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Abstract—We show in this paper that when some constraints
are relaxed in the League Problem, we can obtain a communi-
cating scheme in 1 + dlog log log ne bits exchanged where n is
the number of teams involved in the league. This contrasts with
previous results due mainly to Ortlitsky. The price we have to
pay is that, with a vanishing error probability, a wrong decision
is made. We also give some extensions and applications to our
setting.

I. INTRODUCTION

In 1990, Orlitsky introduced the following League Problem
[7]. There are n soccer teams. Agata knows that Palerme and
Juventus played against each other. Benedetto hears the name
of the winning team, but not Agata. Unfortunately, he did
not get the name of the loser. The League Problem asks for
how many bits must Benedetto and Agata exchange in the
worst case for Agata to find out who won? Whenever two
interactions are allowed, there is a solution where Agata sends
the index of the first bit in which the name of the two teams
differ and Benedetto responds with this bit. One can prove that
dlog log ne + 1 bits are optimal [7], even in the case where
more than two messages are exchanged.

We here recall a different construction wich used identi-
fication codes to solve this League Problem. Identification
codes have been introduced by Ahlswede and Dueck in [1]
to permit to Agata to know if Benedetto sends a message
indicating that a particular team (for instance, say Palerme,
Agata’s favorite team) has won. These codes demand less
bits than the traditional transmission codes which convey
more general messages of the type “What team did Benedetto
send?”. With these identification codes, Agata can make two
types of mistakes. First, she can believe that the team identified
was not the one sent by Benedetto when it was. Second, she
can conclude that this team was the one sent by Benedetto
when it was not.

Coming back to our League Problem, if we now allow Agata
to sometimes take wrong decisions as it is the case when using
identification codes, we can exhibit as the main result of this
paper a solution where only log log log n bits are needed.

II. THE LEAGUE PROBLEM: A SPECIFIC CASE OF
TWO-WAY COMMUNICATIONS

A. Two-Way Communications

Orlitsky [8] explored many aspects of communication be-
tween two players. Player A knows X , player B knows Y ,
and we want to design a communication protocol between A
and B such that, at the end of the protocol, A knows f(X,Y )
where f is a given function. The goal of this protocol is for
A and B to send as few messages as possible.

This problem is pretty generic and obviously depends on
the function f . We here suppose that n is a parameter for the
length of the data X , Y (for example, Y is an element of
{0, 1}n), and we look for – asymptotic – optimal communi-
cation protocols. An upper bound on the number of bits to be
sent is log n, as it suffices that B sends Y to A for A to be able
to compute the result. We focus here on a specific problem.

As stated in the introduction, we explore the different
existing possibilities for the League Problem, before exhibiting
a new solution which, while allowing some errors on the result,
outperforms the previously existing solutions.

B. Problem Statement

In a well-known league, n teams t1, . . . , tn are competing,
until the final match where team tα and team tβ are to play
against each other. Agata knows tα and tβ , but misses the
result of the game. Benedetto knows who is the winner t, but
not who was his opponent. How can Agata and Benedetto
communicate so that Agata gets the result without using the
channel more than is necessary?

We assume that the channel between Agata (A) and
Benedetto (B) is two-way and noiseless, so that each sent bit
is correctly received. We also assume that the ordering of the
teams is known and shared between the two partners. In the
following, log denotes the binary logarithm.

C. Practical Solutions

The trivial solution, without any interaction, is for Benedetto
to send the name of the winning team to Agata. This takes
dlog ne bits to transmit, and is optimal in the lossless case
(if Benedetto can transmit his message in k bits, in a lossless
way, there is an injection between {0, 1}k and {1, . . . , n}; thus
2k ≥ n).



If we allow interaction between A and B, then Orlitsky
showed [7] a solution in O(log log n) bits. First, A sends the
position where the bit strings representing tα and tβ differ -
which takes dlog log ne bits, then B replies with the actual
value of this bit – thus a 1 + dlog log ne-long solution. This
solution is also shown to be optimal.

The problem widens if we allow some error to be made
within a controlled probability. Let λ be the probability of
the event “after the communication, A is mistaken about the
winning team”. This is referred to in [9] as “the ε-randomized
model”. The case λ = 0 leads to the previous results; we show
in the following that λ > 0 leads to new interesting results.

D. Existing Bounds

The optimal solutions of this problem, as stated in Section
II-A, satisfy some strict boundaries showed in [7]. Reusing the
notations employed in that article, we note Cm(Y |X) the m-
message complexity of Y knowing X , i.e. the minimal number
of bits required to transmit Y to a person who knows X , with
m messages sent over the channel. Here, m is a natural number
(m ≥ 1). Cm(Y |X) is a decreasing sequence, whose limit is
noted C∞(Y |X).

