
Towards Verified Synthesis of ProCom, a Component
Model for Real-Time Embedded Systems

Etienne Borde
Institut TELECOM, TELECOM ParisTech, LTCI

Paris, F-75634 CEDEX 13, France
etienne.borde@telecom-paristech.fr

Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University, Sweden
jan.carlson@mdh.se

ABSTRACT

To take advantage of component-based software engineering,
software designers need a component framework that auto-
mates the assemblage and integration of developed compo-
nents. It is then of prime importance to ensure that the
synthesized code respects the definition of the component
model’s semantics. This is all the more difficult in the
domain of embedded systems since the considered seman-
tics usually aims at characterizing both functional proper-
ties (e.g. data and control dependencies) and non-functional
properties such as timing and memory consumption.

The component model considered in this paper, called
ProCom, relies on an asynchronous operational semantics
and a formal hypothesis of atomic and instantaneous inter-
actions between components. The asynchronous approach
targets higher flexibility in the deployment and analysis pro-
cess, while the formal hypothesis helps in reducing the com-
binatory problems of formal verification.

In this paper, we present a code generation strategy to
synthesize ProCom components, and a formalization of this
generated code. This formalization extends the verification
possibilities of ProCom architectures, and constitutes a step
toward the verification that the produced code respects the
operational semantics of ProCom.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—validation; D.2.2 [Software Engineering]: Design
Tools and Techniques

General Terms

Design, Theory, Verification

Keywords

Component Based Model, Synthesis, Verification, Real-Time,
Embedded Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0723-9/11/06 ...$10.00.

1. INTRODUCTION
Embedded systems developers are facing the challenging

task to provide fancier and fancier functionalities while re-
ducing the time-to-market of the production. When embed-
ded in, for example, avionic or automotive systems, another
important challenge is to be able to assess (for obvious safety
reasons), the correction of the developed software.

In order to accelerate the design process, component-based
software engineering (CBSE) advocates the reuse of already
developed functionalities [6]. CBSE also helps in manag-
ing software complexity by dividing its design into modules
with different granularity levels. However, CBSE for embed-
ded systems still raises an important set of challenges such
as predictability [7]. To tackle this issue, formal methods
and more particularly model checking, help in strengthen
the verification that a developed application respects prede-
fined safety properties. However, modular model checking
is a difficult problem [21] and the verification of a complete
system suffers from serious scalability problems. In answer,
synchronous languages [4, 8] rely on a formal semantics, i.e.
a set of mathematical hypothesis that eases the verification
of the system; synchronous languages assume that all the ac-
tions undertaken by the application are instantaneous. This
approach and the associated tools (verification and code gen-
eration) have been used industrially in the domain of avionic
systems.

More generally, synchronous approaches constrain the de-
sign process to limit strictly the software architecture to
well-known and analyzable patterns. The price of this strat-
egy is a degradation of the flexibility in the deployment pro-
cess. For instance, synchronous languages made possible the
verification of a complete system, to the price of the mod-
ularity of the generated code [13]. By considering in this
paper a component model relying on an asynchronous se-
mantics we give more flexibility (in terms of design process)
to a software architect. At the same time, we consider a
component model that provides a formal semantics in order
to help in reducing the state space explosion problems raised
by model-checking. The problem we address can be formu-
lated as follows: “how to synthesize the assembly code of
such a component model in order to respect both the asyn-
chronous and formal aspects of its semantics?” As an answer
to this problem, we present in this paper the code genera-
tion dedicated to ProCom, a component model targeting
control-intensive embedded systems (e.g. automotive sys-
tems) [17]. This component model relaxes the synchronous
languages hypothesis by specifying that only local interac-
tions between components are instantaneous. Thus, this

129

component model relies on an asynchronous but formal se-
mantics [20] that helps in preserving the modularity of a
component-based approach.

As for synchronous languages, generating code for a for-
mally defined component model like ProCom requires to en-
sure that the generated code respects the formal hypothesis.
Note that although the formal semantics of ProCom defines
instantaneous interactions, no physical implementation can
of course fully satisfy this. However, it should be possible
to ensure that “semantically relevant” characteristics of in-
stantaneous interactions are preserved. An important issue
is to guarantee that the interaction patterns (emission/re-
ception of trigger and data) is the same as the one that
would have been produced in case interactions were instan-
taneous. This is a difficult problem because of interferences
that might occur during interactions that are supposed to
be instantaneous, thus modifying the interactions order that
was expected from the semantics. As we will show in this
paper, using simple locking mechanisms is not enough to en-
sure the preservation of interactions order. Regarding this
problem, we present in this paper two contributions:

• the code generation strategy we adopted to produce
the glue code wrapping ProCom components, which
aims at ensuring that both the asynchronous and the
formal aspect of the semantics are preserved by con-
struction; a code generation tool has been integrated
in the ProCom editor (PRIDE1) to automate the pro-
duction of the components glue code.

• a formalization of this generated code that extends
the verification of ProCom architectures and consti-
tutes a step towards the verification of the consistency
between the formal semantics of ProCom component
model and its implementation.

To show that the proposed code generation patterns re-
spect the semantics of ProCom components, we focus on a
meaningful characteristic which is the atomic data broad-
cast: if one output data port writes to several input data
ports, then all input data ports receive the same value (the
last data written by the writter). We provide a formal verifi-
cation of this property and show that ensuring such property
in the generated code is not trivial.

The paper is organised as follows: we present in section 2
the ProCom component model and its operational seman-
tics. In section 3, we propose a code generation strategy
that aims at implementing the formal hypothesis of the Pro-
Com component model. To illustrate this contribution, we
present selected parts of the generated code (in section 4),
obtained on an example illustrating an important character-
istic of the formalization of ProCom: the atomic data broad-
cast. We then propose a formal model of this generated
code, and verify on this model that the atomic broadcast
characteristic is ensured (section 5). In sections 6 and 7, we
respectively present related works and conclude the paper.

