huang, L., Chen, E., Barth, A., Rescorla, E., Jackson, C.,
‘Transparent Proxies: Threat or Menace?’,
http://www.adambarth.com/experimental/Websocket.pdf,
November 2010.

[11] Fodor, S., 2008-2011, Advanced Service Architecture
and Service Delivery Environment,
http://projects.celticinitiative.org/servery/

[12] Orc Language Project, http://orc.csres.utexas.edu/

[13] Bond G; Cheung E; Fikouras I; Levenshteyn R. Unified
Telecom and Web Services Composition: Defining the
Problem and Future Directions. IPTCOMM’09. Atlanta, July
2009. LNCS - Springer Verlag.

[14] SOAP specifications, http://www.w3.org/TR/soap/

[15] JSON specification, http://www.json.org/

[16] http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_
style.htm