Note that Cm(Y |X) only denotes the case where A knows
without any doubt Y at the end of the protocol. In the case
where A knows Y with probability 1 − λ, the corresponding
quantity is noted Cλ

m(Y |X).
With these notations, several bounds can be found in [7],

among which we highlight the following two:
• (1) C∞(Y |X) ≥ dlog C1(Y |X)e+1 with equality in the

case of the League Problem;
• (2) Cλ

1 (Y |X) ≤ 4C∞(Y |X) + 2 log 1
λ

This shows that the League Problem is well studied in the
case of an exact result. Our work aims at improving the second
bound in that specific case, in showing that allowing vanishing
errors in the result enables to reduce the communication cost
by a logarithmic factor. Moreover, we derive an inequality
similar to the first one in the error case.

III. IDENTIFICATION CODES

A. Definition

Informally speaking, an identification is a data representa-
tion which enables a receiver Bob to know, within a given
error probability, if Alice sent a message i ∈ {1, . . . , N}, or
not. To be more specific, the following definition is commonly
adopted.

Definition 1 (Identification Code, [1]): Let X ,Y be two al-
phabets, and W n a channel from X n to Yn. A (n,N, λ1, λ2)-
identification code from X to Y is given by a family
{(Q(·|i),Di)}i∈{1,...,N} where:

• Q(·|i) is a probability mass function over X n, that
encodes i,

• Di ⊂ Yn is the decoding set,
• λ1 is the first-kind error rate, with λ1 ≥

∑

xn∈Xn Q(xn|i)Wn(Di|x
n)

• λ2 is the second-kind error rate, with λ2 ≥
∑

xn∈Xn Q(xn|j)Wn(Di|x
n)

for all i, j ∈ {1, . . . , N} such that i 6= j.
The first-kind error rate denotes the probability for a trans-

mitted message not to be identified, and the second-kind error
rate is the probability for a transmitted message to be falsely
identified.

The relevant rate to consider in such a case is the Identi-
fication Rate, defined as RID = 1

n
log log N . The following

theorem was shown in [1]:
Theorem 1 ([1]): Let κ be the capacity of the channel W .

Let ε > 0.
• For each 0 < λ1, λ2 ≤ 1, there exist n,N and an

(n,N, λ1, λ2)-identification code such that 1
n

log log N ≥
κ − ε;

• If there exists an (n,N, λ1, λ2)-identification code with
λ1, λ2 ≤ 2−nε, then the rate of this code is such that
1
n

log log N ≤ κ.
This theorem basically shows that for a given channel, the

transmission capacity is the same as the identification capacity.

B. Constructing Identification Codes

There exist few constructions of identification codes. [1] use
constant-size sets as a general frame-work for identification
codes. This idea was then applied by [10], [5], in constructions
using constant-size codes as an instance of [1]. Another
construction, based on prime numbers, is given in [2]. Finally,
[6] designs an identification code based on Reed-Solomon
codes, thus showing that it is possible to design such an ID-
code thanks to the minimal distance of an error-correcting
code.

C. Using Identification Codes to solve the League Problem

A first way of solving this problem is to use Identification
Codes. Instead of going through the two-round communica-
tions, B directly sends an identification tag for the winning
team. As A must choose between two teams, she must check
whether the received tag is identifying tα of tβ .

To successfully achieve this goal, A and B agree beforehand
on an (m,n, λ1, λ2)-identification code, where n is the number
of teams and m the number of bits to be transmitted. As A
knows tα and tβ , she sets her target on Dtα

, then listens to
B. Then B picks a message xm according to Q(·|t) and sends
it to A, who checks whether xm ∈ Dtα

.
To evaluate the error probability of such a construction,

consider the following: either t = tα, or t = tβ . In the first
case, the probability for A not to read tα in xm is Q(Dtα

|tα),
which is smaller than λ1. In the second case, the probability
for A to read tα anyways is Q(Dtα

|tβ), which is smaller than
λ2. The overall error probability is thus λ ≤ λ1+λ2

2 .
Note that, according to Theorem 1, there exist identifica-

tion codes such that m is about 1
κ

log log n. We therefore
obtain a communication protocol for the League Problem in
O(log log n) bits.

IV. ACHIEVING A TRIPLE-LOG LEAGUE SOLUTION

We now allow two-way communications between A and
B. In the errorless case, this reduced the communication
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Figure 1. Lossless representation of n teams, and resulting two-way
communication
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Figure 2. Representation of n teams on w < log n bits.

complexity from O(log n) to O(log log n). We here show that
if we allow errors, we reduce the communication complexity
from O(log log n) to O(log log log n).