2. PROCOM – THE COMPONENT MODEL
The ProCom component model [17] is specifically devel-

oped to address the particularities of the embedded systems
domain, including resource limitations and requirements on

1http://www.idt.mdh.se/pride/?id=home

!"#$"%&%'()(

Figure 1: Example of a ProCom component.

safety and timeliness. Key features include support for var-
ious analysis tecniques related to timing [12], resource us-
age [15, 19] and dependability; and reuse of design artifacts
(e.g., extra-functional properties, analysis results, and be-
havioral models) [16] as well as code reuse. To address re-
source limitations, the ProCom approach view components
as design-time entities rather than concrete parts of the final
system. An application is built as a collection of intercon-
nected components, and in the later stages of development
this component-based design is transformed into executable
units, such as tasks that can be handled by traditional real-
time operating systems.

2.1 General Overview
ProCom is organized in two distinct – but related – layers,

addressing the different concerns on different levels of gran-
ularity. The layers differ in terms of architectural style and
communication paradigm. In the the top layer, a system
is modeled as a collection of active, interconnected subsys-
tems that execute concurrently and communicate by asyn-
chronous message passing. The lower layer, which is the
focus of this paper, consists of smaller, passive components.
It is based on a pipes-and-filters architectural style with an
explicit separation between data and control flow. The for-
mer is captured by data ports where data of a given type can
be written or read, and the latter by trigger ports that con-
trol the activation of components. Data ports always appear
in a group together with a single trigger port, and the ports
in the same group are read or written together in a single
atomic action. Together, an input group and its associated
output groups are called a service.

Figure 1 shows a simple ProCom component with one in-
put port group and two output port groups (denoted by
dashed lines). Triangles and boxes denote trigger- and data
ports, respectively.

Components interact through connections from output- to
input ports. In addition, connectors provide detailed control
over the data- and control flow. These include constructs for
forking and joining data and trigger paths, and for selecting
at runtime an execution path.

Both layers are hierarchical, meaning that subsystems as
well as components can be nested. The way in which the two
layers are linked together is that a primitive top layer sub-
system can be further decomposed into components at the
lower layer. At the bottom of the hierarchical nesting, the
behavior of a primitive ProCom component is implemented
as a C function.

2.2 Operational Semantics
Next, we give an overview of the operational semantics

of ProCom, focusing on aspects that are particularly rele-
vant for the code generation presented in this paper, such
as the behaviour of individual components. The semantics

130

has been formalized in a high-level finite state machine no-
tation [20]. This notation can, in turn, be translated into
timed automata [1] which provides the formal foundation.

One particular characteristic of ProCom, compared to
most general purpose component models, is the restricted
component behaviour. Components can not freely com-
municate through input and output ports, but must fol-
low a read-execute-write cycle, where the activation is al-
ways initiated externally and the dependencies between in-
put and output are explicitly modeled in the component in-
terface. The motivation for these – and other – restrictions,
is that they permit various types of detailed analysis on the
component-model level, i.e., based on component intercon-
nections and extra-functional properties associated with the
individual components but without knowledge of component
implementations.

Contrasting synchronous languages, ProCom components
generally execute asynchronously, which allows for more flex-
ibility, e.g., when designing multi-rate applications. How-
ever, the interaction (data and triggering) between compo-
nents is governed by assumptions of atomicity and instanta-
neousness. Together with the restricted component seman-
tics, this also facilitates analysis by reducing the number
of semantically distinguishable interleaving possibilities that
must be considered.

Next, we describe the operational semantics of a ProCom
component. Each service is initially in the idle state, just
receiveing data on its input data ports. When a service is
triggered, i.e., when the input trigger port is activated, it
switches from idle to active state in which it ignores any
further incoming triggers. The active phase consists of the
following four steps:

• Step 1: The data at the input data ports of the ser-
vice are atomically copied to an internal representation
which remains unchanged until the end of the service
execution.

• Step 2: The service functionality is executed. For
primitive components, the functionality is given by a C
function, while the internal computation of a compos-
ite component is defined by the subcomponents and
their interconnections.

• Step 3: The computation can update the output data
ports of the service, but the values are only made vis-
ible externally when one of the output port groups is
triggered (from inside the service). When this hap-
pens, the values at the data ports of that group are
forwarded along the outgoing connections, and then
the triggering is propagated from the trigger output
port. The transfer of data and triggering from a group
is performed as an atomic action, and thus may not be
interleaved by other concurrent activities.

• Step 4: When all output port groups have been trig-
gered once, the service immediately returns to the idle
state. Multiple triggering of one output group during
a single activation is not permitted.

In addition to the operational behaviour of individual com-
ponents, the semantics defines the behaviour of connectors,
communication between subsystems in the top layer, the se-
mantical link between the two layers, etc. Those aspects,
however, are outside the scope of this paper.

As discussed previously, one aspect of the component se-
mantics that is of particular importance for the synthesis is
the atomic and instantanous transfer of data from ports in
the same port group, both when input data are copied into
the component (in Step 1) and when output is forwarded
to other components (in Step 3). Ensuring this atomicity
is a key challenge of the synthesis, and the proposed way to
address this is elaborated in section 3.

3. SYNTHESIS PRINCIPLES
Synthesis of a component model consists of generating

glue code that performs interactions of components with
other components and with their execution environment. An
important requirement of a component synthesis process is
to enforce the respect of the component model semantics.

In the synthesis solution we present in this paper, we take
advantage of the asynchronous hypothesis to implement a
ProCom system as a set of concurrent tasks, dispatched by
the reception of periodic or aperiodic events. In the remain-
der of this paper, we assume that

• tasks are executed by a real-time operating system
with a preemptive scheduler that ensures tasks are dis-
patched FIFO2 when dispatched with the same prior-
ity; and

• the components-to-tasks allocation has been defined.

In the considered component model, data flows can be
joined; meaning that several components can write data to
the same recipient. The recipient reads the last produced
data when it is activated. This modeling pattern might in-
duce concurrent data accesses when the producers are dis-
patched in different tasks.

As stated in the introduction of this paper (section 1), the
synthesis process we propose must guarantee that the or-
der of interactions is consistent with the interaction seman-
tics defined by the ProCom component model. As a conse-
quence, we need to use data access protocols that guarantee
the integrity of data while preserving interactions order. For
the same reason, the generated code must enforce that acti-
vation order of components is preserved; not only when ac-
tivation is transferred by another component but also when
activation comes from an event source (clock timeout, or
message reception).

In order to enforce the respect of these different charac-
teristics, we propose in this section:

• a method to identify sets of port groups that can inter-
act concurrently and thus risk to violate the ordering
requirement;

• a technical solution that preserves the interaction order
among such ports whether they belong to event sources
(clocks, messages) or components.

In the following subsections, we explain how interactions
among ProCom components are configured in order to pre-
serve their formal semantics in multi-task applications.

3.1 Ensuring Port Group Atomicity
As described in section 2, all data of a port group should

be transferred in a single atomic operation. In most cases,

2First-In/First-Out

131

though, interleaving the transfer of data belonging to dif-
ferent port groups has no semantically relevant impact, so
enforcing full atomicity is unnecessarily restrictive.

Thus, to combine consistency and efficiency, it is impor-
tant to identify port groups for which a concurrent execution
might violate the characteristics of the component seman-
tics. Indeed, the implementation of interactions involving
such port groups needs to be protected by a locking mecha-
nism that ensures the order of component interactions in a
multi-task application. Before discussing further the princi-
ple of such a mechanism, we present how to compute the sets
of port groups that are vulnerable to concurrent executions.

To begin with, we assume (for the sake of clarity of the pre-
sentation) that the considered ProCom model is flattened:
port groups of composite components are transformed into
simple primitive components operating as interactions prox-
ies.

To compute the sets of port groups that are vulnerable to
concurrent executions, we focus on the concurrency among
output port groups. Since output trigger ports are the initia-
tors of components interactions, and since data production
(respectively consumption) is done when the corresponding
output (resp. input) trigger port is activated, we propose
to implement each interaction from one output trigger port
towards one (or several) input trigger port(s) within one
critical section. We will show in section 5 that this mech-
anism, under certain conditions described in the remainder
of the paper, ensures that data are atomically broadcasted:
if one output data port writes to several input data ports,
then all input data ports receive the same value. This prop-
erty might seem trivial first, but verifying formally that the
implementation patterns we propose ensure its validity re-
quired to go into the details we present in the remainder of
this section.

Next, we present formally how to compute the scope of
the critical sections, i.e., the set of output port groups that
need to lock the same resource. To compute this, we first
define pairwise potentially conflicting output port groups,
and then group them into sets.

Definition 1 (Potentially conflicting groups).
For two output port groups o1 and o2, we define the binary
relation PC (o1, o2) to hold if there exists two ports, in o1
and o2 respectively, that are connected to ports (trigger or
data) in the same input port group.

Definition 2 (Potentially conflicting sets). Let
OG denote the set of all output groups and PC ∗ the tran-
sitive closure of PC . The potentially conflicting sets (PCS)
is defined as follows:

PCS = {S | S ⊆ OG ∧
∀o1∈S ∀o2∈S PC ∗(o1, o2) ∧
∀o1∈S ∀o2∈OG−S ¬PC (o1, o2) }

Finally, the actually conflicting port group sets are com-
puted by checking if the potentially conflicting port groups
can be accessed concurrently (i.e., by several tasks). The
following equation gives the formal definition of the conflict-
ing sets:

Definition 3 (Conflicting sets). Let T (o) denote the
set of tasks that can execute the component that the output
group o belongs to. The set of conflicting sets CS is defined
as follows:

CS = {S | S ∈ PCS ∧
∣

∣

⋃

o∈S
T (o)

∣

∣ > 1}

For each set in CS , a lock is initialized and the corre-
sponding interactions between ProCom components are im-
plemented within critical sections using this lock. This is
described further in section 3.3.

3.2 Example
Figure 2 provides an example of connected port groups,

and their association to tasks (T1 and T2 in this example).
In this figure, o1 . . . o6 represent output port groups while
i1 . . . i4 represent input port groups. Edges linking port
groups represent connections between some ports in them.

!
"#

!
$#

%
&#

%
'#

!
'#

%
(#

!
(# !

&#
!
)#

%
)#

+,-#
)
+,-#

'
#

Figure 2: Example: Group dependencies and task
allocation

In this example,

• PC is the reflexive and symmetric closure of the set
{〈o2, o3〉, 〈o3, o4〉, 〈o5, o6〉}.

• PCS = {{o1}, {o2, o3, o4}, {o5, o6}}

• CS = {{o2, o3, o4}}; the other sets in PCS are elimi-
nated since they are executed in a single task.

Note here that although o2 and o4 are not interacting
with the same input port, the processing of o2 by T1 will be
executed in a critical section sharing the same lock as the
processing of o4 by T2. This aims at preserving the order of
the computed conflicting set {o2, o3, o4} ∈ CS .

3.3 Preserving Data Integrity and Component
Interactions Order

Thanks to the method presented above, we identify sets of
output port groups that might interact concurrently. To en-
sure the atomicity property, we propose to instantiate a lock
for each conflicting set of port groups, and to execute the
whole interaction (transfer of trigger and data) inside a crit-
ical section protected with this lock. This technical solution
ensures the atomicity of the interactions among components.