A. Going one Step Further

Our proposal starts with the original protocol from Orlitsky.
To achieve the optimal two-way communication, [7] represents
the set of all teams according to an entropic coding, as is
illustrated in Figure 1.

If we wish to achieve communication while enabling a
(small) error probability, it suffices to relax the representation
of Figure 1, and reduce the number of bits needed to represent
each team from log n to w, see Figure 2. In doing so, A needs
only send log w bits to B. Let h be an “entropic” hash function
from {1, . . . , n} to {0, 1}w; for example, h(x) takes the first
w bits of the representation of x in dlog ne bits.

Indeed, as n elements are represented with a set of 2w

elements, for each w-long bit string, there will be n
2w elements

which have the same representation. However, as we only wish
to distinguish between any two elements, the probability for
tα and tβ to have the same representation is 1

2w .
From this fact, we deduce the probability for the protocol to

fail, i.e. the probability for A not to correctly guess t between
{tα, tβ}:

Pr[fail] = Pr[fail|h(tα) = h(tβ)] + Pr[fail|h(tα) 6= h(tβ)]

As the protocol is always successful when tα and tβ have
different representations, we find the probability of error to be
Pr[fail] = 1

2w+1 .

B. Triple-log Solution with Vanishing Error Probability

In the specific case where w = dlog log ne, the protocol
takes an overall length of dlog log log ne + 1 bits of commu-
nications with Pr[fail] = 1

2 log n
.

This error probability might seem non-negligible if stated
under those terms - as 1

log x
slowly converges to 0. However,

we emphasize the fact that this enables to solve the League

Problem with a huge number of competing teams with very
small communication between A and B.

Another way of stating this is that by sending m + 1 bits
over a channel, it is possible to identify 222m

teams, with an
error probability of only 1

22m+1 , which is actually negligible.
This result also beats the bound of Inequality (2):

Cλ
1 (Y |X) ≤ 4C∞(Y |X) + 2 log 1

λ
. In this case, the upper

bound is equal to 6dlog log ne + 4, which is still greater than
dlog log log ne + 1.

C. Revisiting the Two-Way Communication Paradigm

Using the notations introduced in Section II-D, we here
show that the triple-log result for Cλ

∞ obtained is coherent with
the double-log communication result for Cλ

1 . This is shown in
the following theorem:

Theorem 2: For all (X,Y ) pairs, for all 0 < λ < 1, the
following inequality holds:

Cλ
2 (Y |X) ≥

⌈

log Cλ
1 (Y |X)

⌉

Proof. It is similar to that of Inequality (1): we formalize a
two-way protocol in this fashion:

• A sends a – possibly randomized – message σA =
createMessage(X),

• B receives σA and replies with σB = reply(Y, σA), which
can also be randomized;

• A receives σB and deduces Y ′ = deduce(X,σA, σB)
such that Pr [Y ′ = Y ] ≥ 1 − λ.

Assume that messages σA have (maximal) length lA and
messages σB have (maximal) length lB . In this case, fB =
reply(Y, ·) is a function from {0, 1}lA to {0, 1}lB , which
enables to determine Y with probability 1 − λ.

The graph of fB is the set of all (σA, σB) such that
fB(σA) = σB , thus a subset of {0, 1}lA × {0, 1}lB , and can
be represented as a subset of {0, 1}lA+lB , i.e. an element of
{0, 1}2lA+lB .

In order to transform a two-ways protocol into a one-way
protocol, it suffices for B to fully send his function reply,
which he can do in 2lA+lB bits.

Then, A can compute σA using createMessage, apply it to
fB , and deduce Y ′ such that Pr [Y ′ = Y ] ≥ 1 − λ.

This shows that if there exists a protocol with 2-message
complexity C, then there exist a protocol with 1-message
complexity 2C ; thus Cλ

2 (Y |X) ≥
⌈

log Cλ
1 (Y |X)

⌉

. 2

Remark 1: For the sake of clarity we dealt with protocols
that only use 2 messages, but in fact our theorem can easily
be extended to any number of messages greater than 2,
using a function fB which depends not only on σA, but on
all previously sent messages. This shows that Cλ

∞(Y |X) ≥
⌈

log Cλ
1 (Y |X)

⌉

.
As we showed that it is possible, using identification codes,

to solve the League Problem with errors with a one-way
communication cost of dlog log(n)e + 1, applying Theorem
2 shows that our result, namely a two-ways protocol for the
League Problem with communication cost dlog log log ne+1,
is coherent.



D. Double-log One-Way Solution with Vanishing Error Prob-
ability Without Identification Codes

The result of the previous section incites us to apply the
proof of Theorem 2 in order to find an efficient solution for
the League Problem, in only one message.