To preserve the order of interactions, we propose to use a
FIFO locking mechanism. Note that a simple locking mech-
anism (like POSIX mutexes) does not serve blocked tasks in
a FIFO manner: Consider three tasks T0, T1 and T2 with
decreasing priorities, sharing the same lock. Assume that T2

is in the critical section when T1 is dispatched. T1 reaches
the critical section, then T0 is dispatched and reaches also
the critical section. When T2 releases the lock, T0 enters
the critical section because it has a higher priority than T1

(although T1 reached the critical section first).
To tackle this issue, we propose to use a specific locking

policy that ensures that locking actions are served in a FIFO
manner. To implement this, we rely on the immediate ceiling
priority protocol (ICPP) in order to benefit from existing
results related to this locking policy [18, 2]. When locking

132

a resource configured with this protocol, the corresponding
task inherits a priority higher than all the tasks that may
access the resource, thus impeding other tasks sharing this
resource from interfering and causing an interaction order
different from FIFO.

Considering again the previous scenario with tasks T0, T1

and T2. When T2 enters the critical section, it becomes the
highest priority tasks. When T1 and then T0 are dispatched,
none of them is scheduled until T2 releases the resource.
Thus none of them can reach the critical section and thus
the locking trivially satisfies the FIFO requirement.

ICPP is a very well known solution in real-time systems
since it avoids deadlocks while minimizing the blocking time
of tasks du to shared resources and interferences (it thus
minimizes the number of context switches). It is imple-
mented by POSIX-compliant operating systems and natively
supported by the Ada language. From a schedulability anal-
ysis perspective, using ICPP eases the schedulability anal-
ysis (the blocking time of tasks due to shared resources is
easy to compute from the WCET3 of the critical sections).

In our solution, the task holding a lock is in fact assigned
a priority one level higher than the highest priority of tasks
that may request the lock. This is consistent with the ICPP
description, and means that performing an interaction is
only delayed by other interactions, not by internal computa-
tions executed by tasks that might enter the critical section.

The generated code implementing the control- and data
transfer of an output port group, performs the following
steps:

1. If the group belongs to a conflict set, request the lock
associated with this set.

2. For each data port of the group, transfer the value to
the connected (if any) input data ports.

3. Trigger the connected (if any) input trigger ports.

4. Release the lock (if locking was performed in step 1).

Note that triggering a component inside the critical sec-
tion does not imply to execute its functionalities in this crit-
ical section. On the contrary, a clear separation between the
components’ interfaces and the components’ internal imple-
mentations leads to execute only the connected interface in
the critical section. This separation will be illustrated fur-
ther in section 4.

3.4 Preserving Task Activation Order
In this section, we tackle the problem of guaranteeing that

the order of triggering is preserved for releases of tasks cor-
responding to event sources (e.g. a clock timeout or the
arrival of a message). When scheduling tasks, an operat-
ing system usually queues dispatched threads according to
their priority. Thus the order in which releases of tasks are
treated depends not only on their timing properties, but also
on their priority. According to the considered semantics, the
instant when a task is released should by itself determine the
order in which the trigger of connected components should
be performed.

In answer to this problem, we define two priority levels
for each task: an activation priority and a an functional
priority. In case the considered task triggers a port group

3Worst-Case Execution Time

belonging to a conflicting set, we define the activation prior-
ity to be one level higher than the highest priority of tasks
that can execute one of the port group of the set (the same
way we compute the ceiling priority for a conflicting set con-
figured with ICPP). Then, we define the functional priority
as the priority expected based on the information in the de-
sign. In case the considered task triggers a port group that
does not belong to any conflicting set, then the activation
priority equals the functional priority.

To sum up, this execution pattern consists of dispatch-
ing a task in a state that corresponds to being in a critical
section configured with the ICPP protocol. This solution
assumes that tasks with the same priority are dispatched in
a FIFO manner. If this assumption is implemented by the
underlying platform, using the proposed priority manage-
ment pattern preserves the order of activation among port
groups in a same conflict set, when those port groups are
triggered first in a task.

From a schedulability analysis perspective, this priority
management pattern can be analysed by considering each
task that has an activation priority different from the func-
tional priority as if it was replaced by two separate tasks
with these two (fixed) priorities, released at the same time.

Note also that triggering a component at the activation
priority does not imply to execute its functionalities at this
priority, nor the interactions leading out of the component.

4. SYNTHESIS IN PRACTICE
To illustrate in practice the synthesis principles presented

in the previous section, we rely on the example given in Fig-
ure 3, consisting of three components: Producer, Consumer1

and Consumer2. The input ports of these components are
triggered by three independent external events, correspond-
ing to three different tasks (T0, T1 and T2).

This example was chosen since it exhibits an important
characteristic of atomic/instantaneous interactions: the atom-
icity of data broadcast. Indeed, in this example, the atomic
broadcast characteristic can be verified by checking that
when both Consumer1 and Consumer2 are triggered without
interleaving of the activation of t out, they have the same
input value (the last value produced by Producer). This prop-
erty might seem straightforward to ensure, but the formal
verification result we present in section 5 show that it was
necessary to implement the solution presented in section 3.

Using this example, we present in this section the glue
code that connects and activates ProCom components. Note
that this example presents one conflict set consisting of the
three output port groups of Producer, T1 and T2.

4.1 Generation of Interfaces
The first step of the glue code generation consists of pro-

ducing the components interfaces. For each port of a com-
ponent, a specific operation is generated. Listings 1 and 2
present the generated code for input and output port groups,
exemplified by Consumer1 and Producer, respectively.

Listing 1 presents the generated code for the input port
group of Consumer1. The operation Consumer1 t in1 imple-
ments the first interaction step presented in section 2.2: if
the service is in idle state, the received data are transferred
to the service’s internal state (cf. Consumer1 transfer d in1 in
listing 1) and the component’s implementation is scheduled
(return 1).

Listing 2 presents the generated code for the output port

133

!"#

!$#

!%#

!"#$%&'"(

&'()&#

*'()&#

)#*+%,'"-(

&'+,%#

*'+,%#

)#*+%,'".(

&'+,$#

*'+,$#

&'+,#

Figure 3: Example illustrating the atomic broadcast
property

1 int Consumer1 t in1 (Consumer1 svc ∗ svc){
2 // Ignore trigger if already active
3 if (svc−>active) return 0;
4 else {
5 Consumer1 transfer d in1(svc);
6 return 1; // Schedule the component’s execution
7 }
8 }
9

10 void Consumer1 transfer d in1(Consumer1 svc ∗ svc) {
11 // Copy external−>internal view (cnx d in1−>d in1)
12 svc−>d in1=svc h−>cnx d in1;
13 }

Listing 1: Component interface implemen-
tation: Inputs

group of the component Producer. The operation correspond-
ing to the output trigger port (Producer t out) returns the
identifier of the considered port (STATE Producer t out here).
This value is used to schedule components connected to the
output trigger port and transfer data out from the corre-
sponding port group.

The operation transferring data (Producer transfer d out) is
also illustrated in listing 2. If the corresponding output data
has been updated, the data transfer operation writes it to
a given memory location (represented by the dest param-
eter). This data transfer operation will be called in the
generated code of the task that executes the output port
group (described in the next subsection). It is then called
for each connected input data port; the destination (dest)
being the “external view” (as opposed to the stable inter-
nal copy) of the connected input data port. In the current
case, Producer transfer d out will be called twice: first with
dest=cnx d in1 and then with dest=cnx d in2.

4.2 Tasks Body Implementation
When generating the code of a task, the synthesis process

uses the connections expressed in the design to produce the
control and data flow of the task. In this subsection we
present two important parts of the synthesized code for the
internal implementation of a task:

1. the scheduling of subcomponents according to the con-
nections expressed in the design;

2. the scope of critical sections that ensures the atomic
data broadcast property.

1 STATE Producer Producer t out (Producer svc ∗ svc) {
2 return STATE Producer t out;
3 }
4
5 void Producer transfer d out(Producer svc ∗ svc,
6 int ∗∗ dest) {
7 // Check if data was updated
8 if (svc−>d out updated) {
9 dest = &(svc h−>d out);

10 svc−>d out updated = 0; // Reset update flag
11 }
12 }

Listing 2: Component interface implemen-
tation: Outputs

1 void T0 schedule(Task ∗ tsk) {
2 if (Producer trigger in(tsk−>Producer))
3 T0 todo list push(tsk, STATE Producer t in);
4 while(T0 todo list not empty(tsk))
5 STATE T0 current state=T0 todo list pop(tsk);
6 switch(current state) {
7 case STATE Producer t in :
8 subservice Producer(task);
9 break;

10 }
11 }
12
13 void subservice Producer(Task ∗ tsk) {
14 STATE Producer state=entry Producer(tsk−>Producer);
15 switch(state) {
16 case STATE Producer t out:
17 lock(tsk−>port group1);
18 Producer transfer d out(tsk−>Producer,
19 &(tsk−>Consumer1−>cnx d in1));
20 Producer transfer d out(tsk−>Producer,
21 &(tsk−>Consumer2−>cnx d in2));
22 // No input trigger port connected
23 unlock(tsk−>port group1);
24 if (Producer store(tsk−>Producer,
25 STATE Producer t out)) {
26 T0 todo list push(tsk, STATE Producer t in);
27 }
28 break;
29 }
30 }

Listing 3: Subcomponent scheduling imple-
mentation

Listing 3 presents the function that implements the schedul-
ing of the subcomponents executed in task T0. This im-
plementation relies on operations that wrap the execution
of those subcomponents. In our example, T0 consists of a
single subcomponent, and the entry function of this com-
ponent (entry Producer) is wrapped by the function subser-

vice Producer. As shown in listing 3, this function first exe-
cutes the subcomponent’s entry point (entry Producer). Then,
depending on the outcome of this execution (i.e. which out-
put port group was triggered), the wrapping function enters
the critical section of the corresponding conflicting set (re-
questing the lock associated with port group1). Then, output
data are transferred to the external view of the connected in-
put data ports (cnx d in1 and cnx d in2), and triggers to the
connected input ports; in this example, there are no con-
nected input trigger ports. If some input trigger ports had
been connected, the commentary line 22 would have been
replaced by a code snippet equivalent to lines 2 and 3, for
each connected port.

Finally, the lock is released and then an operation Pro-

134

ducer store is called to keep track of already triggered out-
puts, and if not all output ports have been triggered, Pro-

ducer t in is put back in the task’s todo list in order to be
resumed (line 25).

4.3 Preserve the Triggering Order
As mentioned in the introduction of this section, the con-

sidered example was chosen in order to illustrate the atom-
ic/instantaneous broadcast of data from the producer to
both consumers. In addition, to enforce the respect of trig-
gering order for components that are connected to clocks or
events, we have proposed in section 3.4 a specific priority
management policy. The usage of this policy is illustrated
in the implementation of T1 schedule in listing 4. The cor-
responding task (T1) is activated with the ceiling priority
of the lock corresponding to the conflicting set of the port
group containing t in1. T1 schedule first enters the critical
section in which the input interface code (Consumer1 t in1,
see listing 1) is executed. Of course, in case ICPP is used
to configure the lock, this locking action is useless and re-
moved. We kept it here since the formal verification we
propose in section 5 only relies on a FIFO locking pattern,
which is more general than ICPP. When the operation is
terminated, the resource is released and the priority is set
to the expected priority according to the scheduling policy
(see line 6). The scheduling of subcomponents is executed
in a similar way to the one described above for T0 schedule.
Before exiting, T1 schedule resets the priority of the task to
the ceiling priority of the lock.