Actually, instead of sending the graph of the function fB as
previously defined, it suffices to send, in an equivalent way,
the first w = dlog log ne bits of the winning team t.

As the receiver A has only the choice between two teams,
she fails exactly when both teams have the same dlog log ne
first bits. This happens with probability 2−dlog log ne ≈ 1

log n
.

This shows that the League Problem has a trivial one-way
solution in dlog log ne with vanishing error-probability.

V. UNLOCKING POSSIBLE EXTENSIONS WITH CODING
THEORY

A. Communicating over a Noisy Channel

The problem of communicating over a noisy channel was
introduced by Shannon and is well-known. Given two alpha-
bets X and Y , a channel from Xm to Ym is a mass function
W : Xm×Ym → [0, 1] which defines the output of a message
xm. The channel is noisy if W cannot be represented as the
identity function.

Transmitting information over such a channel is always
possible at a given rate if this rate is lower than the capacity
of the channel κ(W ). This means in practice that in order to
transmit k bits of information, one must send at least m = k/R
bits where R < κ.

Finding the optimal data structure to communicate over a
noisy channel is still an open problem, however beyond the
scope of this paper. In the following, we shall assume that the
channel noise is overcome by classical coding techniques, and
thus focus only on the problem of the information to transmit.

B. A League Problem with More than 2 Competing Teams

Consider a generalization of the initial problem, where
Agata misses the result of the game between tα and tβ , to
the following: In the universe of the n teams competing, the
final round involved s + 1 ≥ 2 teams. How can now A get
from B the identity of the winner? A trivial solution is to call
(

s+1
2

)

times the initial (s = 1) protocol. One can however get
a linear (in s) solution by making use of separating codes (see
[3]), defined as follows:

Definition 2: Let Q be an alphabet of size q, s, u integers.
A subset C ⊂ Qm is (s, u)-separating if for any two disjoint
subsets S,U of C with |S| = s, |U | = u, there is some
coordinate i ∈ {1, . . . ,m} such that for any x ∈ S and any
y ∈ U , we have xi 6= yi.

We only need here a specialization to the case q = 2, u = 1.
There exist asymptotic families of (s, 1)-separating codes

with rate Rs > 0. An existential proof is easy to come up
with; for constructions, one can resort to algebraic geometry
codes on large alphabets (see, e.g. [11]) and then concatenate
to get binary codes. We do not elaborate on this topic here,
since we only need to achieve a non zero rate Rs for our
purpose.

The idea is the following: encode n = 2Rsm binary
sequences (teams) on m bits using such a code: then, for any
ordered (s + 1)-subset of teams (ti1 , ...tis+1

), there exists an
index j ∈ {1, . . . ,m} such that the j-th bit of ti1 is 0 and all
others ti’s have a 1, or the opposite. When A asks B for this
bit, she identifies ti1 ; calling this protocol at most s+1 times
is enough.

C. Real-Life Application

In this section, we give an example of application which
makes use of our results. A Smartdust [4] is a network of
small micro-electromechanical systems equipped with wireless
communications. Imagine that a cloud of n Smartdust is
released over a geographical zone. Some sensors are installed
in this zone. During a kind of system setup, the sensors collect
the identities of the different specks of Smartdust in their area
of listening. We assume that each sensor possesses at most
s + 1 < n specks in their area of listening. Using Section
V-B, we encode each identifier ti on m = d 1

Rs
log ne bits.

After that, the sensors periodically want to verify if a given
speck of Smartdust is still working. We can imagine that
sensors have to reduce the length of communications to a
minimum; for instance to save needed energy of transmission.

To test the liveness of an element noted te ∈
{ti1 , . . . , tis+1

}, using Section V-B, sensors compute the index
j ∈ {1, . . . ,m} such that te[j] is different from the other t[j]
for t ∈ {ti1 , . . . , tis+1

}. They then broadcast a message of
type: (j, te[j]) where j is encoded over log m bits. Note that
the total size of the message is 1 + dlog log n

Rs
e. Each node of

Smartdust which receives the message checks whether it is the
one which has to answer to the sensor. In this case, it emits
an acknowledgement sequence.

VI. CONCLUSION

In this paper, we show that allowing vanishing errors into
the determination of the results can save an extra log factor
in the communication cost of the League Problem. More
generally, denoting by log(i) n the i-th iterated logarithm, a
straightforward extension of the results in Section IV. B yields
that, if we code in length w = dlog(i) ne, then the overall
protocol length will be in dlog(i+1) ne and the error-probability
less than 1/log(i−1) n.

In the future, we will investigate the relationships between
identification codes and interactive communications. In partic-
ular, we will further study the applications of our results to
pervasive systems such as RFID tags or Smartdust.
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