1 void T1 schedule(Task ∗ tsk) {
2 lock(tsk−>port group1);
3 if (Consumer1 t in1(tsk−>Consumer))
4 T1 todo list push(tsk, STATE Consumer1 t in1);
5 unlock(tsk−>port group1);
6 set functional priority (tsk);
7 while(T1 todo list not empty(tsk)) {
8 STATE T1 current state=T1 todo list pop(tsk);
9 switch(current state) {

10 case STATE Consumer1 t in1 :
11 subservice Consumer1(task);
12 break;
13 }
14 reset priority (tsk);
15 }

Listing 4: Task with activation priority dif-
ferent from functional priority

5. GENERATED CODE FORMALIZATION
In order to extend the verification capabilities presented

in [20], we propose in this section a formalization of the gen-
erated code. Beyond the verification of particular examples,
this formalization aims at proving that the proposed imple-
mentation respects the formal definition of the component
model. As a first step, we verify that the generated code we
presented in previous section ensures the atomic broadcast
characteristic. In this section, we present the correspond-
ing formal models and the properties we verified. For this
verification process, we rely on Uppaal [10] models since an
existing formalization of the ProCom semantics was already
specified using this formalism [20].

5.1 Interfaces Models
Figures 4 (a) and (b) represent generic models of inter-

faces dedicated to data transfer, corresponding to the op-
eration implementations described in listings 1 and 2, re-
spectively. These are generic models that contain parame-
ters (begin transfer data out, d out, d out updated, dest and end

transfer data out in (a), and begin transfer data in, d in, cnx d in

and end transfer data in in (b)), that can be instantiated for
individual component ports. In our example, the transfer
data out model is thus instantiated once (corresponding to
port d out), while the transfer data in model is instantiated
twice (for d in1 and d in2).

d_out_updated==0
begin_transfer_data_out?

d_out_updated==1
begin_transfer_data_out?

end_transfer_data_out!
dest:=d_out

end_transfer_data_in!
d_in:=cnx_d_in

begin_transfer_data_in?

(a) Transfer Data Out (b) Transfer Data In

Figure 4: Formalization of component interfaces

5.2 Tasks Body Model
Figure 5 illustrates the formal model corresponding to

the operation subservice Producer in listing 3. When the op-
eration is called (modeled by the transition Producer t in?),
the model simulates the call to the component entry point
(entry Producer!). When the output trigger is reached (mod-
eled as a synchronization STATE Producer t out? for simplic-
ity), the lock of the conflicting set is requested (lock group1!),
data is transferred to Consumer1 (begin transfer to d in1 is in-
stantiated to match the instantiation of begin transfer data out

in the corresponding instance of the model in figure 4 (a)),
and to Consumer2. Finally, the lock is released (unlock group1!).

end_transfer_to_d_in2?

end_transfer_to_d_in1?

begin_transfer_to_d_in2!

unlock_group1!
active:=false

lock_group1!
locker_ID:=port_group_ID

continue[port_group_ID]==true
begin_transfer_to_d_in1!

entry_Producer!

STATE_Producer_t_out?

Producer_t_in?
active:=true

Figure 5: Formalization of the Producer wrapper

The models for the corresponding operations wrapping
Consumer1 (shown in figure 6) and Consumer2 follow the same
principles, but focus on input aspects.

5.3 First-in/First-out Lock
Figure 7 represents the generic model of the first-in/first-

out locking mechanism. The initial state, called Free, is left
when receiving a locking command (lock?). The identifier of
the task requiring the lock (stored in locker ID) is then copied
to a cyclic buffer (buf). The task can then continue its exe-
cution (represented in the model by continue[locker ID]:=true)
and the automaton reaches the Locked state. From this state,
if another task reaches the critical section (lock? synchroniza-
tion), it is then blocked (continue[locker ID]:=false) and the

135

end_Consumer1_transfer_d_in1?unlock_group1!

lock_group1!
locker_ID:=port_group_ID

continue[port_group_ID]==true
begin_Consumer1_transfer_d_in1!entry_Consumer1!

STATE_Consumer1_t_out1?
active:=false

Consumer1_t_in1?
active:=true

Figure 6: Formalization of the Consumer1 wrapper

corresponding identifier is stored in the buffer. When un-
locked (unlock? synchronization), either there are elements in
the buffer (current!=storage), in which case the corresponding
task is resumed (represented by continue[buf[current]]:=true),
or the buffer is empty (current==storage) and in this case the
lock is freed and the internal variables are reset.

LockedFree
current!=storage
unlock?

continue[buf[current]]:=true,
stop_previous(current),
aquire(buf[current])

buf[current]==locker_ID
continue[locker_ID]:=true,
aquire(locker_ID)

continue[locker_ID]:=false,
store(locker_ID)

lock?

current==storage
unlock?
reset()

lock?
store(locker_ID)

Figure 7: Formalization of the FIFO locks

5.4 Closing the Model
Figure 8 presents the modeling elements that enable to

close the model. The generic model in (a) is instantiated
three times to trigger the execution of T0, T1, and T2. The
automata in (b) and (c) represent the internal implemen-
tation of the components (producer and consumers respec-
tively).

Figure 8 (b) shows how the produced value (d out) is up-
dated each time Producer is triggered (the value alternates
between 0 and 1). Figure 8 (c) is the generic model for the
two consumers implementation. This model exhibits an in-
teresting state regarding the property we intend to verify:
in User Code is the state in which the corresponding instance
of consumer has been triggered and performs internal com-
putations.

5.5 Verification
In order to verify the instantaneous characteristic of Pro-

Com interactions, we include in the model an observer au-
tomaton, shown in Figure 9, that follows the actions of in-
terest, and thus simplifies the formulation of correctness
properties. The two states sync1 and sync2 represent that
Consumer1 and Consumer2 were triggered (in the figure repre-
sented by t in1? and t in2?, respectively) without new data
being produced by Producer in between (t out? in the figure).

In order to validate the formalization, we have verified a
set of properties that show the reachability of the different
relevant states, and the absence of deadlock in the model.
In addition, we have verified the following property that ex-
presses the atomic/instantaneous interactions between the-
components:

trigger_connected_port!

(a) Event Generator

in_User_Code

STATE_Producer_t_out!
d_out:=1-d_out,
updated:=1

entry_Producer?
in_User_Code

STATE_Consumer_t_out!

entry_Consumer?

(b) Producer Entry Point (c) Consumer Entry Point

Figure 8: Formalization of event generator and entry
points

sync2sync1
t_out2?

t_out1?

t_out?

t_out1?

t_out2?

t_out2?

t_out1?

t_out2?

t_out1?

t_in2?

t_in1?

t_out?

t_out1?

t_out?

t_out2?

t_in2?

t_in1?

t_in2?

t_in1?

Figure 9: Verification of the instantaneous broad-
cast: Observer automaton

Property 1 = A[] ((OBS.sync1 || OBS.sync2)
&& C1.in User Code

&& C2.in User Code)
imply d in 1 == d in 2

where C1, C2, and OBS are the final instances of Consumer1,
Consumer2, and the observer in the Uppaal model. The ver-
ification required the exploration of 25837 states. Of course,
removing the proposed locking scheme leads to a violation
of the considered property.

In order to verify that the model we proposed enables
interleaving of consumers and producer, we also verified the
following property:

Property 2 = E〈〉 d in 1 != d in 2

&& C1.in User Code

&& C2.in User Code

This property represents the possibility that Consumer1

and Consumer2 have different input values while they are
both executing their respective functionality. In our model,
this situation can only occur when t out has been triggered
in between triggers of t in1 and t in2. Indeed, the opposite
situation has been covered by the verification of Property 1

and shows both consumers receive the same value. Thus,
Property 2 shows that we did not verify with Property 1 a
trivial model in which consumers always receive the same
input data independently of the interleaving scheme.

136

5.6 Discussion
As one can notice in figures 5 and 6, these two Uppaal

models contain “committed locations”. This modeling pat-
tern is an approximation that consists of neglecting the pos-
sibility of preemption by another task during the time spent
in a rather small section of the generated code. The gen-
eral output code pattern, when the component has several
output port groups, is illustrated in listing 5 and the cor-
responding model in figure 10. The committed state corre-
sponds to the execution from line 2 to line 5.

The motivation for this simplification is that the observer
automaton synchronizes with the STATE t out1 action, but
the semantically significant action is actually the lock re-
quest. The correctness of the simplification can be argued
by noting that no interaction with the rest of the system
happens between the triggering and the lock request, which
means that a preemption in this interval is equivalent to a
preemption immediately before the triggering.

1 ...
2 STATE current state=Component trigger out(...)
3 switch(current state){
4 case STATE t out1:
5 lock(lock group1);
6 ...
7 case STATE t out2:
8 lock(lock group2);
9 ...

10 }
11 ...

Listing 5: General output code pattern

lock_group2?
STATE_t_out2?

lock_group1?
STATE_t_out1?

Figure 10: Formalization of the output code pattern

6. RELATED WORK
In this paper, we have presented the synthesis process

of a component model that relies on an asynchronous se-
mantics and a formal hypothesis of atomic and instanta-
neous interaction. We have also verified that the generated
code respects these aspects of the semantics. In this section,
we briefly compare this contribution to related works, on
the one hand considering the synthesis of formally defined
component models, and on the other hand considering the
synthesis of component models relying on an asynchronous
semantics.

In the domain of embedded real-time systems, when it
comes to component models with a formally defined seman-
tics, synchronous languages constitute an important cate-
gory. Compared to synchronous languages, the main seman-
tic difference is that execution of functionalities of ProCom
components is not considered as instantaneous. Considering
the execution of the components functionality as instanta-
neous limits the deployment flexibility, e.g. the modularity
and reusability of existing components because of possible
instantaneous cyclic dependencies [13]. Relaxing the syn-
chronous hypothesis, ProCom answers, by definition, to this

cyclic instantaneous dependency. To verify the system’s be-
havior despite of the relaxation of the synchronous hypoth-
esis, it is necessary to model in more details than with a
synchronous language the internal behavior of a component.
As a benefit, the formal verification can be extended to more
features of the system’s behavior.

Compared to other component models for real-time em-
bedded systems (MyCCM-HI [5], for instance), ProCom im-
poses a number of behavioral restrictions that eases analysis
of the software application. Applying similar restrictions
to an existing component model should make the solution
presented in this paper beneficial in that context too.

Rubus [9] is a commercial real-time component model
originating from the same ancestor as ProCom. Since the
two share many characteristics, parts of the presented syn-
thesis scheme should be applicable to Rubus as well. How-
ever, since Rubus lacks formal operational semantics, it is
not obvious what semantical properties we would have to
guarantee.

If the verification of a ProCom component model requires
to model the internal behavior of a component, this model
may abstract away the details of the component’s imple-
mentation. This concept of gray-box component contrasts
with approaches that require to model in details the internal
behavior of the components (such as the BIP framework [3]).

On the other hand, code generation and verification based
on models that provide no formal hypothesis on the compo-
nent model (such as Ocarina/AADL [11]) can require the
exploration of a huge state space [14]. The specification of
instantaneous/atomic interactions enable to model a com-
plex interaction as a reduced set of states and transitions.

7. CONCLUSION AND FUTURE WORKS
The advantages associated with component-based devel-

opment, including improved modularity and ease of reuse,
are clearly desirable in the domain of embedded systems.
However, characteristics such as resource and real-time con-
straints, mean that traditional CBSE approaches intended
for desktop or enterprise applications, must be adapted to
fit this domain. ProCom is a component model specifically
targeting critical, distributed embedded systems with strong
requirements in terms of resource usage and timeliness. It is
based on a rich design-time component concept, facilitating
reuse of extra-functional properties as well as code, and a
formal operational semantics providing support for formal
analysis through, e.g., model checking. To address resource
limitations, ProCom envisions a synthesis phase in the de-
velopment process, where the rich component-based design
is translated into an efficient runtime system consisting of
asynchronous tasks executed in a lightweight real-time op-
erating system.

In this paper, we have presented the basic code genera-
tion strategy for ProCom, focusing on the generated code
wrapping the internal component computations to handle
the component interactions in terms of data and control
transfer. We also described the locking scheme developed
to guarantee that interactions occur in accordance with the
formal semantics (e.g., respecting the atomic and instanta-
neous properties of data transfer) without introducing un-
necessary overhead. We also showed how the generated code
can be formally modelled using timed automata, and de-
scribed the first step in proving conformance to the formal

137

ProCom semantics, by verifying that the integrity and order
of interactions is preserved by the locking scheme.

Our current and future work includes extending the code
generation to cover also the component interaction used in
the top layer of ProCom, i.e., asynchronous message passing
instead of data- and trigger transfer. At this level, the gener-
ated code should also be designed for hierarchical scheduling.
We will also complete the conformance validation initiated
in this paper.

Moreover, different aspects of the current code synthesis
can be optimized, e.g., targeting increased efficiency by iden-
tifying cases where the general, safe implementation can be
replaced by efficient alternatives without changing the ob-
servable result. Other optimizations, e.g., simplifying the
control flow of the generated component code and mak-
ing it more static, would aim at increasing the code-level
analysability. Finally, we want to investigate the possibility
of partial flattening, which would allow more flexibility in
the tradeoff between efficiency and reusability.

Acknowledgements

This work was partially supported by the Swedish Founda-
tion for Strategic Research via the strategic research centre
Progress, and by the Swedish Research Council project
Contesse (2010-4276).

8. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, Apr.
1994.

[2] T. P. Baker. Stack-based scheduling for realtime
processes. Real-Time Syst., 3:67–99, April 1991.

[3] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in BIP. In
Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal
Methods, pages 3–12, Washington, DC, USA, 2006.
IEEE Computer Society.

[4] G. Berry and L. Cosserat. The ESTEREL
synchronous programming language and its
mathematical semantics. In Seminar on Concurrency,
Carnegie-Mellon University, pages 389–448, London,
UK, 1985. Springer-Verlag.

[5] E. Borde, P. H. Feiler, G. Häık, and L. Pautet. Model
driven code generation for critical and adaptative
embedded systems. SIGBED Rev., 6:10:1–10:5,
October 2009.

[6] A. W. Brown and K. C. Wallnau. The current state of
CBSE. IEEE Software, 15(5):37–46, 1998.

[7] I. Crnkovic. Component-based software engineering
for embedded systems. In Proceedings of the 27th
International Conference on Software engineering,
ICSE’05, pages 712–713. ACM, 2005.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
1991.

[9] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K.-L. Lundbäck. The Rubus
component model for resource constrained real-time
systems. In 3rd International Symposium on Industrial
Embedded Systems, pages 177–183. IEEE, June 2008.

[10] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, Oct. 1997.

[11] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues.
OCARINA: An Environment for AADL Models
Analysis and Automatic Code Generation for High
Integrity Applications. In Reliable Software
Technologies’09 - Ada Europe, Brest, France, jun 2009.

[12] T. Leveque, E. Borde, A. Marref, and J. Carlson.
Hierarchical composition of parametric WCET in a
component based approach. In 14th IEEE
International Symposium on Object/Component/
Service-oriented Real-time Distributed Computing
(ISORC’11). IEEE, March 2011. To appear.

[13] R. Lublinerman, C. Szegedy, and S. Tripakis. Modular
code generation from synchronous block diagrams:
Modularity vs. code size. In Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’09,
pages 78–89, New York, NY, USA, 2009. ACM.

[14] X. Renault, F. Kordon, and J. Hugues. From AADL
architectural models to Petri nets: Checking model
viability. In Proceedings of the 12th IEEE
International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing,
ISORC’09, pages 313–320. IEEE, 2009.

[15] C. Seceleanu, A. Vulgarakis, and P. Pettersson.
REMES: A resource model for embedded systems. In
14th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS’09). IEEE,
June 2009.

[16] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković.
Integration of Extra-Functional Properties in
Component Models. In 12th International Symposium
on Component Based Software Engineering (CBSE
2009). Springer Berlin, LNCS 5582, June 2009.

[17] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A component model for control-intensive
distributed embedded systems. In Component-Based
Software Engineering, volume 5282 of Lecture Notes in
Computer Science, pages 310–317. Springer Berlin /
Heidelberg, 2008.

[18] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[19] A. Vulgarakis, S. Sentilles, J. Carlson, and
C. Seceleanu. Integrating behavioral descriptions into
a component model for embedded systems. In 36th
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 113–118. IEEE,
September 2010.

[20] A. Vulgarakis, J. Suryadevara, J. Carlson,
C. Seceleanu, and P. Pettersson. Formal semantics of
the ProCom real-time component model. In 35th
Euromicro Conference on Software Engineering and
Advanced Applications, SEAA’09, pages 478–485.
IEEE Computer Society, 2009.

[21] H. Zheng, H. Yao, and T. Yoneda. Modular model
checking of large asynchronous designs with efficient
abstraction refinement. IEEE Transactions on
Computers, 59(4), April 2010.

138

